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OWA Operators in Generalized Distances
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considering the attitudinal character of the decismaker is

Abstract—Different types of aggregation operators such a&s tithe ordered weighted averaging (OWA) operator ghiced

ordered weighted quasi-arithmetic mean (Quasi-OWgrator and
the normalized Hamming distance are studied. Wedinice the use
of the OWA operator in generalized distances sushha quasi-
arithmetic distance. We will call these new dismaggregation the
ordered weighted quasi-arithmetic distance (QuUaSiAD) operator.
We develop a general overview of this type of galieation and
study some of their main properties such as théndton between
descending and ascending orders. We also consitiredt families
of Quasi-OWAD operators such as the Minkowski cedeweighted
averaging distance (MOWAD) operator, the orderedigited
averaging distance (OWAD) operator, the Euclideardered
weighted averaging distance (EOWAD) operator, tlemalized
guasi-arithmetic distance, etc.

by Yager in [1]. The OWA operator provides a partarieed
family of aggregation operators that include, amotigers, the
maximum, the minimum and the average criteria. &iits
appearance, it has been used in a wide range ditafins
such as [2]-[25].

In this paper, we suggest a new type of distancasuore
consisting in normalize the quasi-arithmetic distamith the
OWA operator. Then, the normalization developed Wwé
able to modify the results of the aggregation bpgislifferent
degrees of pessimism or optimism and it will previd
parameterized family of distance operators thatude the
maximum distance, the minimum distance and the ameer

Keywords—Aggregation operators, Distance measures, Quagdistance. Note that from a mathematical perspectihe

OWA operator.

I. INTRODUCTION

HE quasi-arithmetic distances are very useful tepgles
that generalize a wide range of distance measuids as

attitudinal character of the decision maker inalggregation is
seen as the orness or the andness of the aggredigtioNe
will call this generalization as the ordered wegghtquasi-
arithmetic distance operator or the Quasi-OWAD afmt for
short. We will also study a wide range of particutases of

the Hamming distance, the Euclidean distance arel tRuasi-OWAD operators such as the Minkowski ordered

Minkowski distance. These particular cases of thmsg
arithmetic distance are very useful techniques tizae been
used in a lot of applications such as fuzzy setorthe
multicriteria decision making, business decisiats,

weighted averaging distance (MOWAD) operator, the
Hamming ordered weighted averaging distance (HOWAD)
operator, the Euclidean ordered weighted averadistance

(EOWAD) operator, the ordered weighted geometric

Often, when calculating distances, we want an a@eeraaveraging distance (OWGAD) operator and the ordered

result of all the individual distances. We call sththe
normalization process. In the literature, we firasibally, two
types of normalized distances. The first type & ¢hse when
we normalize the distance giving the same impodaacall
the individual distances. This case is known fog tjuasi-
arithmetic distance, the normalized quasi-arithendistance.
The second type is the case when we normalize idtende
giving different degrees of importance to the indial
distances. Then, we get the weighted quasi-ariiicrdettance.
Sometimes, when calculating the normalized distarice
would be interesting to consider the attitudinaratter of the
decision maker in order to modify the results ofe th
aggregation with optimistic or pessimistic attitaded very
useful technique for the aggregation of the infdiama
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weighted harmonic averaging distance (OWHAD) opmrat
We should note that some considerations about USMEA
operators in distance measures have been studj2dl]in

In order to do so, the remainder of the papergaoized as
follows. In Section I, we briefly describe some slwa
aggregation operators such as the Hamming distandethe
Quasi-OWA operator. Section Ill, develops the Q«@@/AD
operator. In Section IV, we study different fanslief Quasi-
OWAD operators. Finally, in Section V, we summaribe
main conclusions of the paper.

Il. PRELIMINARIES

A. Normalized Hamming Distance

The normalized Hamming distance is a distance measu
used for calculating the differences between tveoneints, two
sets, etc. In fuzzy set theory, it is very usefiot,example, for
the calculation of distances between fuzzy setsrval-valued
fuzzy sets, intuitionistic fuzzy sets and intervalued
intuitionistic fuzzy sets. For two sefsandB, it can be defined
as follows.
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Definition 1. A normalized Hamming distance of dimension Definition 4. A Quasi-OWA operator of dimension is a
is a mappingly: R" x R"— R such that: mapping QOWA R' — R that has an associated weighting
vectorW of dimensiom such that the sum of the weights is 1

1N andw; (I [0,1], then:
dn(AB) = a > |ai — by 1)
i=1

where g and b; are theith arguments of the sets and B
respectively.

