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Abstract

In this paper we propose a model to describe the mechanisms by which undifferentiated cells attain gene configurations
underlying cell fate determination during morphogenesis. Despite the complicated mechanisms that surely intervene in this
process, it is clear that the fundamental fact is that cells obtain spatial and temporal information that bias their destiny. Our
main hypothesis assumes that there is at least one macroscopic field that breaks the symmetry of space at a given time. This
field provides the information required for the process of cell differentiation to occur by being dynamically coupled to a
signal transduction mechanism that, in turn, acts directly upon the gene regulatory network (GRN) underlying cell-fate
decisions within cells. We illustrate and test our proposal with a GRN model grounded on experimental data for cell fate
specification during organ formation in early Arabidopsis thaliana flower development. We show that our model is able to
recover the multigene configurations characteristic of sepal, petal, stamen and carpel primordial cells arranged in concentric
rings, in a similar pattern to that observed during actual floral organ determination. Such pattern is robust to alterations of
the model parameters and simulated failures predict altered spatio-temporal patterns that mimic those described for
several mutants. Furthermore, simulated alterations in the physical fields predict a pattern equivalent to that found in
Lacandonia schismatica, the only flowering species with central stamens surrounded by carpels.
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Introduction

Undifferentiated cells are identical at many different scales, they

share not only the same DNA, but also the same genes and the

same overall gene regulatory networks (GRN), that in turn

underlie heterogeneous expression patterns for each gene in space

and time during development. Hence, multi-gene configurations

are established during development, and cells attain specific fates

at particular sites and times, in response to signals that are

dependent on their position, and/or their cell lineage. Experi-

mental results suggest that in plants cell differentiation strongly

depends upon positional information [1], but it is likely that cell

fate is the result of a dynamic interplay between positional

information and intracellular GRN dynamics [2]. Nonetheless,

understanding how positional information is generated and

maintained, as well as how such information is coupled to

intracellular GRN dynamics, are key to understanding pattern

formation during development.

Cell fate can be determined by a single GRN if it presents

multiple attractors, each determining the expression profile

(expression state of all the genes within the GRN), that is

characteristic of each cell type. Recently, it has become possible to

postulate GRN models grounded on experimental data. Such

models have been successful at discovering developmental

modules or sub-networks able to recover and predict multi-gene

expression profiles observed in cell types, thus providing a

dynamical mechanism to understand how different cell types are

attained, given a fixed GRN topology that should be present

within all the cells [3–5]. However, multicellular models that

explicitly incorporate cell-cell coupling mechanisms to generate a

meta-GRN model, in which the spatial and temporal dynamics of

cell-fate attainment can be followed are only starting to appear.

For example, Benı́tez and collaborators [2] were able to recover

spatial cell patterns observed in Arabidopsis thaliana epidermis by

coupling intracellular GRN via diffusion of some of the network

components according to available experimental data.

Undoubtedly, cell differentiation is a complicated choreography

that should involve intricate interactions between intercellular

communication mechanisms and intracellular processes that

regulate gene expression, without a central controller or principal

choreographer. Instead, cell differentiation and morphogenesis

take place in structures with specific physical characteristics that

establish fields that, at least, should reinforce positional informa-

tion also emerging from molecular mechanisms that couple and

feedback from the dynamics of intracellular GRNs during cell

differentiation. The importance of such physical fields and
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mechanisms has recently received special attention providing a

new approach to developmental biology. For example, a recent

study [6] has demonstrated that alterations of the stress

distribution, that determines the patterns of microtubule orienta-

tions in Arabidopsis thaliana shoot apical growing cells, modifies

morphogenesis in a predictable way. However, this and similar

papers have not explicitly coupled such physical fields to the

dynamics of the GRN underlying cell-fate determination.

In this paper, we focus on a previously characterised GRN that

underlies floral organ primordial cell specification during early

stages of flower development [4]. We use this example in order to

illustrate a more general approach to couple GRN dynamics

across tissues with a single physical field that provides positional

information. The studied GRN has been shown to recover the

multigenic expression profiles observed in the four main types of

primordial cells established during early stages of flower

development (see for instance, [7–10]).

