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Abstract 8 

Currently three air quality modelling systems routinely operate with high resolution over 9 

mainland Portugal for forecasting purposes, namely MM5-CHIMERE, MM5-EURAD and 10 

CALIOPE. Each of one operates daily using different horizontal resolutions (10 km x 10 km; 5 11 

km x 5 km and 4 km x 4 km, respectively), specific physical and chemical parameterizations, 12 

and their own emission pre-processors (with common EMEP emission database source, but 13 

different spatial disaggregation methodologies). The operational BSC-DREAM8b model is 14 

offline coupled within the aforementioned air quality systems to provide Saharan dust 15 

contribution to particulate matter. Bias-correction studies have demonstrated the benefit of 16 

using past observational data to reduce systematic model forecast errors. The present 17 

contribution aims to evaluate the application of two bias-correction techniques - multiplicative 18 

ratio and Kalman filter in order to improve the air quality forecast over Portugal. Both 19 

techniques are applied to the three modelling systems over the full year 2010. Raw and unbiased 20 

model results for the main atmospheric pollutants (O3, NO2, SO2, PM10 and PM2.5) are 21 

analysed and compared against 18 monitoring stations distributed within inland Portugal in an 22 

hourly basis. Statistical analysis shows that both bias-correction techniques improve the raw 23 

forecasts skills (for all the modelling systems and pollutants). In the case of O3 max-8h, 24 

correlation coefficients improve in 19-45 %, from 0.56-0.81 (raw models) to 0.78-0.86 25 

(corrected models). PM2.5 also present significant improvements, e.g., correlation coefficients 26 

increase in more than 50% (both techniques) reaching values between 0.50-0.64. The corrected 27 

primary pollutant NO2 and SO2 demonstrate significant relative improvements compared to O3, 28 

mostly because the original modelling system skills are lower for those species. Despite the 29 

applied techniques have different mathematic formulation and complexity level, there are 30 

comparable answers for all of the forecasting systems. Analysis performed over specific 31 

situations, such as air quality episodes, not-validated or missing data reveals different behaviour 32 

of the bias-correction techniques under study. The results confirm the advantage of the 33 

application of bias-correction techniques for air quality forecast. Both techniques can be applied 34 
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routinely in an operational forecast system and they will be useful to alerts for the population 35 

about accurate exceedances. 36 

 37 

KEYWORDS: air quality forecast, modelling systems, bias correction, multiplicative ratio, 38 

Kalman filter. 39 

 40 

1. INTRODUCTION 41 

Air quality forecasting is both a challenge and a scientific problem, which has recently emerged 42 

as a major priority in many urbanised and industrialised countries due to the increasing 43 

consciousness of the effect, on health and environment, caused by airborne pollutant emissions. 44 

Furthermore, is one of the requirements of the Air Quality Framework Directive (2008/50/EC) 45 

and a key issue of the Clean Air for Europe (CAFE) Programme (Cuvelier et al., 2007). The 46 

goals of reliable air quality forecasts are obvious: population exposure can be more efficiently 47 

reduced and protected by means of information and short-term action plans. 48 

For that, European legislation settled ambient air quality standards for acceptable levels of air 49 

pollutants (like O3, NO2, SO2, PM2.5 and PM10) and also recommended the use of modelling 50 

tools to assess and to forecast the air quality, in order to develop emission abatement plans and 51 

alert the population when health-related issues occur. In some European member states, like 52 

Portugal, air pollution limit values, namely for PM10 and ground-level O3, are being exceeded 53 

every year and during long-term periods (Monteiro et al., 2007a; Carvalho et al., 2010; EEA, 54 

2010). 55 

Several operational air quality forecasting systems already exist over Europe (see 56 

http://gems.ecmwf.int or http://www.chemicalweather.eu). Some of them forecast at the 57 

national level as in Portugal. In particular the MM5-CHIMERE (Monteiro et al., 2005), the 58 

MM5-EURAD-IM (Elbern et al., 2007; Strunk et al., 2010) and the CALIOPE (Baldasano et al., 59 

2008a) forecasting systems are advancing our understanding of atmospheric dynamics in 60 

Portugal as follows. First, they are applied with a higher resolution over Portugal. Meanwhile 61 

most European models use a horizontal resolution of at least 25 x 25 km2, the MM5-CHIMERE, 62 

the MM5-EURAD-IM and the CALIOPE systems use horizontal resolution of 10x10 km2, 5x5 63 

km2 and 4x4 km2, respectively. Second, they include contribution of Saharan dust emissions on 64 

an hourly basis from the BSC-DREAM8b model. Third, there are several evaluation studies that 65 

support the confidence on the three selected systems (MM5-CHIMERE in Monteiro et al. 66 

2007a,b; MM5-EURAD-IM in Monteiro et al., 2011; and CALIOPE in Baldasano et al., 2008a, 67 

2011 and Pay et al., 2011). 68 
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Air quality forecast modelling, which rely not only on the meteorological prediction but also on 69 

a chemical-transport modelling and on highly uncertain emission inventories, are likely to have 70 

significant (systematic) model errors (Borrego et al., 2003, 2008; Chang and Hanna, 2004). In 71 

order to improve each model forecast skill, different bias-correction techniques have been 72 

recently applied and examined (McKeen et al., 2005; Wilczak et al., 2006; Pagowski et al., 73 

2006; van Loon et al., 2007; Djalalova et al., 2010; Sicardi et al., 2011). 74 

The objective of the present study is to examine the efficacy of two bias-correction techniques, 75 

multiplicative ratio and Kalman filter methods, to improve the air quality forecasts (ground-76 

based concentrations of O3, NO2, SO2, PM10 and PM2.5) calculated from the three operational 77 

modelling systems available at high resolution over Portugal mainland domain. The model 78 

evaluation exercise covers the full year 2010 and observation from 18 air quality monitoring 79 

stations. 80 

The present work is organized as follows. Section 2 describes the different forecast modelling 81 

systems. Section 3 presents the observational dataset selected and used within this study. The 82 

applied bias techniques are described in Section 4 and the analysis and discussion of the results 83 

are presented in Section 5. In Section 6, classical/categorical statistics are addressed to 84 

investigate the forecast skills after bias correction. Finally, the conclusions are drawn in Section 85 

7. 86 

 87 

2. THE AIR QUALITY FORECASTING SYSTEMS 88 

There are three air quality forecasting systems operating over Portugal with high resolution. 89 

Both MM5-CHIMERE (Monteiro et al., 2005) and MM5-EURAD-IM (Elbern et al., 2007; 90 

Strunk et al., 2010) modelling systems are being applied by the University of Aveiro¶V research 91 

group using an European/Iberian Peninsula coarse domain as boundary and initial conditions for 92 

the nested domain over Portugal with a 10x10 km2 and a 5x5 km2 horizontal resolution, 93 

respectively. The MM5-CHIMERE modelling system is operational with daily forecasts 94 

available since 2007: http://adamastor.dao.ua.pt/previsao_qar/. The MM5-EURAD-IM is only 95 

operational for Portugal since 2010, with also daily forecasts in an hourly basis, as a result of a 96 

scientific collaboration between the University of Aveiro and the Rhenish Institute for 97 

Environmental Research at the University of Cologne. The CALIOPE system (Baldasano et al., 98 

2008a) provides high-resolution air quality forecast for Spain. CALIOPE system encompasses a 99 

set of models: WRF-ARW meteorological model, the High-Elective Resolution Modelling 100 

Emission System (HERMES, Baldasano et al., 2008b) and the chemical transport model 101 

CMAQ. CALIOPE is applied over Iberian Peninsula with a 4 x 4 km2 horizontal resolution and 102 
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also with an hourly basis (Baldasano et al., 2011). Current forecasts and near real-time 103 

evaluation are available through the CALIOPE system website (http://www.bsc.es/caliope). 104 

CMAQ, CHIMERE and EURAD-IM are all regional-scale three-dimensional chemical 105 

transport models (CTM) designed for short-term and long-term simulations of oxidants and 106 

aerosol formation. Both CHIMERE and EURAD-IM CTM are forced by the MM5 107 

meteorological fields (Dudhia, 1993), meanwhile CMAQ uses the outputs of the WRF-ARW 108 

model (Michalakes et al., 2004). Both MM5 and WRF-ARW are non-hydrostatic models. 109 

The three modelling system have different degrees of complexity and spatial resolution. A 110 

summary of their key features, including emissions and boundary conditions, is listed in Table 111 

1. Additional descriptions can be consulted on the online Model Documentation System 112 

(http://pandora.meng.auth.gr/mds/mds.php). CALIOPE configurations in both European and 113 

Iberian Peninsula domains are described in detail in Pay et al. (2010) and Baldasano et al. 114 

