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Abstract 19 

 20 

The CALIOPE air quality modelling system has been used to diagnose ground level O3 21 

concentration for the year 2004, over the Iberian Peninsula. We investigate the improvement 22 

in the simulation of daily O3 maximum by the use of a post-processing such as the Kalman 23 

filter bias-adjustment technique. The Kalman filter bias-adjustment technique is a recursive 24 

algorithm to optimally estimate bias-adjustment terms from previous measurements and 25 

model results.  The bias-adjustment technique improved the simulation of daily O3 maximum 26 

for the entire year and the all the stations considered over the whole domain. The corrected 27 
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 2 

simulation presents improvements in statistical indicators such as correlation, root mean 1 

square error, mean bias, and gross error. After the post-processing the exceedances of O3 2 

concentration limits, as established by the European Directive 2008/50/CE, are better 3 

reproduced and the uncertainty of the modelling system, as established by the European 4 

Directive 2008/50/CE, is reduced from 20% to 7.5%. Such uncertainty in the model results is 5 

under the established EU limit of the 50%. Significant improvements in the O3 timing and 6 

amplitude of the daily cycle are also observed after the post-processing. The systematic 7 

improvements in the O3 maximum simulations suggest that the Kalman filter post-processing 8 

method is a suitable technique to reproduce accurate estimate of ground-level O3 9 

concentration. The spatial and temporal characteristics of the adjusted O3 concentrations are 10 

to be considered as a preliminary analysis towards the application of the bias adjustment 11 

technique to real near time O3 forecasts. 12 

 13 

 14 
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1. Introduction 17 

 18 

Ozone pollution is one of the main concerns in Europe and in particular in the Mediterranean 19 

area (Baldasano et al., 1994, 2003; Millán et al., 1997; Gangoiti et al. 2001; Gerasopoulos et 20 

al. 2005; Jiménez et al., 2005a, 2006; Cristofanelli and Bonasoni, 2009). The Iberian Penisula 21 

is characterized by a very complex topography (mountains, plane, desert zones, and large 22 

forest areas) and has a peculiar location between the Atlantic Ocean and the Mediterranean 23 

Sea. Dynamics of pollutant during summer and primary emission sources along the eastern 24 

coast and the central plateau of the IP determinate the location of highest level of ozone over 25 

the Iberian peninsula (Gangoiti et al., 2001; Jiménez et al. 2004; Stein et al., 2005; Jiménez et 26 

al., 2006; Baldasano et al, 2011). In the South of the Iberian Peninsula the frequent shipping 27 



 3 

traffic and the high density of industry in the area generate important NOx emissions, but 1 

VOC concentrations are not high enough to produce O3 (Marmer et al., 2009). The opposite 2 

happens over the western Mediterranean. Here, the complex coastal topography and 3 

surrounding mountain favors that the Mediterranean Sea acts as a reservoir of aged pollutants. 4 

The complexity of the terrain generates complex flow structure that leads to local and 5 

mesoscalar circulation phenomena. The mountains lead to complex vertical structural flow, 6 

with downslope warm wind and dry winds (Jimenez et al. 2008). The coastal zones are 7 

characterized by sea breeze flows mostly during summer. The on-shore winds advect 8 

pollutants from the high populated coasts inland, injecting at different altitude (Jorba et al. 9 

2003). In summer the meteorological condition (high pressure, stability, clear sky and high 10 

solar radiation intensity) enhances photochemical processes and emissions of biogenic 11 

volatile organic compounds to the atmosphere (NOx limited regime). These phenomena 12 

together with long-range transport of European air toward the Mediterranean basin (Lelieveld 13 

et al., 2002) could be important causes of the O3 high concentration (Millán et al., 2002; 14 

Jiménez  and Baldasano, 2004; Jiménez et al 2005b, 2008; Baldasano et al., 2011). 15 

 16 

Elevated concentrations of tropospheric O3 may lead to adverse effects on human health, 17 

agricultural crops, forests and materials (Brauer et al. 1997; West et al, 2007; WHO, 2008; 18 