In contrast to animals, plant morphogenesis takes place during

the entire life cycle from groups of undifferentiated cells called

meristems. Two main meristems remain active during the whole

life-cycle of plants: the shoot apical meristem (SAM) and the root

apical meristem (RAM). From the former, the inflorescence

meristem arises upon the transition to flowering and in its flanks

flower primordia are formed.

During early floral development, the floral meristem is

subdivided into four concentric regions of primordial cells that

will eventually form the floral organs that from the outside to the

centre are: sepals, petals, stamens and carpels [10]. The spatial

pattern of flower morphogenesis is widely conserved among the

*250000 flowering plant species and thus a robust and generic

underlying mechanism is expected, but not well understood up to

now. The only exception is Lacandonia schismatica, whose flower

presents a homeotic inversion with central carpels surrounded by

stamens.

The now classical ABC model of flower development [11,12]

establishes the necessary combinatorial gene functions for sepal,

petal, stamen and carpel specification [8]. The ABC model

proposes that class A genes alone are responsible for the

development of sepals, but act together with class B genes to

specify petal development. Class C genes alone are responsible for

specifying carpel development, but act together with class B genes

to determine stamen development. However, this model does not

explain how such combinatorial gene functions are spatio-

temporally established during flower development.

Cell differentiation thus involves at least two aspects. First, a

physical field is required to break the symmetry of the spatial

domain into different regions in which distinct sets of transcription

factors are expressed and exert their function. Therefore, a phase-

field model of the kind used in the physics of free boundary

problems [13] could be used to model physical fields in any

developmental system. Second, a GRN responding to the physical

field, and consequently able to reach different attractors (fixed

gene configurations) depending on the cell position in space. In

this paper we aim to showing that such interplay between a

physical field and the dynamics of the GRN is sufficient to recover

a morphogenetic pattern that resembles that observed during early

flower development. The first component involves a macroscopic

field, while the second aspect implies modelling the GRN

dynamics that occurs at a microscopic scale. Physical fields may

be of various types and they could be sensed by morphogens, such

as auxins in plants. In fact meristems and primordia of lateral

organs are formed in places where there is a peak of auxin

concentration [14], which seems to trigger the production of

undifferentiated cells. Other chemicals, as cytokinins, have been

proposed to start the formation of the meristem, which

paradoxically are substances that inhibit cell proliferation.

This paper is organised as follows: In the next section we

describe in detail the physical field model that is used to generate

the spatio-temporal information. Then, we postulate a simplified

version of the flower organ identity GRN and the mechanism by

which the GRN is coupled to the macroscopic physical field. In the

third section we present results from numerical calculations from

the model that couples the GRN dynamics and the physical field.

Our results suggest that such coupled dynamics is sufficient to

recover a geometrical distribution of the flower organ primordia

that resembles that observed during early flower development. In

order to validate the model we analyse all possible mutations

predicted by this model and compare results with patterns of

previously studied mutants, or provide predictions for those which

have not been studied and for the effects of altering the physical

field or the shape of the meristem.

Methods

Spatio-temporal Model
Experimental evidence suggests that the flower meristem arises

at a position where a peak of auxin concentration is established.

Around such maximum a Gaussian auxin distribution is

generated. Such morphogen distribution underlies the geometry

of the early forming flower meristem, which grows isotropically

around the auxin peak at early stages of flower development

[15,16]. Therefore, it is sensible to assume a spherical meristem to

specify the spatio-temporal domain in order to model cell

differentiation dynamics at that stage of development. In the

spirit of the ABC model we need to obtain a region in space where

A dominates and another region where C dominates. This can be

accomplished by defining a parameter w that separates the inner

region, where w~1, from the outer region, where w~{1. These

regions will eventually be separated by a sharp interface because A

and C genes repress each other [11]. There are similar systems in

which it is assumed that minimising the bending energy of the

interface is the main driving force of the dynamics of this

parameter [17–19], as when studying vesicle formation, or the

shape of red blood cells and other lipid bilayers. This bending

energy contains contributions of both, the mean curvature and a

spontaneous curvature that could depend on the spatial position of

each point or cell within the modelled domain. Also in the spirit of

the ABC model, we have to consider another parameter u that

represents the B component, and that should be coupled to w
throughout the space. The values of these parameters in all the