Sometimes, when normalizing the Hamming distands it . . . .
. . . R where b, is the jth largest of thes;, andg is a continuous
better to give different weights to each individwhstance. . . :
. strictly monotonic function.

Then, the distance is known as the weighted |_|"j\mmmgFrom a generalized perspective of the reorderipg, sive

distance. It can be defined as follows. can distinguish between the descending Quasi-OWéa$hd
DOWA) operator and the ascending Quasi-OWA (Quasi-

. . .. AOWA) operator. The weights of these operatorsratated
a mappingdy: R" x R"— R that has an associated weightin - . . . .
. . . 0y W =W, wherew; is thejth weight of the Quasi-DOWA
vectorW of dimensiomn such that the sum of the weights is 1 . . .
andw; 0 [0,1]. Then: andw*, 4., thejth weight of the Quasi-AOWA operator.
! " ' It can be demonstrated that the Quasi-OWA operator
0 generalizes a wide range of aggregation operaddr$q] such
dwH(AB) = 3w, |ai _bi| (2) as the maximum, the minimum, the generalized OWérator
i=1 [2], [17], the arithmetic mean, the geometric medine
guadratic mean, the harmonic mean, the weightechgegethe
where g and b; are theith arguments of the ses and B weighted geometric mean, the OWA operator [1],dieered
respectively. Note that Definitions 1 and 2 are taneral weighted quadratic averaging (OWQA) operator [1ffig
expressions. For the formulation used in fuzzytsebry see ordered weighted harmonic averaging (OWHA) operiai,
for example [27]—-[29]. etc.

B. Quasi-OWA operator Ill.  THE QUASI-ORDEREDWEIGHTED AVERAGING DISTANCE
The Quasi-OWA operator [5] is a generalization bé t OPERATOR

OWA operator by using quasi-arithmetic means. Thasg

arithmetic mean was introduced in [30]—[32] andejpresents
a generalization to a wide range of mean aggregmsach as
the generalized mean, the arithmetic mean, the g&mm
mean, the harmonic mean or the quadratic meanarithbe

defined as follows.

QOWAay, &,..., &) = g‘l[ 3 W g(b(j))J “)
j=1

Definition 2. A weighted Hamming distance of dimensiois

The Quasi-OWAD operator represents an extensiothef
traditional normalized quasi-arithmetic distanc&][By using
OWA operators. The difference is that the reordgm the
arguments is developed according to the values hef t
individual distances. Then, it is possible to chta the
distance between two elements, two sets, two feety, etc.,
modifying the results according to the attitudiohbracter of
the decision maker. For example, this type of distais very
useful when a decision maker wants to compare twzyf
subsets but he wants to give more importance tchitjeest
OM(ay, a,..., @) = 9_1(%Zn:9(ai )] 3) individual distance because he believes that it bel more

i=1

Definition 3. A quasi-arithmetic mean of dimensionis a
mappingQM: R" — R such that:

significant in the analysis. Note that this typenmirmalized
distance operator can be constructed by mixing ghasi-
wherea; is the argument variable agds a continuous strictly &rithmetic distance with  OWA operators, by mixinge t
monotonic function. Note that depending on the fofrg, we Hamming distance with quasi-OWA operators or by ingx
obtain different types of means. Whegfa) = a, we obtain the the Hamming OWAD operator with quasi-arithmetic meat
arithmetic mean. Wheg(a) = a2 the quadratic mean. When ¢an be defined as follows.
g(@ = &, the harmonic mean. Wheg(a) = a° the o _ . o
geometric mean. More generally, whe(®) = a/, we get the Definition 5. A Quasi-OWAD operator of dimensiomis a
generalized mean. mapping QOWAD R' x R" — R that has an associated
Note that if the arguments have different weigtiien, the weighting vectorW of dimensionn such that the sum of the
quasi-arithmetic mean is transformed in the weighgeasi- Weights is 1 andy O [0,1]. Then, the distance between two
arithmetic mean. With this information, we can defithe SetsAandBis:
Quasi-OWA operator as follows.

867



World Academy of Science, Engineering and Technology 57 2009

1/A

i

where Dy, is thejth largest of thed; andd; is the individual
distance betweeA andB. That is,d; = Oa — bi[0. Note thatg
is a continuous strictly monotonic function. As ean see, we
adapt the characteristics of the quasi-arithmetiamto the
characteristics of the OWAD operator.