Finlayson-Pitts, 2010). 19 

 20 

The European air quality Directive 2008/50/EC defines target values and long-term objectives 21 

for the protection of human health and vegetation. The objective target value for human 22 

health protection is 120 μg/m
3
 (calculated as daily maximum averaged over 8 hours running 23 

mean) and is not to be exceeded on more than 25 days per year averaged over 3 years. The 24 



 4 

information threshold must be given to the population when hourly means exceed 180 μg/m
3
, 1 

and the alert threshold should be issued if hourly means exceed 240 μg/m
3
. Modelling 2 

techniques are valid and recognized means to monitor and predict the air quality and the 3 

reliability of such models is essential. 4 

 5 

The CALIOPE air quality modeling system, namely WRF-ARW/HERMES-6 

EMEP/CMAQ/BSC-DREAM8b, operatively applied under the Spanish government founded 7 

project CALIOPE (Baldasano et al., 2008a) has been used to diagnose the concentration  of 8 

ground-level O3 over Spain for the year 2004. The CALIOPE modelling system has been used 9 

in previous studies to assess the air quality over Europe and Spain (Pay et al., 2010; 10 

Baldasano et al., 2010). Comparisons of O3 model results with observations have revealed 11 

that even though the temporal variability in O3 is well simulated, further improvement in the 12 

O3 simulations are still needed. 13 

 14 

In order to produce more accurate simulations, that is model results that fit satisfactorily the 15 

observations, we post-process the model results with a bias-adjustment technique based on the 16 

Kalman filter (KF) (Kang et al., 2008). We carry out the simulation of ground level O3 17 

concentration over the Iberian Peninsula (IP) domain, for the year 2004, and analyze the 18 

results produced by the modelling system before (hereafter model results) and after the 19 

application of the bias-adjustment technique (hereafter KF-output). The Kalman filter 20 

(Kalman, 1960), already applied in previous studies of atmospheric pollution modelling, 21 

reduces the error in the model results. The KF bias-adjustment technique, in this work, is 22 

applied to point stations only when observations are available. Both the model results and KF-23 

output are tested over the available stations located throughout the whole domain.  24 



 5 

Models always have uncertainties due to the data limitations and incomplete representation of 1 

the physical/chemical mechanisms; this introduces errors in the model results (Borrego, 2003; 2 

Chang and Hanna, 2004; Flemming and Stern, 2007). We compute the model uncertainty 3 

according to the European Directive 2008/50/CE and to the Spanish Real Decreto 102/2011 4 

related to the air quality in Spain, to verify the accomplishment of this Directive and the 5 

improvement in this sense achieved by the post-process. An analysis of the main statistical 6 

parameters is also carried out together with an analysis of the daily cycle and their 7 

improvement achieved by the application of the post-processing. 8 

  9 

In this work we investigate the reliability of the CALIOPE air quality system in reproducing 10 

O3 daily maximum, and the improvement in the O3 simulation by the application of a Kalman 11 

Filter based post-process. This study is an assessment of KF post-processing technique to 12 

improve the modelled O3 concentration. It  is a preliminary study to test the robustness of the 13 

post-process in order to apply it to our air quality forecast system CALIOPE 14 

(http://www.bsc.es/caliope/).  15 

2  Methods 16 

2.1 Modelling System  17 

 18 

The CALIOPE air quality modelling system is a state-of-the-art modelling framework 19 

(www.bsc.es/caliope). It is a complex system that integrates the meteorological model: WRF-20 

ARW; the emission model: HERMES; the chemical transport model: CMAQ; and the mineral 21 

dust atmospheric model: BSC-DREAM8b offline coupled in an air quality forecasting system 22 

(Baldasano et al., 2008a). 23 



 6 

 1 

The Advanced Research Weather Research and Forecasting (WRF-ARW) model v3.0.1.1 2 