space define two fields. The ‘‘phase-field’’ w is then coupled to field

u through a ‘‘spontaneous curvature-like’’ term. Since we are

restricting ourselves to the first stages of cell differentiation, we

may assume that in the time scale when the fields evolve, the size

of the domain (the meristem) remains constant, and that both

fields are conserved, that is, the total ‘‘mass’’ and the area

surrounding the volume of the system are constant. Therefore, we

propose a physical system whose free energy density is

v~m2zR(w2{1)2zDD+uD2, ð1Þ

where m is [19]

m~w(w2{1){EC(w2{1){ECbu(w2{1){E2+2w:

Here R is the potential for field u, and should depend on the

expression of the GRN locally, D is related to the energy cost of

Physical Fields and Genetic
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creating a u profile, and C is the local spontaneous curvature, E is a

parameter that measures the interface sharpness, and b is a

parameter that is proportional to the strength of the interaction

between the fields.

Integrating over the volume ones defines

V~

ð
V

vzsD+wD2
� �

dr, ð2Þ

whose variations dV=dw and dV=du give the dynamic equations

for the evolution of the fields w and u, respectively

Lw

Lt
~+2(F1zFs), ð3Þ

Lu

Lt
~+2 {D+2uz

LR

Lu
(w2{1)2{2ECbm(w2{1)

� �

where

Fs~s+2w

F1~2m 3w2{1{2ECw(1zbu)
h i

{E2+2mz4Rw(w2{1):

Notice that the Laplacian assures the conservation of both fields.

The parameter s is a Lagrange multiplier that assures the

conservation of the area [19], and it is determined by calculating

the area S!
Ð

V
D+wD2dV and demanding that dS=dt~0. Using

Eqs. 3 we obtain

s~{

Ð
V

+w:+(+2F1)dVÐ
V

+w:+½+2(+2w)�dV
ð4Þ

where the integrals are over all the volume. One could eventually

relax these conservation laws if one is interested in including cell

proliferation with the subsequent growth of the domain in which

the fields act.

Coupled Genetic Network
In Fig. 1(a) we show a GRN network, grounded on

experimental data, proposed in Ref. [9]. It contains 15 genes,

wherein their interactions were formalised as logical functions.

Five of these are grouped in the so-called A, B, and C genes, whose

combinations are necessary for floral organ cell specification [11].

The ABC model establishes the combinatorial gene functions

necessary for cell specification during early flower development. A-

type genes (AP1 and AP2) are necessary for sepal identity, A-type

together with B-type (AP3 and PI) for petal specification, B-type

and C-type (AGAMOUS) for stamen, and the C-type gene (AG)

alone for carpel primordia cell specification. In Fig. 1(b) we show

these genes grouped in coloured boxes and also some of the

attractors to which the 15-gene GRN model converges [4].

A recent publication showed that a stochastic version of the

floral GRN model recovers a temporal sequence of cell-fate

attainment that mimics that observed in most flowers: once sepal

primordia are determined, then petal are differentiated next, and

then stamen and carpel primordia are determined [10]. However,

the mechanisms that underlie both the temporal and the spatial

robust patterns observed in Arabidopsis thaliana, which are shared by

the great majority of flowering plants, remain largely unexplored.

This is true for practically any biological system, and models of

coupled cellular GRN that consider the role of physical fields are

only starting to be developed [20,21].

