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8 Abstract During the Mitch Hurricane event (October 1998), severe floods occurred in

9 the village of La Trinidad (Departamento de Estelı́, NW Nicaragua), which spreads at the

10 margin of La Trinidad river. As a consequence, the need for hazard assessment and land

11 use planning to reduce the effects of these natural processes arose. Nicaragua is a devel-

12 oping country, which means that there is a scarcity of good quality data on which to base

13 these hazard assessments (i.e., lack of detailed topographic maps, lack of meteorological

14 and discharge data series). Therefore, the main objective of the present work was to

15 generate a flood hazard map of La Trinidad by means of a simple method, with a resulting

16 map easy to understand and to use by the municipality for land use planning. There is no

17 topographic map of the area at a more detailed scale than 1:50,000. So the main document

18 that supports all the data and on which the final hazard map was based is the ortho-

19 photograph at 1:5,000 scale (generated from vertical aerial photographs taken in 2000).

20 The method used was based on classical interpretation of vertical aerial photographs (pre

21 Mitch and a post Mitch event), detailed field work, inquiries among the population and

22 analysis of the main pattern of storms occurring in the area. All these data allowed the

23 reconstruction of different extensions and water levels corresponding to events of different

24 frequency and magnitude, and the qualitatively association of them to three hazard levels

25 by means of energy and frequency. The use of orthophotographs of 1:5,000 proved to be

26 very useful both for the development of the work and for the presentation of the final map,

27 because they are very easily understandable for people not trained in the interpretation of

28 topographic maps.
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Abbreviations

32 AECI International Cooperation Spanish Agency

33 AMUNIC Association of Municipalities of Nicaragua

34 CIGEO Center of Geoscientific Research (University of Nicaragua)

35 COSUDE Swiss Cooperation Agency

36 INDUROT Institute for Natural Resources and Land Use Planning. University of

Oviedo (Spain)

37 INETER Institute of Nicaragua for Territorial Studies

38 ITGE Spanish Geological Survey

39 MATE-

40 METL

Ministère de l’Aménagement du Territoire et de l’Environnement –

Ministère de l’Équipement, des Transports et du Logement

41 PPR Plans de Prévention des Risques Naturels Prévisibles

42 SINAPRED National System for Disasters Prevention and Reduction

43 UB Universitat de Barcelona

44 USGS United States Geological Survey

45

46

47 1 Introduction

48 During the Mitch Hurricane event (October 1998), severe floods, among other disasters,

49 occurred in Central America. The village of La Trinidad (Departamento de Estelı́, NW

50 Nicaragua), which spreads at the margin of La Trinidad river (Fig. 1), was one of the

51 affected places. As a consequence of the damage caused by the flood, the need for hazard

52 assessment and land use planning to reduce the effects of these natural processes arose.

53 La Trinidad basin is located in Las Cordilleras Centrales (Central Ranges), it presents

54 slopes steeper than 30%, and its altitude ranges from 500 to 1,400 m asl. The climate

55 presents the features of tropical savannah, with precipitation ranging from 800 mm to

56 2,000 mm and temperatures ranging from 21�C to 25.5�C. The basin land use consists of

57 sparse forests, prairies, pastures and some crops. The main resources are subsistence

Fig. 1 Location of La Trinidad basin
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58 agriculture and livestock. All the area is affected by severe deforestation. All these

59 characteristics influence the runoff, favoring it.

60 Several climatic phenomena characterize the climate of all Central America and, in

61 consequence, influence La Trinidad basin climate. These phenomena are the Inter Tropical

62 Convergence Zone, the Easterly Waves, El Niño South Oscillation and La Niña (Fernández

63 2005). Also, the orographical effect forces the air masses to rise up due to La Cordillera

64 Central relief. As a result, heavy rains take place associated with tropical storms every 2 or

65 3 years. According to the population, these rains produce discharges, which fill up the river

66 bed without reaching the border of the lower terrace. Less often, more intense rainfalls with

67 return periods of several years or a few tens of years produce medium magnitude floods.