(2011), respectively. 115 

 116 

Table 1 117 

 118 

Since episodic natural of dust outbreaks are frequently observed over all Iberian Peninsula 119 

(Rodríguez et al., 2001; Silva et al., 2003; Basart et al., 2009), and because the representation of 120 

these events cannot be well simulated with solely the information of aerosol boundary 121 

conditions (Vautard et al., 2005, Jiménez-Guerrero et al., 2008; Menut and Bessagnet, 2010), 122 

the long-range transport of mineral dust from Sahara desert is modelled on an hourly basis by 123 

the BSC-DREAM8b model (Nickovic et al., 2001; Pérez et al., 2006a,b). The BSC-DREAM8b 124 

is fully embedded within the NCEP/Eta meteorological driver (Janjic, 1994). Dust aerosols are 125 

represented by 8 bins size distribution within the 0.1-10 µm radius range. Dust-radiation 126 

interactions are calculated online. The modelled domain in this study comprises Northern 127 

Africa, the Mediterranean basin, Europe and Middle East. It is applied with a 0.3º x 0.3º 128 

horizontal resolution using 24 vertical layers extending up to 15 km. In the present study the 129 

BSC-DREAM8b model is offline coupled within the hourly forecast PM10 and PM2.5 130 

concentrations from CALIOPE, MM5-CHIMERE and MM5-EURAD-IM. 131 

 132 

3. MONITORING DATA 133 

The air quality monitoring network of mainland Portugal (http://www.qualar.org/) includes 68 134 

stations of which 42 are background, 19 traffic and 7 industrial, following the classification in 135 

Garber et al. (2002). The spatial coverage, together with the background influence and a 136 
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minimum data collection efficiency of 75% are three of the criteria used for the stations 137 

selection. A fourth criterion is related with the measured pollutants. Stations that measure O3 138 

also measure NO2 and the stations that measure PM10 also do it for PM2.5. As a result, a total 139 

of 18 stations (8 rural, 5 urban and 5 suburban) are selected for the present study, 13 stations for 140 

O3/NO2, 9 for SO2 and 6 for PM10/PM2.5. Figure 1 shows the location and main characteristics 141 

of the selected stations over the study domain. Note that the measured data are in an hourly 142 

basis and the data are not validated since they refer to year 2010. 143 

 144 

Figure 1 145 

 146 

Despite the spatial coverage criteria, there is an evident concentration of monitoring stations 147 

over the coastal area and the two metropolitan areas of Porto and Lisbon (see Figure 1). 148 

Nevertheless, all the regions of Portugal are covered by at least one rural background station. In 149 

terms of topography, the mountainous regions are not so well represented by monitoring sites. 150 

The majority of the stations, which are located near/over the coast, have altitudes lower than 151 

300 meters. 152 

 153 

4. BIAS-CORRECTION TECHNIQUES 154 

As discussed in previous works, the applied forecast systems are found to have significant 155 

biases (Monteiro et al., 2007a; Baldasano et al., 2010) that could be removed through bias-156 

correction techniques. There are several techniques by which bias correction can be applied as 157 

mean subtraction (McKeen et al., 2005; Wilczak et al., 2006), multiplicative ratio adjustment 158 

(McKeen et al., 2005), hybrid forecast (Kang et al., 2008) and Kalman filter (Delle Monache et 159 

al., 2006; Kang et al., 2008; Djalalova et al., 2010), model ensembles (van Loon et al., 2007; 160 

Wilczak et al., 2006; Djalalova et al., 2010) among others. The bias correction does not try to 161 

gain additional insight into model deficiencies or performance neither to correct them 162 

artificially, but intends to remove potential errors intrinsic to each model formulation or input 163 

data. In the present study two post-processing methods are used to correct the bias of the three 164 

forecasting system for all the considered pollutants: a multiplicative ratio correction (McKeen et 165 

al., 2005) and the Kalman filter method (Delle Monache et al., 2006; Kang et al., 2008, 2010). 166 

Both techniques are site-specific approaches since they use past ground-based measurements 167 

and simulated data at each monitoring site to revise and improve the current hourly forecasts for 168 

the entire year of 2010. 169 

 170 
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4.1 The multiplicative ratio correction 171 

The multiplicative ratio correction (RAT, McKeen et al., 2005) is a simple approach that can be 172 

mathematically expressed by equation 1. 173 
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 175 

The corrected concentration with RAT (corrected
elCmod ) is estimated based on the application of a 176 

correction factor to the raw modelled concentration (raw
elCmod ). The correction factor is calculated 177 

as the quotient between the additions of observed (obsC ) and modelled raw
elCmod  concentrations at a 178 

particular hour (h) of the n previous days. To estimate the number of previous days (n), 179 

Monteiro et al. (2011) tested different training periods and chosen a 4 day training period as a 180 

compromise between having a sufficiently long period to gather adequate statistics, but not too 181 

long to mask seasonal variations (for O3, for e.g.). According to Stull (1988) and also Tchepel 182 

and Borrego (2010), synoptic conditions are characterized by a 3-4 day period, which supports 183 

the chosen training period. Thus, the current multiplicative ratio correction approached was 184 

applied with a 4 day period (RAT04). 185 

 186 

4.2. Kalman filter 187 

The Kalman filter (KF) is a recursive, linear, and adaptive method that has been used recently to 188 

improve air quality forecast of ground-based O3 (Delle Monache et al., 2006, 2008; Kang et al., 189 

2008; Djalalova, et al., 2010; Sicardi et al., 2011) and PM2.5 (Dajalalova, et al., 2010; Kang et 190 

al., 2010). KF performance is sensitive to the error UDWLR��1
2
��1

2
0) which indicates the way in 191 

which the KF responds to the variations in biases at prior steps. There exists an optimal error 192 

ratio to generate the best forecast given the forecast modelling system and the dynamic of the 193 

study area. We follow the methodology of Kang et al. (2008) for estimating the optimal error 194 

ratio which consists in minimizing the root mean square error and maximizing the correlation 195 

coefficient for all the stations. Therefore, optimal errors ratios are selected for each modelling 196 

system and for all the selected stations over the year 2010. Only in the case of O3, optimal errors 197 

ratios are selected seasonality because it was found that corrected O3 simulation improved when 198 

using seasonally varying values. Table 2 presents the optimal error ratios selected for each 199 

pollutant. 200 

 201 
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Table 2 202 

 203 

5. BIAS-CORRECTION ASSESSMENT 204 

The evaluation of the different bias-correction approaches applied to the three modelling system 205 

is carried out using classical statistical indicators (Tilmes et al., 2002; Borrego et al., 2008; 206 

Denby et al., 2010; Dennis et al., 2010). The global skills of the bias-correction approaches are 207 

represented by means Taylor diagrams. Additionally, this evaluation is complemented with 208 

analysis of the most important critical points of each bias-correction technique find on the air 209 

quality forecast of the three modelling systems under study. 210 

The Taylor diagram (Taylor, 2001) is a powerful tool frequently used in model evaluation 211 

studies (Cuvelier et al., 2007; Denby et al., 2010; Dennis et al., 2010) for the simultaneous 212 

visualization of three statistical indicators, in the present study we present the observed and 213 

modelled standard deviation (SD), the centred root mean square error (CRMSE) and the 214 

correlation coefficient (R) in a single point. Together these statistical parameters provide a quick 215 

outline of the degree of pattern correspondence among the raw and the unbiased simulated 216 

values of each forecasting system and the observed data. 217 

Figure 2 shows the Taylor diagrams for each pollutant. O3 is expressed in maximum daily 218 

concentration (O3 max-1h) (Figure 2a) and in maximum daily eight-hour running average (O3 219 

max-8h) (Figure 2b) following the current 2008/50/EC European directive (European 220 

Commission, 2008). NO2, SO2, PM10 and PM2.5 are expressed in daily mean concentrations 221 

(Figure 2c-f, respectively). Each Taylor diagram shows the annual performance of the two bias-222 

correction techniques, KF and RAT04, applied to the three forecasting systems and the 223 

corresponding raw modelling systems over all the studied stations. 224 

 225 

Figure 2 226 

 227 

Visualization of every single polar plots shows that the application of both KF and RAT04 228 

techniques improve the raw forecasts for all the modelling systems and pollutants, bringing 229 

unbiased SD closer to the observed SD than raw modelled SD, reducing errors and increasing 230 

correlation coefficients close to the unit. For O3 max-1h the improvements in annual 231 

performance is significant after applying bias-correction techniques. The maximum variability 232 

increases with KF (SD = 25.2-28.0 µg.m-3) and RAT04 (SD = 26.4-29.5 µg.m-3) falling closer to 233 

the observed SD (29.3 µg.m-3) than raw modelled SD (22.1-26.9 µg.m-3), which means that 234 

techniques adjust high O3 peaks although they are still slightly underestimated. Annually, 235 
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unbiased error decreased in 21-22% (KF) and 16-26%, from 20.4-25.2 µg.m-3 (raw model) to 236 