The mechanism we propose to produce cell differentiation is a

dynamic coevolution between the macroscopic fields w and u and

the genetic networks in each cell. The idea is depicted

schematically in Fig. 2. Initially there is a chemical signal,

represented by a gaussian distribution of some substance that

regulates the initial state of all GRN within the floral meristem

cells. This triggers the chemical reactions described by our phase

field model and also induce each GRN to attain a different

attractor in a coevolving way, that is, depending on the values of

the external fields in space and time, different attractors are

chosen, and this in turn reinforces the changes of the external

Figure 1. Gene regulatory network (GRN) model underlying
cell fate determination during Arabidopsis thaliana floral
organ determination during early flower development. (A)
GRN with interactions inferred from experimental data (according to
[4,8]). The genes from the ABC model are highlighted in the GRN: A-
genes (red), B-genes (yellow) and C-genes (blue). (B) Attractors or
steady state gene configurations of the GRN model that match gene
expression profiles expected by the ABC model are provided. Expressed
genes for each attractor are represented as grey circles, while non-
expressed ones correspond to white circles, the black circle corresponds
to a gene (UFO) that can be either expressed or not expressed in the
petal and stamen attractors, thus yielding two attractors for each petal
and stamen primordia cell-type (taken from Ref. [9]).
doi:10.1371/journal.pone.0013523.g001
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fields through a reciprocal interaction. This mechanism will lead

to produce cells of different types disposed in a geometrical

arrangement of concentric rings in the early stages of the flower

development. These eventually produce the four mature organs of

the flower differentiated in concentric rings

For that we need to describe how the GRN of each cell responds

to the external physical fields proposed in the last section. We

examine the network of Fig. 1(a) and simplify it as much as

possible, preserving the functional loops (see Ref. [22]) that are

sufficient to recover the ABC patterns. We observe that the

difference of the attractors that correspond to petal and sepal

primordial cells only differ on the state of the gene UFO, and the

same is true for the floral organs that produce the gametes

(stamens and carpels). This gene is interacting with the network

only as an activator of AP3, and therefore its function could be

regulated directly by the field u. A similar situation applies to the

gene WUS (a key gene during the early stages of flower

development), which regulates only the actions of SEP and AG,

the former being an activator of AP3 and PI . The presence of a

feedback loop makes us expect that the actions of this gene could

be controlled externally by the field w just as well.

The resulting GRN is shown in Fig. 3. Comparisons of this

simple network with the original one shows that we have

conserved all the interactions among genes associated with the

ABC functions. The interactions shown in Fig. 3, either acti-

vators or inhibitors, allow us to determine the resulting binary

state of all genes, given the state configuration at a certain time.

If 1 corresponds to a gene that is expressed, and 0 stands for

a non-expressed gene, the network of Fig. 3 follows the logical

rules:

AP1~
0 if AG~1

1 if AG~0
:

�
ð5Þ

Figure 2. Schematic representation of the proposed interplay between the intracellular gene regulatory network (GRN) dynamics
and physical fields that lead to the spatio-temporal patterns of cell types. On the left hand side we show the undifferentiated cells in
yellow, each having identical GRNs and gene configurations. Such configurations correspond to the state of activations of each of the genes within
the GRN. The profile of the initial field w is shown in red and the field u is shown in black. As time runs, there is a reciprocal interaction between the
fields and the GRN, represented by a purple line. On the right hand side we show the state of the fields and the GRNs within cells after some time. The
GRNs respond to the external fields, which provide positional information, and thus attain different attractors depending on the value of the fields at
each cell position. These attractors or gene configurations are represented by showing activated genes in blue, while the colours of the cells indicate
different lineages and fates.
doi:10.1371/journal.pone.0013523.g002
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AP3~
0 if uv~0

1 if uw0 or (WUSzAGzAP1)w1
:

�
ð6Þ

AG~
0 if AP1~1 and AP3~1

1 if WUS~1
:

�
ð7Þ

WUS~
0 if wv~0 or AG~1 or AP3~1

1 if ww0
:

�
ð8Þ

Observe that the fields w and u affect the expression of WUS

and AP3 respectively, as indicated in the figure. From these logical

rules we have built the truth tables for this network and found that

for the 26 possible initial conditions the GRN has only four

attractors, and each one of them can be assigned to the gene

expression profiles of one of the four types of floral organ

primordial cells, namely

(WUS,AP1,AP3,AG)~

(w,0,0,1) (Carpels)

(w,0,1,1) (Stamens)

(w,1,1,0) (Petals)

(w,1,0,0) (Sepals)

:

8>>><
>>>:

ð9Þ

This assignment was made in the spirit of the ABC model,

associating the activation of AP1 to A, of AP3 to B and the

activation of AG to C.