68 As a consequence of climate and relief, natural disasters are usual in the area. Although

69 Nicaragua is a developing country with scarce resources, there is some ongoing work

70 focusing on natural hazards in this region. Related to La Trinidad area, in 1990 INETER

71 presented the first national flood hazard map at a scale of 1:525,000, which showed that the

72 region is prone to flood hazards. ITGE and INDUROT (2000) carried out the study

73 ‘‘Peligrosidad por movimientos de ladera en Nicaragua. Cartografı́a piloto de la zona de La

74 Trinidad’’ financed by AECI. This study focuses on slope instabilities and includes a map

75 of La Trinidad basin at a scale of 1:50,000. COSUDE and AMUNIC (2002) presented the

76 work ‘‘Análisis de riesgos y propuesta del Plan Municipal de Reducción de Desastres.

77 Municipio de La Trinidad, Estelı́’’. Landslide and flood prone areas were mapped at a scale

78 of 1:50,000. Obviously, these works have a general prospective value. However, the level

79 of accuracy needed in a flood hazard map cannot be achieved in a map at 1:50,000 scale,

80 where 1 mm of map represents 50 m of real terrain, with contour lines equidistant to 20 m

81 of elevation. At the very least, extensions of the floods should be mapped in detail to show

82 the affected areas, especially in urban areas. The need of much more detailed cartographic

83 basis is, therefore, obvious.

84 1.1 Document constraints, lacks and limits

85 Nicaragua, as other developing countries, is characterized by a scarcity of good quality

86 data where hazard assessments can be based on. Some of the documents and data currently

87 used to produce flood hazard maps do not exist in the area of La Trinidad. Topographic

88 maps at a more detailed scale than 1:50,000 are not available. Rainfall series are scarce and

89 discontinuous. There is no meteorological station in La Trinidad basin. There were five

90 stations around the basin, but they were destroyed during the Mitch Hurricane event. Two

91 of them provided data series shorter than 10 years. No data could be obtained from the

92 other three stations. It is obvious that these data are not enough to calculate return periods

93 of rainfalls and discharges accurately.

94 There is no gauging station in the basin. La Trinidad river is a tributary of Rı́o Viejo

95 river and the closest gauging station is La Lima, in Rı́o Viejo. But the discharges in La

96 Lima are affected by the Apanás dam exploitation. This dam is used to produce hydro-

97 electric energy, and the water is spilled into the Rı́o Viejo, upstream of La Lima gauging

98 station. Obviously, the series of La Lima cannot be used to calculate discharge return

99 periods.

100 The lack of detailed topographic or ‘‘digital’’ maps, meteorological and discharge series

101 from gauging stations forced the need to look for other documents and data. As a con-

102 sequence, the document used to produce the flood hazard map is the 1:5,000 ortho-

103 photographs because it is more detailed and up-to-date than available topographic maps.
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104 The objective of this paper is to present a method adapted to the documents and data

105 available in Nicaragua. This method will be applicable to other developing countries.

106 2 Materials and methods

107 The method used was based on classical interpretation of vertical aerial photographs (pre

108 Mitch and a post Mitch event), detailed field work, inquiries among the population and

109 analysis of the main pattern of storms occurring in the area, in order to determine the

110 reference flood, the dynamics and the geomorphology of the flooded area.

111 As mentioned above, there is no point in using a topographic map at 1:50,000 scale as

112 the basic document to produce a detailed flood hazard map. On the other hand, ortho-

113 photographs at 1:5,000 scale (generated from vertical aerial photographs taken in 2000)

114 were available. Therefore, the method is based on the use of these detailed otrophoto-

115 graphs; these are the documents that support all the data and on which the final hazard map

116 was based. They allow a perfect location of geomorphological indices and other flood

117 related data, even though elevations are not reflected on them.

118 The method consists of data collection and their overlap and analysis on a geomor-

119 phological frame. In the following sections we present the method.