A fundamental aspect of the Quasi-OWAD operatathes Since i, d..., dn) is a permutation ofef, e,..., &), we have
reordering of the arguments based upon their vallieat is, d; =€, for allj, and then
the weights rather than being associated with ecifipe
argument, as in the case with the usual quasiragiic mean, f(dy, 0., dn) =f (€1, €2..., &) L]
are associated with a particular position in théeding. This
reordering introduces nonlinearity into an otheewinear Theorem 2 (Monotonicity). Assume f is the Quasi-OWAD
process. Note that the Quasi-OWAD operator follavesmilar  operator, ifd; > e, for all i, then
methodology than the Quasi-OWA operator [3], [B]. [

If D is a vector corresponding to the ordered arguments f (dy, dp..., dy) >f (€1, &..., €) (11)
ad(Dg), we shall call this the ordered argument veciod W'
is the transpose of the weighting vector, then @uasi- prgoof. Let
OWAD aggregation can be expressed as:

N 1/ A
f(el,ez...,en)=[2 Wjdf] (10)
j=1

1A
— n
QOWALdy, ..., d) = g WD) (6) f (dy, d..., ) = [ijbe (12)
j=1
From a generalized perspective of the reorderieg, sive
have to distinguish between the descending QuashDW 1A
(Quasi-DOWAD) and the ascending Quasi-OWAD (Quasi- f _la A
. . , ..., 6)) = ot 13
AOWAD) operators. The weights of the Quasi-DOWAR ar (© &oer &) Elecj (13)
related to those of the Quasi-AOWAD by using= w*, .4,
wherew; is thejth weight of the Quasi-DOWAD ang* ., . _
thejth weight of the Quasi-AOWAD operator. Sinced, > e, for all d, it follows that,d, > e, and then
Note that if the weighting vector is not normalized., W
:er‘zle #1, then, the Quasi-OWAD operator can be (0, dz.... dh) 2 T (&1, €., &) .
expressed as: Theorem 3 (Bounded). Assume f is the Quasi-OWAD
operator, then
QOWADdy, ds.... d) = 974 = Sw; g(Dpy) %)
b Garers G w iz 1 9E0) Min{d} <f (dy, ..., d) < Max{c}} (14)

The Quasi-OWAD operator is a mean or averaginBrOOf' Let max{d} = ¢, and ming} = d, then

operator. This is a reflection of the fact that theerator is

. : . 1/ 1/ A
monotonic, bounded, commutative, and idempotent. n a n a
f(dy, dz...,dy) =| X wib <| X wic =
iz iz
Theorem 1 (Commutativity). Assume f is the Quasi-OWAD . .
operator, then L 1A
j=1

f(dy, d...,dn) =f (e, &..., &) (8)

where(d,, ds..., dy) is any permutation of the argumerits,
€..., ). f(dl,dz...,dn):[

‘M=

1/ A n 1/ A
A A —
1 j=1

j
Proof. Let
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n 1/ For example, ifs; = 1 for somg, thenH(W) = 0, and the
[d" > WJ} (16) least amount of information is used.wf= 1/n for allj, then,
j=1 the amount of information used is maximum.

A third measure that could be studied in the aggreg is
) the divergence of the weighi® It can be defined as follows.
Since er‘:le =1, we get
2

. _ n n-j
f(dy, dp..., d) < C 17) Div(W)= szle [ﬁ -H(W)j (23)

f (0, do.... dh) 2 d (18)  Note that the divergence can also be formulatedh it

ascending order in a similar way as it has beervshao the

Therefore, attitudinal character.
Min{d} <f(dy, ds..., dy) < Max{d;} L] IV. FAMILIES OF QUASI-OWAD OPERATORS
Theorem 4 (Idempotency).Assume f is the Quasi-OWAD A. Analysing the Weighting Vector W
operator, if d=d, for all d, then By using a different manifestation of the weightiregtor in
the Quasi-OWAD operator, we are able to obtainedéfifit
f (dy, dy..., d) =d (19) types of distance aggregation operators. For ex@mpg can
obtain the maximum distance, the minimum distartbe,
Proof. Sinced; = d, for all d,, we have normalized quasi-arithmetic distance and the weigjlquasi-

arithmetic distance.