16.2-19.6 µg.m-3 (KF) and 17.1-19.2 µg.m-3 (RAT04); and correlation coefficient increase in 237 

16-34% (KF) and 13-37% reaching 0.75-0.84 (KF) and 0.77-0.83 (RAT04). The same tendency, 238 

but with slight better skills, is found in the case of O3 max-8h. Although the variability is 239 

improved, the unbiased standard deviations are usually smaller than their observed field. 240 

CRMSE is reduced in 25-26% (KF) and 25-33% (RAT04) and correlation coefficient range 241 

between 0.78-0.85 and 0.81-0.86, respectively. 242 

In the case of NO2 daily mean, after applying bias-correction techniques unbiased concentration 243 

increase the daily variability getting closer to the observed SD (14.0 µg.m-3) from 7.7-11.2 244 

µg.m-3 (raw model) to 12.4-12.9 µg.m-3 (KF) and 14.1-14.6 µg.m-3 (RAT04) showing slightly 245 

more daily variability with RAT04. CRMSE decreases from 10.6-12.2 µg.m-3 (raw model) to 246 

7.2-7.3 µg.m-3 (KF) and 5.9-6.7 µg.m-3 (RAT04); and temporal correlations increase from 0.55-247 

0.66 (raw model) to 0.85-0.86 (KF) and 0.89-0.91 (RAT04). 248 

As for NO2 primary pollutant, annual unbiased modelled SO2 daily means present higher skills 249 

than raw modelled concentrations. Raw modelled SO2 concentrations present higher daily 250 

variability (SD = 4.1-12.7 µg.m-3) than observed field (2.4 µg.m-3). In this sense, both bias-251 

correction techniques get to deduced raw modelled SD till 3.3-7.3 µg.m-3 (KF) and 3.1-7.3 252 

µg.m-3 (RAT04) which means that high SO2 peaks have been reduced and decreased the daily 253 

concentration. Annual CRMSE are reduced in 34-75% after applying bias-correction techniques 254 

in the range of 1.6-5.8 µg.m-3 (KF) and 2.1-5.7 µg.m-3 (RAT04). Unbiased models also improve 255 

temporal annual correlation in more than 100%, reaching 0.17-0.50 and 0.14-0.59 with KF and 256 

RAT04, respectively. 257 

Raw modelled PM present higher daily variability than observations which is reduced after 258 

applying bias-correction techniques. For PM10, raw modelled SD are reduced from 13.1-22.3 259 

µg.m-3 to 1.3-18.3 µg.m-3 (KF) and 14.1-16 µg.m-3 (RAT04) closer to 13.6 µg.m-3 (observed 260 

PM10 SD). PM2.5 daily mean presents the same tendency, raw modelled concentrations are 261 

reduced from 8.0-13.7 µg.m-3 to 7.1-10.2 µg.m-3 (KF) and 6.8-8.9 µg.m-3 (RAT04) closer to 7.5 262 

µg.m-3 (observed PM2.5 SD). The higher variability observed with PM10 and PM2.5, even after 263 

applying bias-correction techniques, is deviated by the high overestimation urban stations such 264 

as CAM. Temporal variability improves for PM10, in the range of 7-20 % (KF) and 12-33% 265 

(RAT), reaching correlation of 0.49-0.58 (KF) and 0.58-0.61 (RAT04). Improvements are 266 

higher with PM2.5 for temporal variability, (>50% with both KF and RAT04) reaching R in the 267 

range of 0.50-0.64 (KF) and 0.57-0.62 (RAT04). 268 

Based on annual statistics indicator, the biggest percentage of improvement after applying bias-269 

correction techniques are found for SO2 daily concentration, R increase in more than 100% and 270 
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error (CRMSE) decrease in the range of 34-51 % (for both KF and RAT04), following by NO2 271 

daily concentration where R increase in 30-65% and error decrease in 32-51% (for both KF and 272 

RAT04). The percentage of improvement is smaller for O3 max-1h and max-8h, although with 273 

significant impact in correlation that reach 0.78-0.86 (both KF and RAT04) in the case of O3 274 

max-8h, since the raw modelled present high skills. Note that to get high skills after applying 275 

bias-correction techniques modelling systems has to demonstrate their relative accuracy. 276 

Overall, Taylor diagrams (Figure 2) point out that despite the applied techniques have different 277 

mathematic formulation and complexity level, there is comparable answers for all of the 278 

forecasting systems (see e.g. Figure 2c). There is a slightly superiority of RAT04 technique over 279 

Kalman filter in terms of statistical indicator and graphical representation of Taylor diagrams. 280 

However the aforementioned evaluation has the limitation that it is done over all the stations in 281 

annual basin and it gives no information whether the unbiased concentrations are correct for the 282 

right or wrong reason. Therefore, in order to go more in detail on the skills of bias-correction 283 

techniques specific examples of the successes/failures of both techniques are illustrated 284 

following, since is important to know how RAT04 and KF behave in specific situations, such as 285 

air quality episodes, not-validated or missing data, in order to choose the most convenient bias-286 

correction technique to apply on air quality forecast over Portugal. 287 

In Figure 3 (top) where the hourly observed O3 concentrations (red points) at the CAL station is 288 

presented along with the raw CALIOPE outputs (blue) and the post-processed KF and RAT04 289 

values (orange and green, respectively) during a summer period (June month). This example 290 

demonstrates how both KF and RAT04 techniques improve the forecasted O3 daily cycles, since 291 

they agree with the observed hourly variability in both diurnal maximum and night minimum, 292 

reducing the persistent overestimation with respect to measurements (Figure 3, bottom). Hourly 293 

statistical analyses (not shown here) quantify that maximum and minimum annual bias are in 294 

the range of ±5 µg.m-3 after post-processing with both KF and RAT04. That means a bias 295 

improvement of more than 80% in the maximum overestimation (from 40-20 µg.m-3 to less than 296 

5 µg.m-3) for all the system. 297 

 298 

Figure 3 299 

 300 

Figure 4 shows PM10 time series at FUN station during an air quality episode in August 2010. 301 

In the first part of time series, from August 7th to 10th, a desert dust outbreaks arrives to Portugal 302 

due to a North Africa advection (Figure 4 c). The raw CALIOPE system reproduces the event 303 

thanks to the contribution of the BSC-DREAM8b model (Figure 4b) although the 304 

concentrations are slightly underestimated. After applying bias-correction techniques, unbiased 305 
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outputs are closer to the hourly observed concentrations. In the second part, from August 10th to 306 

13th, the wind changes the trajectory to northwest (see Figure 4c) and the observed 307 

concentrations reach ~170 µg.m-3 According to the Portuguese Forest Authority (Autoridade 308 

Florestal Nacional, 2010) nine forest fires occurred during this period in a radium of 100 km 309 

from FUN station where more than 10,000 ha were burned. In the described fire episode both 310 

bias-correction techniques do not reproduce the event since the raw CALIOPE modelling 311 

system, as MM5-CHIMERE and MM5-EURAD-IM systems, does not include forest fire 312 

emissions. The high bias estimated for this episode generates that both techniques overestimate 313 

observed concentration four days later after the fire is finished. KF gets closer to the 314 

observations faster than RAT04 since KF gradually spreads the error and RAT04 present high 315 

sensitivity to the magnitude of the modelled values. 316 

 317 

Figure 4 318 

 319 

Frequent problems in the forecast of SO2 are associated to high underestimations of SO2 peaks. 320 

The main activity sources of SO2 emissions are related to power plants and 321 

transformation/manufacturing industry (source: http://www.emep.int/). Besides a high level of 322 

control of the SO2 emissions, these point sources can episodically generate large plumes of 323 

high-SO2 content affecting the air quality in urban and regional scales downwind the sources. 324 

Accurate SO2 forecasts depend on the accuracy in the meteorological patterns, the variability on 325 

the sub-grid scale with respect to measured data (Stern et al., 2008; Baldasano et al., 2011), and 326 

the accurate representation of emissions sources. 327 

The Figure 5 illustrates an episode of high SO2 concentrations at the CHA station, on March 328 

27th from 6:00 to 12:00 where any of the forecast systems were able to predict the observed 329 

event (only MM5-EURAD-IM is shown in Figure 5). This example demonstrates that both KF 330 

and RAT04 produce an error due to high concentrations observed on March 27th which is 331 

propagated to the same hour during the days after. The propagated error is higher for RAT04 332 

than KF since RAT04 is a simple technique by which simulated and observed data have the 333 

same weight. RAT04 applies a correction on the same hour of the next days and if there is no 334 

other high concentration during 4 days, the hourly correction factor error will not be reproduced 335 

on the 5th day after. On the other hand, the optimal ratio of KF to MM5-EURAD-IM is low 336 