If we consider a three dimensional space filled of cells, each

with the same GRN, then the local values of the fields w(x,y,z)
and u(x,y,z) will dictate the state of the GRN in each cell.

Additionally, the dynamics of the fields (Eqs. 3) could be modified

by the GRN through the potential R in Eq. 1. If one uses a

potential for the u with two wells, for instance R1~(uz1)2 and

R2~(u{1)2, and defines

R~R1(1{AP3)zR2(AP3), ð10Þ

then the attractor for u is determined by the state of AP3.

We finally achieve the coupling between the macroscopic fields

that provide the spatial information, and the GRN that

incorporates key regulators of cell differentiation, assuming that

the chain of chemical reactions that lead to the final specification

of different organ primordia follows from this interaction directly.

Results

Numerical Solution
Normally, the shoot apical meristem has cylindrical shape. This

allows us to assume that there are no variations of the fields around

the axis of symmetry. Therefore, the domain is totally defined by

its two dimensional shape along any plane and we can integrate

the dynamical equations of the model in a two-dimensional

domain by defining the shape of the initial conditions for w
according to its orientation with respect to the symmetry axis in

three dimensions. In all the numerical calculations the domain was

a square grid of 50|50, in which each pixel represents a cell.

Zero-flux boundary conditions on the border of the square domain

are the appropriate ones to avoid spurious results from periodic

boundaries or finite size effects. We used a simple Euler method,

Figure 3. Simplified gene regulatory network. An arrow indicates
an activation, a bar at the end of an edge indicates an inhibitory
interaction. Wavy arrows indicate two-way interactions between the
GRN and the macroscopic physical fields w and u. This model is also in
agreement with recent accounts [24] of the molecular genetics of
flower development and is congruent with the original GRN shown in
Fig. 1.
doi:10.1371/journal.pone.0013523.g003

Figure 4. Simulated spatial arrangements of primordial floral
organ for wild type plants. Numerical results for the spatial
arrangement of gene configurations in a two dimensional domain that
corresponds to a plane perpendicular to the axis of symmetry of the
meristem. Carpels in red, stamens in orange, petals in light green and
sepals in light blue. The undifferentiated cells are in dark blue.
doi:10.1371/journal.pone.0013523.g004
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which proved extremely stable for a time step Dtƒ0:0005. Initially

w was taken as a Gaussian centred in the domain and with a

reasonable width of 8 to 30 cells. The formation of a phase

boundary is a condition sine qua non the whole process of

differentiation succeeds. The initial u was taken as a small random

noise around a constant value near zero. This is represented

schematically on the bottom left hand side of Fig. 2.

One has to recognise that the time scale in which the

macroscopic fields change is much smaller than the time scale in

which the genes respond to external signals, since the latter process

involves the production of proteins and other complicated

biochemical processes. In order to take this into account in our

numerical calculations, we followed the dynamics of the

macroscopic fields with a time step Dt, and every lapse GDt we

called for the action of the GRN, where G was estimated to be of

the order of 100. These values were estimated by taking into

account the temporal studies of flower development of Ref. [12]

and the results barely change within a reasonable range of values.

If we assume that the two-dimensional spatial domain is a plane

perpendicular to the axis of symmetry of the meristem, then we

expect the appearance of concentric rings of cells each ring with

contrasting gene expression stable profiles that correspond to those

observed in real floral primordia. In Fig. 4 we show the results of a

calculation with C~0:1, E~:01, b~0:2, D~5 and G~20.

Observe that the model yields a spatial disposition of concentric

rings that mimic those observed in real floral meristems. Notice

that the plot is not smooth, since each pixel has a specific gene

configuration.

We have also investigated the spatial arrangement achieved in a

plane that contains the axis of symmetry, that is, a cross section of

the meristem. The results are shown in Fig. 5. Observe that the

position of the cells with the gene profiles observed in each one of

the primordial floral organs corresponds to those observed

experimentally. Furthermore, it is remarkable that the section

corresponding to sepals (in light blue in the figure) emerges in

locations where the curvature has experienced a major change.