Remarkl: The maximum distance is obtained whar= 1
andw, = 0, for allj # 1. And the minimum distance is found
whenw, = 1 andw; = 0, for allj # n. As we can see, the
maximum and the minimum distances are obtained

n A n YA independently of the value gf
[ZWjdA] = (OM ZWjJ (20)  Remark2: It should also be noted that the median cam als

=1 be used as Quasi-OWAD operator. We will call it ®easi-
OWAD median and it is possible to distinguish betwewo
situations. Ifn is odd we assigw, + 1 = 1 andw; = 0 for all
others, and this affects then[¢ 1)/2]th largest argument. If
nis even we assign for exampi&,, = W + 1 = 0.5, and this
f (ch, dp..., dy) =d - foects the arguments with the/Z)th and [(/2) + 1]th largest
L.

Another interesting issue to analyze is the atiitaid Remark3: More generally than the maximum, the minimum
character of the Quasi-OWAD operator. Based omtaasure and the median, il = 1 andw = 0, for allj # k, we get for
developed for the Quasi-OWA operators in [2], incae anyd, QOWANd,, ..., d) = Dy, whereDy is thekth largest
formulated in two different forms depending on tiype of Or lowest of the arguments. This type of Quasi-OWAD

ordering used. For the first type we get the folfayy operator is known as the step-Quasi-OWAD operdilmte
that if k = 1, the step-Quasi-OWAD is transformed in the

maximum and ifk = n, the step-Quasi-OWAD becomes the

a(W) = g‘l(zn:wj g[ﬂn (21) Minimum.

1/A
f(dy, dp..., d) = (z wjbf] =

Since 37_;w;j =1, we get

j=1 n-1 Remark 4: For the weighted-Quasi-OWAD median, we
select the argument that has kte largestd;, such that the sum

A further issue to consider is the measure of dispe of of the weights from 1 t& is equal or higher than 0.5 and the

the weightsW. It is a measure that provides the type ofum of the weights from 1 to— 1 is less than 0.5.

information being used. Using the same methodotgin [1], Remark5: The normalized quasi-arithmetic distance ased th
it can be defined as follows. weighted quasi-arithmetic distance are also pddiotases of

the Quasi-OWAD operator. The normalized quasi-ardtic

n distance is obtained whem = 1/, for all j. The weighted

H(W) = —ij In(w; ) (22) quasi-arithmetic distance is obtained wheni, for all i andj,
=1 wherej is thejth argument oD; andi is theith argument ofl;.
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Remark6: Other families of aggregation operators cowdd b= Max{a}, and the normalized quasi-arithmetic distancle if
used in the weighting vector. For example, the HervQuasi- n. In the second class, the minimum distance isioddaif k =
OWAD criteria is obtained whem; = a, w, =1 -a,w; =0, for 1 and b, = Min{a}, and the normalized quasi-arithmetic

all j # 1,n. Note that ifa = 1, the Hurwicz Quasi-OWAD distance ifk =n. o _ _
criteria becomes the maximum distance andzit= 0. it Remarkl2: Another method for obtaining the weights is the

becomes the minimum distance. one suggested by Filev and Yager in [4]. Followihg same
Remark7: Whenw = 1mfork<j <k +m- 1 andw, = 0 methodology we can distinguish between two possésl for
forj>k+m ande <k, we are using the windowiQuasi-the Quasi-OWAD weights. For the first method, theights

OWAD operator based on the window-OWA operator [13@N D€ expressed ag = a, Wn = W1 — wy)/wy, andw; =
Note thatk andm must be positive integers such thatm—-1  W-1(1 =wy) forj =2 ton = 1. And for the second method, the
< n. Also note that ifm = k = 1, then, the window-Quasi- WeIdhts are obtained ag = 1 - a, wy = Wy(1 = Wa)/w,, andw
OWAD is transformed in the maximum distancemit 1,k = = W(1—wy) forj =2ton-1.
n, then, the window-Quasi-OWAD becomes the minimum Remark13: Other families of Quasi-OWAD operators could
distance. And ifn = n andk = 1, the window-Quasi-OWAD is P€ obtained such as the weights that depend oagiregated
transformed in the normalized quasi-arithmeticatise. objects [13]. Note that in the Quasi-OWAD operattte
Remark8: If w; = w, = 0, and for all others = 1/ - 2), aggregated obje(?ts are individual distances. Ttienyeights
we are using the olympic-Quasi-OWAD operator thatsi depend on the distances between the elements alfiftagent
based on the olympic average [16]. Note that#3 orn = 4, S€ts. For example, we could develop the BADD-QUASAD

the olympic-Quasi-OWAD operator is transformed ine t operator based on the OWA version developed in [13]
Quasi-OWAD median and ih=n - 2 andk = 2, the window-
Quasi-OWAD is transformed in the olympic-MOWAD W = bf’ (25)
operator. ) > bf