120 2.1 Photo interpretation of aerial photographs (pre and post Mitch event)

121 Two series of aerial vertical photographs were used: pre and post Mitch hurricane flood.

122 The first step on data collection consisted of classical photo interpretation of aerial

123 photographs of pre Mitch series (year 1996 at an approximate scale of 1:40,000). It allows

124 a general overview of the area and the identification of the main fluvial forms, such as the

125 main channel, the fluvial terraces (especially the lower ones), alluvial fans, etc. These data

126 were verified in the field and mapped on the detailed orthophotograph.

127 An outstanding contribution was theOpen skies series photographs, taken by the USGS in

128 1998, just after the Mitch hurricane. These photographs were taken at an original scale of

129 about 1:120,000. Nevertheless, the quality of the originals is so good that allows their

130 enlargement up to scales of about 1:8,000 without any loss of resolution. These pictures

131 allowed the distinguishing of the points where the rivers overflow, the main preferential

132 circulation channels shaped during the Mitch hurricane flood and the main patterns of sed-

133 imentation derived from the flood. The importance of these data will be discussed in the

134 following section.

135 2.2 Reference flood

136 It would be very good to count on detailed maps showing the flood maximum limits and

137 water levels known from references (documents, pictures and/or eye witnesses), as ex-

138 pressed by Temez (1997) in the Jornadas parlamentarias sobre prevención de riesgos

139 relacionados con el agua. He added that the advantage of these documents is that they are

140 based on real data and not on results of theoretical calculations. In the same line of

141 thinking, the reconstruction of large magnitude floods of the past is one of the basic steps in

142 the French PPR method of flood hazard mapping (Garry and Graszk 1999). This also helps

143 in understanding the conditions of flood generation at this specific place and in evaluating
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144 the consequences and damages. This selected event was grave, its low frequency can be

145 associated to an extraordinary or extreme flood and it can be taken as a reference.

146 In La Trinidad case, the Mitch hurricane event (1998) produced the most important

147 floods remembered in the region. As an advantage, it is very recent, so the forms are still

148 quite fresh and memories are still quite good, abundant, and precise. Therefore, the flood

149 related to the Mitch event was easy to reconstruct through photo interpretation, field-work

150 and inquiries, and thus it was taken as the reference event.

151 2.3 Geomorphological ‘‘silent witnesses’’

152 The ‘‘silent witnesses’’ are all the forms, sediments and different kinds of traces that can be

153 observed and recognized by an expert, and which can provide information about the river

154 dynamics and the floods, like extensions, water levels and processes related to the flood.

155 Some ‘‘silent witnesses’’ are related to the long-term dynamics of the river, like terraces or

156 mass movements, which can interfere with the river or add solid material to the flow.

157 Undermining is especially important.

158 The ‘‘silent witnesses’’ were obtained from the pre and post Mitch aerial photographs

159 and from field-work, and they were mapped on the orthophotographs.

160 2.4 Historical data and inquiries

161 The historical data about floods try to identify and characterize the main historical floods

162 and to estimate their frequency and magnitudes. These data are very useful when gauging

163 stations do not exist and can effectively complement and calibrate other type of data or

164 calculations. Obviously, they are very important for hazard evaluation. It is basic, then, to

165 obtain the dates of the floods and the water heights and extensions. Unfortunately, in the

166 area of La Trinidad, archives or libraries where floods are recorded do not exist. Neither

167 administrations nor churches record these kinds of events systematically. The only sources

168 of historical data are inquiries to the older members of the population. The inquiries were

169 made in a random sample of the population. People living along the river and the quebrada

170 provided the most interesting reports.

171 2.5 Anthropic interactions

172 Anthropic structures, obstacles and modifications on the river bed must be taken into

173 account. They can divert the water flow, narrow the river bed and produce a rise of water

174 level, interrupt the flow, generate local increases of energy of the flow, etc. As a result, they

175 can modify the flood prone areas. The elements to be mapped are anthropic deposits

176 reducing the channel section, dikes, docks, bridges, artificial channels, water input points,

177 gravel extractions, etc. Especial emphasis has to be placed on structural defenses which are

178 not well designed or constructed.