(0.04, see Table 2) which means that KF has more confidence on model simulations than 337 

observations data. In this sense, the propagated error by KF is less than RAT04 error. In 338 

addition, if no other high concentration is recorded, KF error will decrease over the next days, 339 

meaning that corresponding bias will be getting closer to 0. The propagation of an error 340 
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produced by model simulations or observations data (both by a high recorded concentration and 341 

by not validated data) is a common characteristic of both techniques. This example illustrates 342 

that despite RAT04 has a better performance in general terms, KF can generate a correction 343 

with less error in these specific situations. 344 

 345 

Figure 5 346 

 347 

The Figure 6 shows an episode registered in October 25th - 30th at the MVE station where the 348 

raw CALIOPE system forecasted high SO2 concentrations that actually did not occur. The same 349 

behaviour was obtained with the raw MM5-CHIMERE and MM5-EURAD-IM forecasting 350 

systems (not shown here). The figure demonstrates the limitations of the KF technique against 351 

high overestimation of the models. Meanwhile, the RAT04 technique (green) corrects the raw 352 

forecast following the hourly observation with a bias reduction of 80%. This poor performance 353 

of KF is related with two facts. First, SO2 optimal error ratio �12
��1

2
0) for the three models result 354 

between 0.13 and 0.20, higher compared to the other pollutants ratios (see Table 2). When ratio 355 

is high, the forecast-error white-noise variance (1
2
0) will be relatively small compared to the true 356 

forecast-bias white-noise variance (1
2
�). Therefore, the filter will put excessive confidence on 357 

the previous forecast and the predicted bias will respond very quickly to previous forecast 358 

errors. Second, KF bias-adjustment is a linear and recursive algorithm. KF predicts the future 359 

bias with a linear relationship given by the previous bias estimate plus a quantity proportional to 360 

the difference between the present forecast error and the previous bias estimates. Therefore KF 361 

is unable to correct large bias due to model overestimations when all the biases for the past few 362 

days have been small. 363 

 364 

Figure 6 365 

 366 

The absence of monitoring data is frequently a problem for data assimilation or bias-correction 367 

procedures. In case of the RAT04 approach, if there are no measurements, the unbiased outputs 368 

will be equal to the raw modelled data. On the other hand, KF has a capacity to learn the 369 

behaviour of simulations data relatively to monitoring data, which means that KF is designed to 370 

apply the same correction as that estimated for the previous days. Figure 7 illustrates this 371 

problem with an example of two different periods of absence of measurement data registered at 372 

the CAL station, from April 10th to May 1st 2010. Once all of the forecast systems presented the 373 

same behaviour, just the MM5-EURAD-IM simulation is shown here. In the first half period 374 
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(from April 10th to the half of April 14th) KF and RAT04 produce a reasonable corrections with 375 

bias values closer to 0 (Figure 6, bottom). During the periods of April 14th - 18thand April 23rd -376 

25th, there are no monitoring data, In this case, KF applies the same correction from previous 377 

days and RAT04 does not correct the simulated data, taking the same raw modelled outputs. 378 

When data start to be available, KF continues to apply the bias correction base on previous days 379 

and after four days the recent measurement have an effective effect on bias correction (observed 380 

and simulated data). With the RAT04 technique the simulated data is only possible to be 381 

corrected after 4 days of monitoring data availability. In future work RAT04 can be 382 

improved/designed in order to minimize this problem, applying the previous correction to the 383 

hour without observed data, as KF does. 384 

 385 

Figure 7 386 

 387 

Both techniques are sensitive to not validated data which is a frequent problem for time 388 

forecasting mode working. Figure 8 shows an example of not validated data, specifically, when 389 

the station presents a calibration problem. Time series of hourly SO2 concentrations (red) at the 390 

MVE station present two clear tendencies in Figure 8. In the first part, SO2 measured 391 

concentrations present a background level ~ 8 µg.m-3, and on June 22sd at 12:00 observed data 392 

decrease sharply 7 µg.m-3 to be oscillating around ~ 1 µg.m-3 the rest of the year. This suggests 393 

that MVE station registered/exhibited a calibration problem in the first part of the time series 394 

that is corrected in the second part. In this situation both KF and RAT04 correct the raw forecast 395 

to agree with observations in the both aforementioned situations. On one hand KF presents a 396 

robust response against a systematic bias. KF gives more confidence to the observations based 397 

on persistent systematic bias, and adjusts the background levels to ~ 8 µg.m-3 in the first part, 398 

and to ~ 1 µg.m-3 in the second part, with a transition period of 4 days till the bias are reduce to 399 

0 (orange line, Figure 8 bottom). On the other hand RAT04 tries to adjust background levels in 400 

both situations, but produces overestimations during these periods. These instabilities show its 401 

sensitivity to high gradient of concentrations, and it is a limitation of multiplicative techniques 402 

(Wilczak et al., 2006). 403 

 404 

Figure 8 405 
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 406 

6. FORECAST MODELS PERFORMANCE 407 

The categorical statistical skills (Kang et al, 2005; Eder et al., 2006) are computed in order to 408 

evaluate how the two bias correction techniques improve the three air quality forecasts daily 409 

produced over Portugal in terms of exceedances and non-exceedances events. Exceedances 410 

analysis is based on a comparison with a fixed threshold concentration (T). The present work 411 

uses as thresholds those established by the European directive 2008/50/EC on air quality 412 

(European Commission, 2008). Only O3 and PM10 are evaluated in terms of categorical 413 

statistics because neither PM2.5, NO2 nor SO2 exceeded the European limit values at the 414 

selected stations in 2010. The 2008/50/EC directive sets an information threshold of 180 µg.m-3 415 

for maximum daily concentrations (max-1h) and a target value of 120 µg.m-3 for maximum 416 

daily eight-hour running average (max-8h) not to be exceeded on more than 25 days per year. In 417 

the case of PM10, it establishes a limit value of 50 µg.m-3 for daily average (Mean-24h) not to 418 

be exceeded more than 35 times per year. Table 3 shows the annual categorical parameters for 419 

all the selected Portuguese stations. The calculated statistics are the accuracy (A), the bias (B), 420 

the probability of detection (POD), the false alarm ratio (FAR) and the critical success index 421 

(CSI). Kang et al. (2005) shows the formulas of the aforementioned categorical statistics. 422 

 423 

Table 3 424 

 425 

The percentages of the 2010 exceedances that are actually forecasted are estimated with the 426 

value of POD. For O3 max-1h, a total of 51 exceedances of the information threshold (T = 180 427 

µg.m-3) are observed over the 13 Portuguese stations in 2010 (1/3*(b+d), in Table 3). The bias-428 

correction techniques increase the POD from 3% (raw models) to 10 % in KF and 31% in 429 

RAT04. In the case of O3 max-8h, a total of 297 exceedances of the target value (T = 120 µg.m-430 
3) were observed over all the stations. The POD also improves when bias-correction techniques 431 

are applied from 27% (raw) to 48% (KF) - 54% (RAT04). Overall, POD improves strongly after 432 

the post-processing techniques for both O3 max-1h and max-8h, reaching an improvement of 433 

more than 100% and 50% for max-1h and max-8h, respectively. This means that by means the 434 

application of bias-correction techniques the forecast alerts for the population about 435 

exceedances would be significant accurate. 436 

For PM10 daily mean a total of 68 exceedances of the daily limit value (T = 50 µg.m-3) were 437 

measured. The bias-correction techniques increase the POD from 32% (raw) to 34% (KF) - 45% 438 

(RAT04). However the improvement percentage of POD is less than 50%, lower than for O3, 439 
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due to the no significant increase of the number of hits (b) (from 65 (raw) to 70 (KF) and to 92 440 

(RAT04)). 441 

The accuracy (A) measures the percentage of simulations that correctly reproduce an 442 

exceedance or no-exceedance (ideally 100%). Actually, A is already high for the raw models for 443 

three variables (A > 90%), and there are no significant improvements after post-processing. In 444 

the present study, careful must be done in the interpretation of the A since the number of the 445 

observed exceedances (b+d) is little respect to the total pair of data (a+b+c+d). The categorical 446 

bias (B) indicates if the forecasts fail by overestimating (false positive) or underestimating 447 

(correct negative) exceedances (ideally 1). For O3 max-1h and max-8h, B remains below 1 448 

before and after post-processing, which indicates that errors by missing of observed 449 

exceedances are not totally resolved (d>a). The better performance is found for O3 max-8h, 450 

where B improves from 0.7 (raw) to 0.8 (KF and RAT04). Low B performance in O3 max-1h is 451 

due to the poor capability to reproduce maximum hourly O3 concentrations. On the other hand, 452 

for PM10 daily mean categorical bias originally presents problem with false alarms (B>1). B is 453 

significant reduced after post-processing, from 2.2 (raw) to 1.7 (KF) ± 1.5 (RAT04). 454 