This type of bulging during early stages of sepal development is

observed in real floral meristems (see for instance Ref. [16]).

Mutants
In order to validate our modelling approach, we have simulated

mutants. With the complete GRN model we can investigate the

various mutants that the model can predict. These variations are

found when some of the GRN components are turned ‘‘off’’ or are

Figure 5. Simulated spatial arrangements of primordial floral
organ for wild type plants. Numerical results on a plane containing
the axis of cylindrical symmetry of the meristem in an early stage of
development. Carpels in red, stamens in orange, petals in light green
and sepals in light blue. The undifferentiated cells are in dark blue.
doi:10.1371/journal.pone.0013523.g005

Figure 6. The model recovers spatial configurations that
resemble those of ABC mutants when these are simulated. (A)
A-mutant flower showing a homeotic conversion of sepals and petals
into carpels and stamens, respectively. (B) Simulated A-mutant with
AP1 set to 0, showing a spatial arrangement of configurations
corresponding to stamens and carpels similar to that shown in (a). (C)
B-mutant flower with a homeotic conversion of petals and stamens into
sepals and carpels, respectively. (D) Simulated B-mutant obtained by
setting AP3 to 0, showing a spatial arrangement of configurations
corresponding to sepals and carpels similar to that shown in (b). (E) C-
mutant flower with a homeotic conversion of stamens and carpels into
sepals and petals, respectively, and a loss of flower meristem
determinacy. (F) Simulated C-mutant obtained by setting AG to 0,
showing a spatial arrangement of configurations corresponding to
sepals and petals similar to that shown in (E). Carpels in red, stamens in
orange, petals in light green and sepals in light blue. The undifferen-
tiated cells are in dark blue.
doi:10.1371/journal.pone.0013523.g006
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ectopically turned ‘‘on’’. In this paper we considered only the gene

mutations for the components in Fig. 3.

For instance, if AP1 is set to zero, one gets the A-mutant type.

Likewise, if AP3~0 one gets the pattern observed in B-mutant

type, and if AG~0 the pattern observed in the C-mutant type is

recovered. The results of the calculations for these three mutants

are shown in Fig. 6, together with their experimental realisations.

These mutations are the main ones predicted by the classical ABC

model. Our model recovers the observed spatial distributions of

the gene configurations when these mutants are simulated. But our

model is also able to make novel predictions.

For instance, if WUS~1 one gets a flower very similar to the A-

mutant type, as shown in Fig. 7(a), that is, a flower with carpels and

stamens only. Notice that the space distribution of the organs is

slightly different from the true A-mutant. Also, if one sets AP3~1
[23], a similar flower structure to that observed when this B gene is

over-expressed is recovered: a structure that only has configurations

corresponding to stamens and petals (Fig. 7(b) and (c)).

As our model couples the intracellular GRN dynamics with the

physical fields, another way to cause alterations in the spatial

arrangement of genetic configurations characteristic of different

cell types, is by altering the potential functions. For example, an

interesting altered pattern is recovered by reversing the sign of the

potential R of u (interchanging R1 and R2 in Eq. 10). Such

reversion produces an inversion in the location of organs within

two pairs: sepals and petals and stamens and carpels (see Fig. 8(a)).

It is interesting that in natural and experimentally created mutants

it is very rare to observe inversions between individual adjacent

organs. Our model suggests that a possible explanation to this

observation is that the physical fields, that are important for

breaking the symmetry of floral meristems, are strongly con-

strained. This would in turn explain the fact that the simulated

alteration has not been observed in most previous experimental

and natural homeotic mutations. In other words, for some yet not

understood reason such constraints have not been broken in real

systems, as we have done so in our simulations with altered fields.

In the present model it is not straightforward how one could justify

such a failure of u, since it would imply several alternative

components of the signal transduction pathways that link the

physical fields to the GRNs and these are not explicitly considered

in the present version of the model. Such failures could also imply

alterations on the physical fields themselves.