Remark9: Another interesting family is the S-Quasi-OWAD =)
operator based on the S-OWA operator [13], [15kdh be
divided in three classes, the “orlike”, the “andlikand the where a U (-, ), b is the jth largest element of the
generalized S-Quasi-OWAD operator. The generalif&d argumentsd;, that is, the individual distances. Note that the
Quasi-OWAD operator is obtained whem = (1h)(1 - (o + sum of the weights is 1 ang [0 [0,1]. Also note that itr = 0,
H) +a w,=(1h)A - (a+pP)+ B andw; = (Ih)(1 - (a+ we get the normalized quasi-arithmetic distance ifiad= o,
pP) forj =2 ton- 1 wherea, 0 [0, 1] anda + < 1. Note we get the maximum distance.
that if a = 0, the generalized S-Quasi-OWAD operator Remarkl4: A second family of Quasi-OWAD operator that
becomes the “andlike” S-Quasi-OWAD operator an@ # 0, depends on the aggregated objects is
it becomes the “orlike” S-Quasi-OWAD operator. Aleote

that if a + B = 1, the generalized S-Quasi-OWAD operator Wb )7
becomes the Hurwicz quasi-arithmetic distance reaite wj = n—]a 62
Remark 10: A further useful approach for obtaining the ijl(llbj)

weights is the functional method introduced by Yad#®] for
the OWA operator. For the Quasi-OWAD operator,aih de where @ O (—e0, ), b is the jth largest element of the
summarized as follows. Lgtbe a functiorf: [0, 1] - [0, 1]  grgymentsd,. In this case, we also get the normalized

such thatf(0) = f(1) andf(x) 2 f(y) for x >y. We call this  \jinkowski distance ifr = 0 and ifa = w0, we get the minimum
function a basic unit interval monotonic functioBUM). jistance.

Using this BUM function we obtain the Quasi-OWADiglets Remark15: Another family of Quasi-OWAD operator that

w; forj=1tonas depends on the aggregated objects is
.= l - ]__l 1-b. a
w =151 (24) =8 (27)
Z]:]_(l_b])a

It can easily be shown that using this method vihsatisfy
that the sum of the weights is 1 amd1 [0,1]. where @ O (-, ), b is the jth largest element of the
Remarkl1: A further type of aggregation that could bedis argumentsd,. Note that in this case @ = 0, we also get the
is the E-Z Quasi-OWAD weights based on the E-Z OWAormalized quasi-arithmetic distance andrif o, we get the
weights [18]. In this case, we should distinguigitween tWO  minimum distance. Note also that other familiesiependent

classes. In the first class, we assigr O forj = 1ton-kand oA operators could be developed in order to obthim
w; = (1k) for j =n -k + 1 ton, and in the second class we,

i (1K) forj = 1 tok andw, = 0 forj > k. Note that for " c.oning vector.
assignw; = orj = 1 tok andw; = O forj > k. Note that for R k16: A further t f ti tor that
the first class, the maximum distance is obtaifiéd=i 1 andb, emar Urther fype of aggregation operator tha

could be used in the Quasi-OWAD operator is thetezed-
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OWA operator [19]. Following the same methodologye wherea O [0, 1], w; O [0,1], and the sum of the weights is 1.
could say that a Quasi-OWAD operator is a centeredote that other methods similar to the MEQuasi-OWedld
aggregation operator if it is symmetric, stronggcdying and be developed for obtaining the Quasi-OWAD weights
inclusive. It is symmetric i, = wj,, 4. It is strongly decaying following the same methodologies than [6], [7],]jQ1].

wheni <j < (n + 1)/2 therw; <w; and when >j 2 (n + 1)/2

thenw; <w;. It is inclusive ifw; > 0. Note that it is possible to . . .
If we analyzeg, we obtain a wide range of particular cases

consider a softening of the second condition bygsi < w; . . . .
instead ofw; < w. We shall refer to this as softly decayingthat includes, among others, the Minkowski ordeseighted

centered-Quasi-OWAD operator. Note that the nomzedli ave_zrigtglr(;g d|stance_ (MOX.V?D) operat((;(/,vtAhg Hammlrr?eoed th
guasi-arithmetic distance is an example of thigipaar case weighted —averaging  distance ( . .) operator, €
of centered-Quasi-OWAD operator. Another particuIaFUCI'd%m ordered weighted averaging distance (EOWA

situation of the centered-Quasi-OWAD operator appédave operator, the ordered weighted 9’39”‘6“"0 averagisgirlce
remove the third condition. We shall refer to it asnon- (OWGAD) operator, the ordered weighted harmonigagieg

inclusive centered-Quasi-OWAD operator. For thisiaion, dlséance fg_\g/H_'?}?) (:\;)gr\;a\lltzr[,)etc. tor 1211, 1221 is found
we find the median Quasi-OWAD as a particular case. emar - 'he operator [21], [22] is foun