179 2.6 Geomorphological criteria for the integrated geomorphological map

180 All the data collected were classified and mapped on the orthophotographs in order to

181 prepare the integrated geomorphological map. Thereafter, the main geomorphological

182 criteria are noted.
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183 For short distances, fluvial terraces maintain a quite constant elevation above the main

184 channel. For this reason, they can be used as a reference level for the floods, which can

185 overflow and inundate them or not. Localized water levels and extensions provided by

186 inquiries and impacts on tree trunks can be interpolated and extrapolated by using the

187 terraces reference level. At this point, it is very important to validate the information

188 provided by local witnesses. In our study, the reference event was so strong and recent that

189 no conflicts arose. Areas with sediment accumulation after a flood, determined by photo

190 interpretation and field work, show the pass of the flow over that level. Channels shaped

191 during an energetic, large magnitude event show the preferential overflow and circulation

192 reaches in the case of water level rising. Damage caused during floods (which reflect the

193 flow energy), undermining, and anthropogenic obstacles that can divert or interrupt the

194 flow, must also be considered. The last two data are also relevant because they show the

195 possible modification of the channel and the flooding area.

196 The geographic overlap of all these data and the use of the above criteria allowed a

197 detailed reconstruction of the geomorphological frame of the area, of the reference flood

198 and the understanding of the particular dynamics of La Trinidad river. The result is the

199 integrated geomorphological map (Fig. 6). This map is the basis of hazard interpretation

200 because it is possible to delimit the zones according to the level, the energy and the

201 frequency of the flood. One of the main values of this map is that it is objective, so far as

202 possible, so it is not subject to change depending on different interpretations. Therefore, it

203 is a map that can always be used as a basis for new interpretations or, in the future, to

204 calibrate calculations made with more sophisticated techniques.

205 2.7 Interpretation of the hazard level

206 Hazard can be defined as the set of natural aspects of a phenomenon (not social) that

207 contribute to the expected damage. It has two components tightly related: severity and

208 probability of occurrence (Ayala-Carcedo 2002). The possibility that a phenomenon

209 happens, with a certain degree of severity or intensity, during a definite period of time in a

210 defined area, represents the recurrence and the geographic location of this event and allows

211 the estimation of the hazard.

212 In hazard evaluation, flood models are usually used to determine the hazard parameters,

213 such as water depth and flow velocity (Pappenberger et al. 2006). Current models range

214 from simply intersecting a plane representing the water surface with a Digital Elevation

215 Model for estimating the flooded area (Bates and De Roo 2000; Priestnall et al. 2000), to

216 full solutions of the Navier–Stokes equations. Combined one- and two-dimensional hyd-

217 rodinamic models are quite recent developments, aimed especially at modelling inundation

218 areas (Dhondia and Stelling 2002), even though the coupling of one-dimensional hydro-

219 dynamic models with two-dimensional methods (GIS) has been published in recent years

220 (Bechteler et al. 1994; Estrela and Quintas 1994; Bates et al. 2003). Nevertheless, confi-

221 dence in the model outputs is in many cases established through calibration of the model on

222 past flood events (Pappenberger et al. 2006). It is widely accepted that the estimates of

223 flood hazard involve estimating the probability that a given event exceeds a certain given

224 magnitude. This probability is subject to considerable uncertainty (Blazkova and Beven

225 2004; Cameron et al. 2000; Pappenberger et al. 2006). On the other hand, methods based

226 on the qualitative flood plain geomorphological characterization also deal with flood

227 hazard determination (Garry and Graszk 1999; Arnaud-Fassetta et al. 2005; Ballais et al.