It is also interesting that in Lacandonia schismatica, (see Fig. 8(b))

the only flowering plant with inverted carpels and stamens, the

underlying molecular mechanism of such reversal seems to imply

the shift of the domain of expression of one of the B genes to the

flower centre. Such a shift could, in fact, be due to an alteration of

the physical field itself, or the way in which this field is perceived

by the cells at different moments during flower development. More

detailed studies would be needed to specifically model such

alterations as a result of modified fields and positional information

perceived by particular genes.

Effects of the Geometry of the Apical Meristem
Given that we have a model of GRNs coupled in an explicit

spatial domain which dynamics feedback to physical fields, we may

investigate the influence of the geometry of the spatial domain in

flower morphogenesis. We have addressed how the spatial

disposition of floral organs is altered when the geometry of the

apical meristem is not spherical. In order to do this we have

designed a program in which we define a domain of certain shape

and impose zero-flux boundary conditions at the border. Then we

made a series of calculations starting with identical initial

conditions and changing the shape of the domain. In Fig. 9 we

show some examples of these calculations. Notice that if the

domain is not approximately spherical, serious deviations of the

normal disposition of the organs can occur. This can be considered

as a further prediction of the model, that could in principle be

tested experimentally if such alterations in flower meristem

geometry could be achieved. In any case, these simulations suggest

that alterations in floral organ disposition may be obtained without

invoking genetic mutations in the floral organ GRN.

Finally, we have performed numerous calculations exploring the

effect of varying the various parameters of the model within

reasonable ranges, and have verified that the main results of the

model presented in this section are robust and trustful.

Discussion

We have presented a spatio-temporal model in which

intracellular GRNs are coupled by physical fields, which provide

spatial information to cells and thus trigger cell differentiation.

This model includes a specific coupling between physical fields

with the cellular GRNs. This coupling is dynamical, and can be

regarded as a description of the dynamical coevolution between

Figure 7. The model recovers spatial configurations similar to those observed in over-expression lines of WUS and AP3. (A) Spatial
configuration obtained by setting WUS~1. (B) Flower of an over-expression line for AP3 in which petals, stamens and petals are observed (taken
from Ref. [23]). (C) Simulated B function over expression obtained setting AP3~1. Carpels in red, stamens in orange, petals in light green and sepals
in light blue. The undifferentiated cells are in dark blue.
doi:10.1371/journal.pone.0013523.g007
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chemical changes in the intercellular environment and gene

expression within the cell.

We applied our model to study floral organ specification during

early Arabidopsis thaliana flower development. In this case, an

experimentally grounded GRN is available [4]. In this paper we

have been able to recover a spatial distribution of the four floral

organ primordia that mimics that observed in real flowers.

Furthermore, our model is able to predict the various flower

arrangements found in wild type flowers and those observed in

mutants, as well as changes caused by modifications of the shape of

the meristem, or alterations in the physical fields. These predictions

suggest that one can design experiments to modify the shape of the

meristem during the early stages of flower development, in the same

spirit of the ones performed in Ref. [6], or alter the physical fields

and expect alterations in flower organ disposition.

The recovery of patterns similar to those observed in actual wild

type flowers, including the appearance of sepal primordia as bulges

in the outer part of the floral meristems, as well as the spatial

patterns of genetic configurations observed in mutants, serve as a

validation of the overall assumptions of the model and provide

some new predictions. Nonetheless, it is likely that more detailed

GRN and physical field models will be required to provide more

specific predictions. The fact that our results are fairly robust to

alterations in the parameters, suggest that the overall coupling of

GRN and physical dynamics, proposed here, very likely

incorporates key aspects of flower morphogenesis and provides a

plausible hypothesis for the emergence of positional information

during cell patterning.

In this paper we have presented results keeping the size of the

meristem constant. In actual flower development it is undeniable

that this is not the case and our calculations should be regarded as

a dynamical process in which cell differentiation and proliferation

occur, and at early stages yield domain growth and later on

balance each other when a final domain size is attained. It is

known that the different whorls of organs appear in the meristem

at different times in a well-ordered sequence. Our model can be

readily extended to include the growth of the domain and study

precisely this sequential transformation. This extension is currently

under investigation and it will be the subject of future publications.
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