Remark 17: A special type of centered-Quasi-OWADWheng(DJ) =Dy Therefore, we can see that the Quasi-OWAD
operator provides a further generalization to th©OWAD

operator is the Gaussian Quasi-OWAD weights basethe .
operator. It can be constructed as a particulae adsthe

Gaussian OWA weights [11]. In order to define ig thave to . . . .
consider a Gaussian distributigy, o) where QPQS"OWAD operator, but |t_|s also poss_lble_ tosml_t_ct It by
mixing the OWA operator with the quasi-arithmetistdnce
N or by mixing the Hamming ‘distance with the Quasi-@W
n :Ez i=h+l 28) operator. Note thag‘l(D,-) =D;”. Its formulation is as follows.

1/A
= MOWAOd,, dy,..., d) = [ij Df] (3%
j=1

Note that from a generalized perspective of thedering

B. Analysing the strictly continuous monotonic funatgp

N

Assuming that step it is possible to distinguish between descendi
(DMOWAD) and ascending (AMOWAD) orders. Note also
o —(j-pm)2 1202 that in this case we could also obtain a paranmeéramily of
n(j) = e (30) . ) .
2Mo, distance aggregation operators such as the maxidistance,

the minimum distance, the normalized Minkowski aligte,
the weighted Minkowski distance, the HOWAD operatbe
EOWAD operator, etc.
Remark 20: The Hamming OWAD operator or simply
W= (31) O_\lNAD opirator [23] is fou.nc.j wheq(D) : D;. Note.thlat
zj:”(l) ijle (i=Hn)* 120y g (D;) =D; . Note also that it is also possible to obtairsita
particular case of the MOWAD operator when the peaterA
= 1. It can be formulated as follows.

we can define the Quasi-OWAD weights as

7, e (i=mn)? 1204

Note that the sum of the weights is 1 andl [0,1].
Remarkl18: By using the orness or attitudinal character an

the dispersion measure it is also possible to nlita weights HOWAD(d,, d,,..., d) = Zn:wj D, (35)
of the Quasi-OWAD operator. For example, followi®j we j=1

could develop the maximal entropy Quasi-OWAD (MES&iua

OWAD) as follows In this case, we can also distinguish between éseehding

HOWAD (DHOWAD) and the ascending HOWAD
(AHOWAD) operator.

Remark21: The Euclidean OWAD operator [21], [24] or
also the ordered weighted quadratic averaging riista
(OWQAD) operator is found wheg(D) = Djz. Note that in
this caseg™(D;) = D;. Its formulation is as follows.

n
Maximize: =" w; Inw; (32)
=1

Subject to: g_l{ Zn: Wi g[uﬂ =a(W) (33)
j=1 n-1
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1/2
n
EOWAD(y, &;,..., d) = | > w;D?
i=L

As shown above for the other particular cases, jgassible [1]
to distinguish between descending and ascendirgrard

Remark 22: Another particular case obtained with thgy
Quasi-OWAD operator is the OWGAD operator [25]. §hi

case is found wheg(D) = D°. Note that in this case we alsol3]
get,g™(D) =Dy [4]

(5]
@37

(6]

Note that the geometric operators cannot aggrewayative [7]
numbers and the value zero. Therefore, this dietanﬁg]
aggregation operator is only useful in some spesifahtions.
Note also that it is possible to transform this rapar as
suggested in [26], so it can deal with zero or tiegaaumbers. (o]

Remark23: Another special case found in the Quasi-OWAD
operator is the OWHAD operator. In this case, whéB) = [10]
D;™. Note that in this casg (D)) = D;". It can be formulated
as follows.

OWGAMd,, d,,..., d) = ZH:DJ-WJ
j=1

[11]

1 [12]
(38)

$ 19
D

j=1

OWHAOd,, &, ..., d)

[14]
As shown above in the previous particular caseghef [13]
Quasi-OWAD operator, we can distinguish betweeeg]
descending (DOWHAD) and ascending (AOWHAD) orders.

research, we will develop further analysis by usiliferent
(36) extensions of the OWA operator.
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