228 2005).
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229 In this study, the hazard evaluation is mostly based on the Garry and Graszk (1999)

230 method. It proposes a definition of the reference hazard. The reference hazard corresponds

231 to an event of a chosen return period, selected because society wants to protect itself against

232 this particular magnitude phenomenon. In terms of flood hazards and land use planning, the

233 selected flood is the maximum well-known event (or reference event). When the reference

234 event has a return period shorter than 100 years, the 100-year return period flood is chosen

235 instead. Then, the hazard levels are determined as a function of the reference flood physical

236 parameters (velocities and water levels). These parameters can be translated in terms of

237 damage and gravity effects on people. The hazard levels are classified as low, medium and

238 high, with the aim of simplicity and understandability. In this French method, the threshold

239 of 1 m of water submersion is assigned to the high hazard level.

240 In summary, with the Mitch reference event and all the data and criteria obtained in La

241 Trinidad, it is possible to reconstruct three different water levels corresponding to different

242 severity and frequency, and so to different magnitude floods. The integrated data allowed

243 us to qualitatively associate these three categories of floods with different hazard levels.

244 3 Results

245 The results reflect the two main steps of the process of generating the hazard map: first, the

246 Integrated Geomorphological map, where all the original data are compiled and, secondly,

247 the interpreted Hazard map.

248 3.1 Integrated geomorphological map

249 The Integrated Geomorphological map, as said before, is a map where all the data is

250 compiled (geomorphology, morphology ‘‘silent witnesses’’, the reference flood, results

251 from inquiries, etc.). It includes all the real data based on real forms, processes, water

252 levels and extensions of the previous floods.

253 Photo interpretation data of pre and post Mitch event aerial photographs were verified in

254 the field and mapped on the detailed orthophotograph. This constitutes the geomorpho-

255 logical frame where all the other flood indices are overlapped. The interpretation of these

256 pre Mitch photographs show, as one of the first results, that a great part of the village of La

257 Trinidad is built on the lower terrace (2–3 m above the river bed and the main channel), so

258 it is prone to flooding. The zones with sediment accumulation (Fig. 6) determined by post

259 Mitch event photo interpretation and field work, are usually located on the lower terrace.

260 This shows the pass of the flow over that level. Also, by using the lower terrace reference

261 level, localized water levels and extensions provided by inquiries (Fig. 2) and impacts on

262 tree trunks (Fig. 3) were interpolated and extrapolated. Therefore, the Mitch flood

263 extension was reconstructed in detail.

264 Other ‘‘silent witnesses’’ together with the inquiry results allowed us to locate prefer-

265 ential circulation channels shaped during the Mitch event in the lower terrace. Most were

266 modeled from crevasse splay points, usually related to high-energy flows at concave

267 margins of meanders. Furthermore, when intermediate floods occur these channels are the

268 main circulation reaches, since there is not enough water to cover the whole terrace. This

269 type of dynamics was verified in the 2003 winter event. Should a flood similar to the Mitch

270 occur, these channels will be sectors with high speed and depth, although they will be

271 modified during the event.
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272 On the other hand, the heavy rains associated with tropical storms every 2 or 3 years

273 produce discharges which fill up the river bed without reaching the border of the lower

274 terrace. This particular dynamic could be reconstructed thanks to the inquiry information.

275 These findings are discussed below and support the idea that traditional knowledge is

276 characteristically local and held by people at risk (Handmer 2004). Therefore, it is

277 important to record this kind of information and prevent it from being lost or not taken into

278 account.

279 Reaches affected by undermining (Fig. 4) were mapped. It shows, on one hand, some

280 preferential overflow points, and on the other hand, unstable reaches and tendency of

281 meander evolution. Consequently, undermining indicates possible changes in flood prone

282 areas.

283 Damage produced during the Mitch event (which reflect the flow energy) and post

284 Mitch anthropogenic obstacles were also mapped and considered. Figures 4 and 5 show an

285 example of a too short dike in a meander undermining zone and of an anthropogenic

286 deposit into the river bed.