Nevertheless corrected models still present problems with false alarms. 455 

FAR is useful to quantify the fails by simulating exceedances that actually did not occur (ideally 456 

0%). Application of the post-processing techniques reduces of almost the half the value of the 457 

FAR for the max-8h. This indicates the ability of the KF and RAT04 techniques to reduces the 458 

number of projected false alarms from 371(raw) to 254 (KF) ± 266 (RAT04). For the O3 max-1h 459 

the false alarms (b) does not improve significantly after the post-processing. However FAR 460 

improves owing to the improving of hits detections (b) from 5 (raw) to 16-48 (KF and RAT04, 461 

respectively). For PM10 daily mean, FAR improves less than 20% with both post-processing 462 

techniques, since the bias-correction techniques do not reduce significantly modelled false 463 

alarms (a) for PM10 daily mean. The CSI indicates how well both forecast exceedances and 464 

actual exceedances are predicted (ideally 100%). For the three analysed variables CSI improves 465 

when both KF and RAT04 techniques are applied. Unlike the POD and the FAR, the CSI takes 466 

into account both false alarms and missed events, and it is thus a more balanced score. 467 

Results demonstrate that both techniques improve modelling skills to reproduce exceedances 468 

established by the European directive 2008/50/EC for PM10 daily mean and O3 max-1h and 469 

max-8h. Better skills are found with RAT04 than for KF in most cases. Nevertheless, it must be 470 

taken into account that the categorical statistics only evaluate the model in terms of 471 

exceedances; therefore caution is needed when interpreted. 472 
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 473 

7. SUMMARY AND CONCLUSIONS 474 

The current work performs an exhaustive examination of two different bias-correction 475 

techniques, the Kalman filter method (KF) and a multiplicative ratio with a 4 days training 476 

period (RAT04), within their application inland Portuguese domain. Both approaches have been 477 

applied to the three advanced forecasting systems operated routinely over Portugal in 2010 ± 478 

CALIOPE, MM5-CHIMERE and MM5-EURAD-IM. The evaluation is carried on in terms of 479 

ground-based concentrations of gas-phase (O3, NO2, and SO2) and particulate matter (PM10 and 480 

PM2.5) pollutants. Statistical parameters were used (classical and categorical) and graphical 481 

techniques (Taylor diagram and temporal series) in order to quantify the abilities of the two 482 

post-processing techniques to improve the air quality forecast over Portugal. 483 

Comparative statistical analysis, based on Taylor diagram, show that both KF and RAT04 484 

techniques improve the raw forecasts skills (for all the modelling systems and pollutants), 485 

bringing unbiased SD closer to the observed SD than raw modelled SD, reducing errors and 486 

increasing correlation coefficients close to the unit. In the case of O3 max-8h, temporal 487 

variability improves in 19-45 % from 0.56-0.81 (raw models) to 0.78-86 (KF and RAT04, 488 

respectively). Similar tendency is found for O3 max-1h. The primary pollutant NO2 and SO2 489 

daily concentrations, demonstrate significant relative improvements compared to O3, mostly 490 

because the original modelling system skills are lower for those species. NO2 correlation 491 

coefficients improve between 30-65% and more than 100% for SO2 (for both KF and RAT04); 492 

and errors decrease also in both cases in ~30-40% (for both KF and RAT04). For PM, 493 

improvement after applying both KF and RAT04 are higher with PM2.5 where correlation 494 

coefficients increase in more than 50% (both techniques) reaching values between 0.50 ± 0.64. 495 

Note that to get high skills after applying bias-correction techniques modelling systems has to 496 

demonstrate their relative accuracy. 497 

Despite the applied techniques have different mathematic formulation and complexity level, 498 

there are comparable answers for all of the forecasting systems. There is a slightly superiority of 499 

RAT04 technique over KF in terms of statistical indicator and graphical representation of 500 

Taylor diagrams. However the analysis performed over specific situations, such as air quality 501 

episodes, not-validated or missing data reveals different behaviour for KF and RAT04. In the 502 

case of hourly O3 concentrations, both bias-correction techniques are efficient tools to improve 503 

simulated O3 daily cycle remaining bias in the range of ±5 µg.m-3. Under desert dust advection 504 

from North Africa, KF and RAT04 are able to correct PM10 bias within slightly overestimation 505 

of RAT04. Nevertheless, under missed pollution events of short-life (< 2 days), as shown with 506 

forest fire or high SO2 peaks, KF and RAT04 have no efficient corrections of that large bias. 507 
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RAT04 applies a correction on the same hour of the next days and if there is no other high 508 

concentration during 4 days, the hourly correction factor error will not be reproduced on 5th day 509 

after. In the other hand, the propagation of error in KF is less sharp than for RAT04, since give 510 

more confidence to previous persistent bias. This is an advantage of KF under not validated data 511 

or missing data since the capability of response is higher than RAT04. One evident 512 

disadvantage of KF against RAT04 is when the modelling system presents high overestimations 513 

(as shown with hourly SO2 peaks). KF is unable to correct large bias due to model 514 

overestimations since the filter puts excessive confidence on modelled forecast. Note that both 515 

techniques are sensitive to not validated data. 516 

The improvements of the discussed critical points will conduct to a better unbiased model 517 

performance which will be reflected on a higher accuracy of episodes forecasted. Beyond the 518 

discussed weaknesses of the both bias-correction approaches, there is a critical point that is 519 

common to KF and RAT04: both are site-specific dependents. We are currently working to 520 

solve this problem, developing a spatial approach for the bias correction on the overall domain. 521 

Categorical analysis has been performed over air quality pollutant that exceed threshold and 522 

limit values establish by the European legislation on air quality which are O3 max-1h (threshold 523 

= 180 µg.m-3), O3 max-8h (threshold =120 µg.m-3) and PM10 daily mean (limit value=50 µg.m-524 
3). Results indicate that the probability of detection (POD) of both techniques improve in more 525 

than 100% for O3 max-8h and 50% for O3 max-1h with a total  increase from 27% to 48% (KF) 526 

and 54% (RAT04) in the case of O3 max-8h. However, the improvement percentage of POD is 527 

less than 50%, lower than for O3, due to the no significant increase of the number of hits (b) 528 

(from 65 (raw) to 70 (KF) and to 92 (RAT04)), may be related with the fact that some missing 529 

sources (such as forest fires) are not includes in the raw modelling systems. 530 

These above results confirm the advantage of the application of RAT04 and KF bias-correction 531 

techniques for air quality forecast. Both techniques can be applied routinely in an operational 532 

forecast system and they will be useful to alerts for the population about accurate exceedances. 533 

 534 

ACKNOWLEDGEMENTS 535 

The authors acknowledge the CRUP by the support of the Integrated Action E 122-10 and 536 

Integrated Action PT2009-0029 from the Ministerio de Ciencia e Innovación. Thanks are 537 

H[WHQGHG�WR�WKH�3RUWXJXHVH�µ0LQLVWpULR�GD�&LrQFLD��GD�7HFQRORJLD�H�GR�(QVLQR�6XSHULRU¶�IRU�WKH�538 

financing of BIOGAIR (PTDC/AAC-AMB/103866/2008) project, for the PhD grant of Isabel 539 

Ribeiro (SFRH/ BD/60370/2009) and the post doc grant of Alexandra Monteiro 540 

(SFRH/BPD/63796/2009). The Spanish Ministry of Science and Innovation is also thanked for 541 

the Formación de Personal Investigador (FPI) doctoral fellowship held by María Teresa Pay 542 



17 
 

(CGL2006-08903). COST ES0602 is also acknowledged. The authors wish to thank Luca Delle 543 

Monache and Ronald B. Stull for providing the Kalman filter algorithm used in this study. The 544 

computation with CALIOPE system has been done at the MareNostrum supercomputer hosted 545 

by the Barcelona Supercomputing Center-Centro Nacional de Supercomputación. 546 

 547 

REFERENCES 548 

Autoridade Florestal Nacional, 2010. Relatório provisório de incêndios florestais. Technical 549 

Report RP9/2010. Lisboa, Portugal. 15 pp. Available at http://www.afn.min-550 

agricultura.pt/portal/dudf/relatorios/resource/ficheiros/2010/20100815_AFN_RP6.pdf. 551 

Baldasano J.M, Jiménez-Guerrero P., Jorba O., Pérez C., López E., Güereca P., Martin F., 552 

García-Vivanco M., Palomino I., Querol X., Pandolfi M., Sanz M.J., Diéguez J.J., 2008a. 553 