Fig. 2 Woman showing the

level reached by the water during

the Mitch hurricane event (black

discontinuous line). La Trinidad,

2004

Fig. 3 Impact marks on the

trunk of a tree that grows on la

Trinidad river bed. The impact

marks were produced during the

Mitch hurricane event. Black

arrows indicate the higher

impacts, produced by floating

trunks. In the background, the

level of the lower terrace is

indicated with a black

discontinuous line. La Trinidad,

2004
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287 An example of a conflict point is the stadium. Built on the Quebrada de la Chisgastosa

288 bed, just upstream of the confluence with La Trinidad river, the stadium produces an

289 obstruction to the flow. The water is then forced to flow between the stadium and the

290 Panamericana road. The result is its rising up to higher levels than in natural conditions

291 upstream and downstream. The consequences are more frequent floods, especially

292 downstream of the stadium, that cover the lower terrace of La Trinidad and affect several

293 houses.

294 An example of this map, made on the orthophotograph, is shown in Fig. 6. The legend of

295 themap shows themain geomorphologic features (symbols 1–8), some relevant points where

296 eyewitness information was provided and the reconstruction of the reference event (symbols

297 9 and 10) and the anthropogenic defenses and obstacles to the flows (symbols 11–14).

Fig. 4 Image of the concave margin of a meander. Undermining is evident below the roots of the tree,

where unconsolidated sediment is being eroded (white arrow). The dike, built after the Mitch hurricane

event, is obviously too short and undermining is beginning to act behind it and therefore it will be ripped off.

The lower terrace level is indicated with a white discontinuous line. La Trinidad, 2004

Fig. 5 Image of a filling on La

Trinidad river bed indicated with

a white circle. The dike, built

after the Mitch hurricane event,

presents a discontinuity and

erosion is beginning to act behind

it (white arrow). The lower

terrace level is indicated with a

white discontinuous line. La

Trinidad, 2004
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298 3.2 Hazard map

299 Derived from the geomorphological map, the flood Hazard map represents an interpreta-

300 tion of the different levels of hazard in the area (Fig. 7).

301 The first step according to the Garry and Graszk (1999) method is to define the reference

302 hazard (see Interpretation of the hazard level). As said before, data on quantitative fre-

303 quencies of flood discharges or of rains do not exist in this area.

304 The only significant information obtained was that, more or less 50 years ago, there was

305 an important event. The river overflowed and flooded the lower terrace, where La Trinidad

306 village now spreads. Anyway, this event generated less damage than the Mitch reference

307 event. INETER (1998) lists the tropical storms King (October 1950) and Alice (May 1953).

308 The Gilda hurricane (September 1954) did not affect Nicaragua. Both tropical storms

309 happened about 50 years ago. Probably, these storms did not affect the whole territory of

310 Nicaragua, just like the Mitch hurricane. The remembered event can correspond to any of

311 both tropical storms. Even though its quantification is impossible, the existence of two

312 flood events that affected the lower terrace of La Trinidad river gives a qualitative fre-

313 quency of important, destructive floods.

314 In the La Trinidad case, the selected reference hazard corresponds to the Mitch flood

315 (1998). This flood, at least, has a centenary return period: the Mitch hurricane is considered

316 the third strongest hurricane occurred in the twentieth century in Central America; in Nica-

317 ragua, the rainfalls were closely related to the cloudy spiral bands of the hurricane. Rainfall

318 frequency analysis gave as a result return periods of 500 years for dry areas and >100 years

319 for the humid areas of Nicaragua (INETER 1998). Therefore, it is likely that floods related to

320 these rainfalls had similar return periods. Furthermore, the Mitch flood is the worst ever

Fig. 6 Integrated Geomorphologic Map. (a, b) Two sectors of La Trinidad study area. The green circle

indicates the same tree in the two sectors. 1 Lower terrace (2–3 m above the main channel); 2 river bed,

including the main channel; 3 lower terrace of La Chingastosa stream (*0.5 m above the main channel); 4

La Chingastosa main channel; 5 undermining; 6 preferential overflow channels modeled during the Mitch

event; 7 sediments deposited during the Mitch flood; 8 debris flows; 9 points with information from inquiries

selected because their relevance; 10 reconstruction of the reference flood (Mitch event); 11 anthropic

fillings; 12 dike; 13 stadium; 14 bridge

Nat Hazards

123

Journal : 11069 Dispatch : 21-7-2007 Pages : 13

Article No. : 9156 h LE h TYPESET

MS Code : NHAZGD-3 h CP h DISK4 4



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

321 remembered in La Trinidad. The reconstruction of the Mitch reference event, including the

322 morphology on the river bed and on the lower terrace remodeled during this event, and the

323 anthropogenic interactions on them, was the basis for the interpretation of the hazard levels.