CALIOPE: An operational air quality forecasting system for the Iberian Peninsula, Balearic 554 

Islands and Canary Islands- First annual evaluation and ongoing developments. Adv. Sci. Res. 555 

2, 89-98. 556 

Baldasano J.M., Güereca L. P., López E., Gassó S., Jimenez-Guerrero P., 2008b. Development 557 

of a high-resolution emission model for Spain: the High-Elective Resolution Modelling 558 

Emission System (HERMES). Atmos. Environ. 42 (31), 7215-7233. 559 

Baldasano J.M., Pay M. T., Jorba O., Ortiz J., Gonçalves M., BasarT S., Gassó S., Jiménez-560 

Guerrero P., 2010. Evaluation of the Spanish operational air quality forecasting system: 561 

diagnostic and near real time. In: International Workshop on Air Quality Forecasting Research. 562 

Québec, Canada, 16-18, November. 563 

Baldasano J.M., Pay M.T., Jorba O., Gassó, S., Jiménez-Guerrero P., 2011. An annual 564 

assessment of air quality with the CALIOPE modeling system over Spain. Sci. Total Environ. 565 

409, 2163-2178. doi:10.1016/j.scitotenv.2011.01.041. 566 

Basart S., Pérez C., Cuevas E., Baldasano J.M., Gobbi P., 2009. Aerosol characterization in 567 

Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun 568 

AERONET observations. Atmos. Chem. Phys., 9, 8265-8282. 569 

Bessagnet B., Hodzic A., Vautard R., Beekmann M., Cheinet S., Honoré C., Liousse C., Rouïl 570 

L., 2004. Aerosol modeling with CHIMERE-preliminary evaluation at the continental scale. 571 

Atmos. Environ., 38, 2803-2817. 572 

Bessagnet B., Hodzic A., Blanchard O., Lattuati M., Le Bihan O., Marfaing H., Rouil L., 2005. 573 

Origin of particulate matter pollution episodes in wintertime over the Paris Basin. Atmos. 574 

Environ., 39  6159-6174. 575 



18 
 

Binkowski F. S., Roselle S. J., 2003. Models-3 Community Multiscale Air Quality (CMAQ) 576 

model aerosol component: 1. Model description. J. Geophys. Res. 108(D16), 4183. 577 

Borrego C., Schatzmann M., Galmarini S., 2003. Quality assurance of air pollution models. In: 578 

Moussiopoulos N (ed.), SATURN ± Studying air pollution in urban areas ± EUROTRAC-2 579 

Subproject final report, Springer Verlag, Heidelberg, Germany, Chapter 7, 155-183. 580 

Borrego C., Monteiro A., Ferreira J., Miranda A.I., Costa A.M., Carvalho A.C., Lopes M., 581 

2008. Procedures for estimation of modelling uncertainty in air quality assessment. Environ. Int. 582 

34, 613-620. 583 

Bott A., 1989. A positive definite advection scheme obtained by non-linear renormalization of 584 

the advective fluxes, Mon. Wea. Rev., 117, 1006-1015. 585 

Carvalho A., Monteiro A., Ribeiro I., Tchepel O., Miranda A.I., Borrego C., Saavedra S., Souto 586 

J.A., Casares J.J. (2010). High ozone levels in the Northeast of Portugal: analysis and 587 

characterization. Atmos. Environ. 44, 8, 1020-1031. doi:10.1016/j.atmosenv.2009.12.020. 588 

Cuvelier C., Thunis P., Vautard R., Amann M., Bessagnet B., Bedogni M., et al., 2007. 589 

CityDelta: A model intercomparison study to explore the impact of emission reductions in 590 

European cities in 2010. Atmos. Environ. 41, 189-207. 591 

Delle Monache L., Nipen T., Deng X., Zhou Y., Stull R., 2006. Ozone ensemble forecasts: 2. A 592 

Kalman filter predictor bias correction. J. Geosphys. Res. 111(D05308). doi: 593 

10.1029/2005JD006311. 594 

Delle Monache L., Wilczak J., McKeen S., Grell G., Pagowski M., Peckham S., Stull R., 595 

McHenry J., McQueen J., 2008. A Kalman-filter bias correction method applied to 596 

deterministic, ensemble averaged, and probabilistic forecast of surface ozone. Tellus Ser. B, 60, 597 

238-249. doi: 10.1111/j.1600-0889.2007.00332.x. 598 

Denby B., Larssen S., Guerreiro C., Li L., Douros J., Moussiopoulos N., et al., 2010. Guidance 599 

on the use of models for the European Air Quality Directive. A working document of the Forum 600 

for Air Quality Modelling in Europe. FAIRMODE. In: Denby, B., editor. Technical Report 601 

Version 4.2ETC/ACC. 602 

Dennis R., Fox T., Fuentes M., Gilliland A., Hanna S., Hogrofe C., Irwin J., Trivikrama R., 603 

Scheffe R., Schere K., Steyn D., Venkatram, A., 2010. A framework for evaluating regional-604 

scale numerical photochemical modeling systems. Environ. Fluid Mech. doi: 10.1007/s10652-605 

009-9163-2. 606 

Djalalova I., Wilczak J., McKeen S., Grell G., Peckhama S., Pagowski M., DelleMonache L., 607 

McQueen J., Tang Y., Leeg P., McHenry J., Gong W., Bouchet V., Mathur R., 2010. Ensemble 608 



19 
 

and bias-correction techniques for air quality model forecasts of surface O3 and PM2.5 during 609 

the TEXAQS-II experiment of 2006. Atmos. Environ. 44, 455-467. 610 

Dudhia J., 1993. A nonhydrostatic version of the PennState/NCAR mesoscale model: 611 

Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 121, 612 

1493-1513. 613 

Eder B., Kang D., Mathur R., Yu S., Schere K., 2006. An operational evaluation of the Eta-614 

CMAQ air quality forecast model, Atmos. Environ. 40, 4894±4905, 615 

doi:10.1016/j.atmosenv.2005.12.062. 616 

Elbern H., Strunk A., Schmidt H., Talagrand O., 2007. Emission Rate and Chemical State 617 

Estimation by 4-Dimensional Variational Inversion. Atmos. Chem. Phys. 7, 3749-3769. 618 

European Commission, 2008. Directive 2008/50/EC of the European Parliament and of the 619 

Council of 21 May 2008 on ambient air quality and cleaner air for Europe, Technical Report 620 

2008/50/EC, L152, Off. J. Eur. Comm, 2008. 621 

EEA, 2010. The European Environment. State and outlook 2010. Air pollution. Luxembourg, 622 

Publication Office of the European Union. ISBN 978-92-9213-152-4. doi:10.2800/57792. 46 623 

pp.Garber W., Colosio J., Grittner S., Larssen S., Rasse D., Schneider J., et al., 2002. Guidance 624 

on the Annexes to Decision 97/101/EC on Exchange of Information as revised by Decision 625 

2001/752/EC. Technical Report. European Commission, DG Environment; 2002. 626 

Geiger H., Barnes I., Bejan I., Benter T., Spittler M., 2003. The tropospheric degradation of 627 

isoprene: an updated module for the regional atmospheric chemistry mechanism. Atmos. 628 

Environ., 37, 1503-1519. 629 

Gery M.W., Whitten G.Z., Killus J.P., Dodge M.C., 1989. A photochemical kinetics mechanism 630 

for urban and regional scale computer modeling. J. Geophys. Res., 94 (D10), 12925-12956. 631 

Guenther A.B., Hewitt C.N., Erickson D., Fall R., Geron C., Graedel T., et al., 1995. A global 632 

model of natural volatile organic compound emissions. J. Geophys. Res. 100, 8873-8892. 633 

Chang J.C., Hanna S.R., 2004. Air quality model performance evaluation. Meteorol. Atmos. 634 

Phys., 87, 167-196. 635 

Janjic Z.I., 1994. The step-mountain ETA coordinate model: Further developments of the 636 

convection, viscous sublayer and turbulence closure schemes. Mon. Weather Rev. 122, 927-637 

945. 638 

Jiménez-Guerrero P., Pérez C., Jorba O., Baldasano J. M., 2008. Contribution of Saharan dust in 639 

an integrated air quality system and its on-line assessment. Geophys. Res. Lett. 35, L03814, 640 

doi:10.1029/2007GL031580. 641 



20 
 

Kang D., Eder B.K., Stein A.F., Grell G.A., Peckham S.E., McHenry J., 2005. The new England 642 

air quality forecasting pilot program: development of an evaluation protocol and performance 643 

benchmark. J. Air Waste Mange. Assoc. 55, 1782-1796. 644 

Kang D., Mathur R., Rao S.T., Yu S., 2008. Bias adjustment techniques for improving ozone air 645 

quality forecasts. J. Geophys. Res. 113 (D23308). doi: 10.1029/2008JD010151. 646 

Kang D., Mathur R., Rao S.T., 2010. Assessment of bias-adjusted PM2.5 air quality forecasts 647 

over the continental United States during 2007. Geosci. Model Dev. 3, 309-320. doi: 648 

10.5194/fmd-3-309-2010. 649 

McKeen S., Wilczak J., Grell G., Djalalova I., Peckham S., Hsie E.-Y., Gong W., Bouchet V., 650 

Menard S., Moffet R., McHenry J., McQueen J., Tang Y., Carmichael G. R., Pagowski M., 651 

Chan A., Dye T., Frost G., Lee P., Mathur R. 2005. Assessment of an ensemble of seven real-652 

time ozone forecasts over eastern North America during the summer of 2004. J. Geophys. Res. 653 

110, D21307, doi:10.1029/2005JD005858. 654 

Menut L. Bessagnet B., 2010. Atmospheric composition forecasting in Europe. Ann. Geophys. 655 

28, 61±74. 656 

Michalakes J., Dudhia J., Gill D., Henderson T., Klemp J., Skamarock W.,Wang W., 2004. The 657 

weather research and forecast model: software architecture and performance. In: Mozdzynski, 658 

E.G. (Ed.), To Appear in Proceeding of the Eleventh ECMWF Workshop on the Use of High 659 

Performance Computing in Meteorology, 25-29 October 2004, Reading, U.K, pp. 117-124. 660 

Monteiro A., Vautard R., Lopes M., Miranda A.I., Borrego C., 2005. Air Pollution Forecast in 661 

Portugal: a demand from the new Air Quality Framework Directive. Int.l J.  Environ. Pollut. 25, 662 

No 2, 4-15. 663 

Monteiro A., Miranda A.I., Borrego C., Vautard R., 2007a. Air quality assessment for Portugal. 664 

Sci. Total Environ. 373, 22-31. 665 

Monteiro A., Borrego C., Miranda A.I., Gois V., Torres P., Perez A.T., 2007b. Can air quality 666 

modelling improve emission inventories?. In: Proceedings of the 6th International Conference 667 

on Urban Air Quality, 26-30 March, Limassol, Cyprus, 13-14. 668 

Monteiro A., Ribeiro I., Techepel O., Sá E., Ferreira J., Carvalho A., Martins V., Strunk A., 669 

Galmarini S., Elbern H., Schaap M., Builtjes P., Miranda A.I., Borrego C., 2011. Bias 670 

correction techniques to improve air quality ensemble prediction: focus on O3 and PM over 671 

Portugal. Submitted to Environ. Modell. Assess. 672 

Nickovic S., Kallos G., Papadopoulos A., Kakaliagou O., 2001. Model for prediction of desert 673 

dust cycle in the atmosphere. J. Geophys. Res. 106(D16), 18113-18129, 674 

doi:10.1029/2000JD900794. 675 



21 
 

Pagowski M., Grell G.A., Devenyi D., Peckham S., McKeen S.A., Gong W., Delle Monache L., 676 

McHenry J.N., McQueen J., Lee P., 2006. Application of dynamic linear regression to improve 677 

the skill of ensemble-based deterministic ozone forecasts. Atmos. Environ. 40, 3240-3250. 678 

doi:10.1016/j.atmosenv.2006.02.006. 679 

Parra, R., Gassó, S., Baldasano, J.M., 2004. Estimating the biogenic emissions of non-methane 680 

volatile organic compounds from the North western Mediterranean vegetation of Catalonia, 681 

Spain. Sci. Total Environ., 329, 241-259. 682 

Pay M.T., Piot M., Jorba O., Gassó S., Gonçalves M., Basart S., Dabdub D., Jiménez-Guerrero 683 

P., Baldasano J.M., 2010. A full year evaluation of the CALIOPE-EU air quality modeling 684 

system over Europe for 2004. Atmos. Environ. 44, 3322-3342. 685 

Pérez C., Nickovic S., Baldasano J.M., Sicard M., Rocadenbosch F., Cachorro V.E., 2006a. A 686 

long Saharan dust event over the western Mediterranean: Lidar, sun photometer observations, 687 

and regional dust modeling. J. Geophys. Res. 111, D15214, 1-16, doi:10.1029/2005JD006579. 688 

Pérez C., Nickovic S., Pejanovic G., Baldasano J.M., Ozsoy E., 2006b. Interactive dust-689 

radiation modeling: A step to improve weather forecast. J. Geophys. Res. 111, D16206, 690 

doi:10.1029/2005JD006717. 691 

Rodríguez S., Querol X., Alastuey A., Kallos C., Kakaliagou O., 2001. Saharan dust 692 

contribution to PM10 and TSP levels in Southern and Eastern Spain. Atmos. Environ., 35, 2433-693 

2447. 694 

Schell, B., Ackermann, I.J., Hass, H., Binkowski, F.S., Ebel, A., 2001. Modeling the formation 695 

of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. 696 

Res., 106 (D22), 28275-28293. Doi:10.1029/ 2001JD000384. 697 

Sicardi V., Ortiz J., Rincón A., Jorba O., Pay M.T., Gassó S., Baldasano J.M., 2011. Ground-698 

level ozone concentration over Spain: an application of Kalman Filter post-processing to reduce 699 

model uncertainties. Geosci. Model Dev. Discuss. 4, 343-384. 700 

Silva A., Costa M., Elias T., Formenti P., Belo N., Pereira S., 2003. Ground-based aerosol 701 

monitoring at Évora, Portugal. Glob. Change NewsLetter, 56, December. 702 

Simpson D., Winiwarter W., Börjesson G., Cinderby S., Ferreiro A., Guenther A., Hewitt C., 703 

Janson R., Khalil M., Owen S., Pierce T., Puxbaum H., Shearer M., Skiba U., Steinbrecher R., 704 

Tarrason, L., Öquist, M., 1999. Inventorying emissions from nature in Europe. J. Geophys. Res.  705 

104 (D7), 8113-8152. 706 

Stern R., Builtjes P., Schaap M., Timmermans R., Vautard R., Hodzinc A., et al., 2008. A model 707 

inter-comparison study focussing on episodes with elevated PM10 concentration. Amos. 708 

Environ. 42, 4567-4588. 709 



22 
 

Strunk A., Ebel A., Elbern H., Friese E., Goris N., Nieradzik L.P., 2010. Four-dimensional 710 

variational assimilation of atmospheric chemical data - application to regional modelling of air 711 

quality, in: Lecture Notes in Computer Science (LNCS), 5910, 222±229, Springer. 712 

Stull R.B., 1988. An Introduction to Boundary-Layer Meteorology, Kluwer, 666 pp. 713 

Taylor K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. 714 

Geophys. Res. 106 (D7), 7183±7192. 715 

Tchepel O., Borrego C., 2010. Frequency analysis of air quality time series for traffic related 716 

pollutants. J. Environ. Monitor. 12, 544 ± 550. doi:: 10.1039/b913797a. 717 

Tilmes S., Brandt J., Flatoy F., Bergrstrom R., Flemming J., Langner J., Christensen J.505 H., 718 

Frohn L.M., Hov O., Jacobsen I., Reimer E., Stern R., Zimmermann J., 2002. Comparison of 719 

five Eulerian air pollution forecasting systems for the summer of 1999 using the German ozone 720 

monitoring data. J. Atmos. Chem. 42, 91±121. 721 

van Loon M., Vautard R., Schaap M., Bergström R., Bessagnet B., Brandt J., Builtjs P., 722 

Christensen J., Cuvelier C., Graff A., Jonson J., Krol M., Langner J., Roberts P., Rouil L., Stern 723 

R., Tarrasón L., Thunis P., Vignati E., White L., Winda P., 2007. Evaluation of long-term ozone 724 

simulations from seven regional air quality models and their ensemble. Atmos. Environ. 41 725 

(10), 2083-2097. 726 

Vautard R., Bessagnet B., Chin M., Menut L., 2005. On the contribution of natural Aeolian 727 

sources to particulate matter concentrations in Europe: Testing hypotheses with a modelling 728 

approach, Atmos. Environ. 39, 3291±3303. 729 

Wilczak J., McKeen S.A., Djalalova I., et al., 2006. Bias-corrected ensemble and probabilistic 730 

forecasts of surface ozone over eastern North America during the summer of 2004. J. Geophys. 731 

Res. 111, D23S28. doi:10.1029/2006JD007598. 732 

 733 



Figures captions 

 

Figure 1: Location and main characteristics of the selected stations from the mainland 

Portuguese air quality monitoring network for 2010. (a) Station environments according to 

Garber et al. (2002) and the terrain elevation (in m). (b) Measured pollutants in each station. 