324 The Mitch flood was then used as a reference hazard level frame where the smaller

325 magnitude floods were incorporated. Every 2 or 3 years there are discharges which fill up

326 the river bed without reaching the border of the lower terrace. Less often, with return

327 periods of several years or a few tens of years, there are medium magnitude floods. These

328 floods fill up the ordinary channel and the river bed, and also overflow, but only circulate

329 along the preferential channels modeled during the Mitch event, that is, do not affect the

330 whole extension of the lower terrace. The main circulation channels during the small and

331 medium magnitude floods correspond to the most energetic circulation zones during the

332 reference event (highest water levels and flow velocities). Thus, logically, there is a

333 coincidence between the most frequently flooded areas and the higher water levels. In

334 contrast, the lower terrace is only completely flooded during low frequency, large mag-

335 nitude events. All these facts allow the assignation of three different hazard levels to the

336 different reaches and the lower terrace in the area.

337 These three hazard levels are represented with semitransparent red, orange and yellow

338 colors for high, medium and low hazard, and presented on the orthophotograph. This

339 presentation allows an easy interpretation of the areas subject to more severe or less severe

340 floods and the level of hazard. It also allows an easy visualization of the vulnerable

341 elements exposed, therefore constituting a good tool for municipal risk management.

342 3.3 Conclusions

343 The method is very well adapted to the constraints and characteristics of the developing

344 countries and, in addition, it is simple, economic and efficient. The main contribution of

345 the method is the use of detailed orthophotographs as the base of the work as well as the

346 final product.

Fig. 7 Flood Hazard Map. (a, b) Two sectors of La Trinidad study area. The green circle indicates the same

tree in the two sectors. a High hazard level; b medium hazard level; c low hazard level
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347 The use of orthophotographs proved very useful both for the development of the work

348 and for the presentation of the final maps. The resulting products are more up-to-date,

349 precise, efficient, and easy to understand than those that could be produced on the available

350 1:50,000 maps.

351 The first product of the work is the Integrated Geomorphological map, which compiles

352 all the real data obtained. The great value of this map is that it is objective, as far

353 aspossible, and it is not subject to change depending on different interpretations. Therefore,

354 it is a map that can always be used as a basis for new interpretations or, in the future, to

355 calibrate calculations made with more sophisticated techniques.

356 The detailed orthophotographs allowed a good representation of the extension of the

357 reference flood. For this flood, different levels of energy corresponding to the flow along or

358 covering different fluvial forms (i.e., channels and terraces) could be deduced in detail. All

359 the data collected allowed the reconstruction of different water level heights, spatially

360 related to the different channels. These channels, and therefore the related different water

361 levels, correspond to different frequency and magnitude events and could be qualitatively

362 associated to different hazard levels. For this reason, the velocity of the flow need not be

363 specifically calculated.

364 Besides, the final Hazard map presented on the orthophotograph is very easily under-

365 standable for people not trained in the interpretation of topographic maps. Therefore, this

366 helps the organization at the municipal level and also the self-organization of the com-

367 munity.

368 The limits of the hazard map are intrinsically related to the fluvial processes and

369 dynamics. This means that channel changes due to sedimentation and erosion, often related

370 to land use changes, can happen. Also, large floods can produce avulsions and changes of

371 channel paths. This means that the map should be periodically revised and adapted in the

372 future, when these changes occur, as with the entire existing flood hazard maps produced

373 by any existing method.
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