 

Figure 2: Taylor diagram for each air quality system (CALIOPE, MM5-CHIMERE and MM5-

EURAD-IM) and for each bias correction technique (KF and RAT04) over all selected 

monitoring stations. (a) O3 max-1h; (b) O3 max-8h (c) NO2 daily mean; (d) SO2 daily mean, and 

(e) PM10 daily mean; (f) PM2.5 daily mean. Black dots represent the reference point (observed 

data). The radial distances from the origin (0, 0) to the points are proportional to the standard 

deviations (in µ.m-3). Azimuthal positions give the correlation coefficients. The distances 

between single points and reference point give the centred root mean square error (in µ.m-3). 

 

Figure 3: (Top) hourly O3 time series (µg.m-3) at the CAL station, estimated by the CALIOPE 

forecasting system (blue) and after the two bias correction techniques KF (orange) and RAT04 

(green) from June 9th to 30th, 2010. (Bottom) hourly bias evolution (µg.m-3) corresponding to 

CALIOPE forecasting system, KF and RAT04. 

 

Figure 4: (a) hourly PM10 time series (µg.m-3) at the FUN station for the CALIOPE forecasting 

system (blue line) and the two bias correction techniques KF (orange) and RAT04 (green) from 

August 5th to 16th, 2010. Area plot shows the modelled desert dust contribution (DD, light blue 

area) and anthropogenic contribution (CALIOPE-DD, dark blue area). (b) Desert dust 

concentration (µg.m-3) forecast with the BSC-DREAM8b at 12h August 9th (available at 

http://www.bsc.es/plantillaH.php?cat_id=521). (c) 5 day HYSPLIT back-trajectories ending at 

FUN station at different levels (500, 1000, 1500 m a.g.l.) for August 10th. (d) 3 day HYSPLIT 

back-trajectories ending at FUN station at different levels (500, 1000, 1500 m a.g.l.) for August 

12th. 

 

Figure 5: (Top) hourly SO2 time series at the CHA station, measured and estimated with the 

MM5-EURAD-IM forecasting system (blue) values and applying the two bias correction 

techniques KF (orange) and RAT04 (green), from March 26th to April 1st 2010. (Bottom) bias 

evolution (µg.m-3) corresponding to MM5-EURAD-IM forecasting system, KF and RAT04. 

Figure



 

Figure 6: (Top) hourly SO2 time series (µg.m-3) at the MVE station for the CALIOPE 

forecasting system (blue) and the two bias correction techniques KF (orange) and RAT04 

(green) from October 25th to 30th. (Bottom) hourly bias evolution (µg.m-3) corresponding to 

CALIOPE forecasting system, KF and RAT04. 

 

Figure 7: (Top) hourly O3 time series at the CAL station for MM5-EURAD-IM forecasting 

system (blue) and the two bias correction techniques KF (orange) and RAT04 (green), from 

April 10th to May 1st, 2010. (Bottom) hourly bias evolution (µg.m-3) corresponding to MM5-

EURAD-IM forecasting system, KF and RAT04. 

 

Figure 8: (Top) hourly SO2 time series (µg.m-3) at the MVE station for the MM5-CHIMERE 

system (blue) and the two bias correction techniques KF (orange) and RAT04 (green) from June 

3th to July 3th. (Bottom) hourly bias evolution (µg.m-3) corresponding to MM5-CHIMERE 

forecasting system, KF and RAT04. 
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Table 1: Configurations of the high-resolution air quality forecasting systems which routinely 

operate over mainland Portugal. 

 
 CALIOPE MM5-CHIMERE MM5-EURAD-IM 
Domains Iberian Peninsula Portugal Portugal 

     
Meteorology 

 

Model, version WRF-ARW v3.0.1.1 MM5v3.7 MM5 v3.7 
Horizontal resolution 4 km x 4 km 10 km x 10 km 5 km x 5 km 
Nx, Ny ,Nz 400, 400, 38 35, 70, 32 64, 121, 32 
Mycrophysics WSM-3 class Relsner graupel Relsner graupel 
Radiation RRTM Dudhia scheme RRTM Dudhia scheme RRTM Dudhia scheme 
PBL YSU MRF PBL MRF PBL 

LSM Noah LSM Five-layer LSM Five-layer LSM 
Cumulus Kain-Fritsch Grell Grell 
Initialization and boundary 
conditions 

Nested from European 
forecast (NCEP-GFS) 

Nested from European 
forecast 

Nested from Iberian 
Peninsula forecast 

     
Emissions Database source (year) HERMES+EMEP 

(2004)* 
EMEP (2005)** EMEP (2005)** 

Biogenic emissions Offline 

Parra et al. (2004) 

Online 

(Simpson et al., 1999) 

Online 

(Guenther et al. 1995). 
     
Chemistry 

 

Model, version CMAQ v4.5 CHIMERE 2006 EURAD v4.2 
Horizontal resolution 4 km x 4 km 10 km x 10 km 5 km x 5 km 

Nx, Ny, Nz 397, 397, 15 29, 58, 8 64, 121, 23 
Chemical mechanism CBM-IV 

(Gery et al., 1989) 

Reduced MELCHIOR 

(Bessagnet et al., 2004) 

RACM-MIM 

(Geiger et al., 2003) 
Aerosol size distribution Three modes Eight bins Three modes 
Inorganic aerosol Thermodynamic 

ISORROPIA 
Thermodynamic 
ISORROPIA 

Thermodynamic 

APC 
Organic aerosol Simplified SOA 

Scheme 

(Schell et al., 2001) 

Simplified SOA 
scheme 

(Bessagnet et al., 2005) 

SORGAM model 

Initialization and boundary 
condition 

Nested from Europe 
(LMDz-INCA) 

Nested from Europe Nested from Iberian 
Peninsula 

     
Natural dust 
transport 

Model, version BSC-DREAM8b BSC-DREAM8b BSC-DREAM8b 

*Emissions for Portugal and France are estimated following a top-down methodology from EMEP database. Emissions in 
Spain are calculated with a bottom-up approach (Baldasano et al., 2008b). 

** Emissions for Portugal are estimated with a top-down desegregation methodology (Monteiro et al., 2007a) 
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Table 2: Estimated optimal error ratios for Kalman filter technique for O3, NO2, SO2, PM10 and 

PM2.5 for the selected stations in the Portuguese mainland domain for 2010. 

Pollutant Period CALIOPE MM5-EURAD-
IM 

MM5-
CHIMERE 

O
3
 Winter 0.07 0.03 0.05 

 Spring 0.12 0.03 0.13 

 Summer 0.12 0.03 0.09 

 Autumn 0.12 0.05 0.09 

NO
2
 Annual 0.04 0.04 0.04 

SO
2
 Annual 0.20 0.14 0.13 

PM10 Annual 0.08 0.04 0.17 

PM2.5 Annual 0.07 0.02 0.08 
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Table 3: Annual categorical statistics for the three modelling system (CALIOPE, MM5-

CHIMERE and MM5-EURAD-IM) (raw models) and for the two bias correction techniques, 

Kalman filter (KF) and multiplicative ratio (RAT04). The calculated statistics are the accuracy 

(A), the critical success index (CSI), the probability of detection (POD), the bias (B) and the 

false alarm ratio (FAR). The number in parentheses next to the statistic indicates the perfect 

score. Note that A, CSI, POD and FAR are in %. The thresholds (T) used to compute the 

statistics are chosen from the current European directive (2008/50/EC). 

  Raw models KF RAT04 
O3 max-1h (T = 180 µg.m-3)     
(13 stations) b(hits) 5 16 48 
 a(false alarm) 24 28 36 
 d(misses) 148 137 105 
 c(correct negative) 13326 13322 13314 
 A (100%) 99 99 99 
 CSI (100%) 3.0 9.0 25 
 POD (100%) 3.0 10 31 
 B (1) 0.2 0.3 0.6 
 FAR (0%) 83 64 43 
     
O3 max-8h (T = 120 µg.m-3)     
(13 stations) b(hits) 240 425 479 
 a(false alarm) 371 254 266 
 d(misses) 651 466 412 
 c(correct negative) 12562 12679 12667 
 A (100%) 93 95 95 
 CSI (100%) 19 37 41 
 POD (100%) 27 48 54 
 B (1) 0.7 0.8 0.8 
 FAR (0%) 61 37 36 
     
PM10 daily mean (T = 50 µg.m-3)     
(6 stations) b(hits) 65 70 92 
 a(false alarm) 388 283 214 
 d(misses) 139 134 112 
 c(correct negative) 5282 5387 5456 
 A (100%) 91 93 94 
 CSI (100%) 11 14 22 
 POD (100%) 32 34 45 
 B (1) 2.2 1.7 1.5 
 FAR (0%) 86 80 70 
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