(Michalakes et al., 2004; Skamarock et al., 2005; Skamarock and Klemp, 2008) provides the 3 

meteorology conditions. For the Iberian Peninsula (IP) domain WRF-ARW is configured with 4 

a grid of 397 x 397 points corresponding to a 4 km x 4 km horizontal resolution and 38 σ 5 

vertical levels with 11 characterizing the planetary boundary layer (PBL). The model top is 6 

defined at 50 hPa to resolve the troposphere-stratosphere exchanges. 7 

 8 

The Models-3 Community Multiscale Air Quality Modelling System (Models-3/CMAQ, 9 

Byun and Ching, 1999; Binkowski, 1999; Byun and Schere, 2006), v4.5 is used to study the 10 

behavior of air pollutants from regional to local scales. It includes gas, aerosol and 11 

heterogeneous chemistry.  12 

 13 

The CMAQ horizontal grid resolution corresponds to that of WRF. Its vertical structure is 14 

obtained by a collapse from the 38 WRF layers to a total of 15 layers steadily increasing from 15 

the surface up to 50 hPa with a stronger density within the PBL. In order to provide adequate 16 

boundary and initial conditions to the IP domain the CALIOPE modelling system is initially 17 

run on a regional scale (12 km x 12 km in space and 1 hour in time) to model the European 18 

domain (mother domain). Chemical boundary conditions for this domain are provided by the 19 

global climate chemistry model LMDz-INCA2 (Hauglustaine et al., 2004; Folberth et al., 20 

2006). A one-way nesting is then performed to retrieve the meteorological and chemical 21 

conditions for the Iberian Peninsula domain (Fig. 1). The resolution used for the IP domain is 22 

of 4km x 4km. Such high resolution is a key factor to accurately simulate air pollution issues, 23 



 7 

especially over complex topography (Jiménez et al., 2006) and meteorology patterns 1 

(Baldasano et al., 1994; Millán et al., 2002). 2 

 3 

The HERMES model (Baldasano et al., 2008b) uses information and state-of-the-art 4 

methodologies for emission estimations. It calculates emissions by sector-specific sources or 5 

by individual installations and stacks. Emissions used for Spain are derived from the 6 

aggregation in space from 1 km x 1 km dataset to 4 km x 4 km. Raw emission data are 7 

processed by HERMES in order to provide a comprehensive description of the emissions to 8 

the air quality model. In this study the emissions are expressed in CBM-IV speciation. 9 

Regarding to biogenic emissions, HERMES calculates the biogenic volatile organic 10 

compounds (bVOC) from vegetation. Three categories of bVOC are estimated according to 11 

their reactivity: isoprene, monoterpenes and other volatile organic compounds (OVOC). The 12 

model considers the influence of temperature and photosynthetically active radiation (PAR) 13 

by Guenther et al. (1995) algorithms, according to Parra et al. (2004, 2006). Emission factors 14 

for each individual vegetal species are associated with emitter land-use categories. The 15 

HERMES model uses 22 land-use categories; these land use categories for each grid cell are 16 

obtained from CORINE Land Cover 2000 map (44 land-use categories) according to Arévalo 17 

et al. (2004). In the updated version of HERMES model used in the present work, the 18 

influence of seasonality in the emission of bVOC is introduced through an environmental 19 

correction factor following Staudt et al. (2000) and Steinbrecher et al. (2009). 20 

 21 

The CALIOPE system comprises as well The Dust REgional Atmospheric Model (BSC-22 

DREAM8b), designed to simulate and predict the atmospheric cycle of mineral dust 23 

(Nickovic et al., 2001; Pérez et al., 2006a,b).  24 



 8 

The CALIOPE modelling system has been evaluated in depth; a detailed evaluation of the 1 

European domain is presented in Pay et al. (2010), and for the Iberian Peninsula domain in 2 

Baldasano et al (2010). For a detailed description of the evaluation of this system we refer to 3 

these studies. The simulation used in this study has been carried out for the full year 2004 4 

over the Iberian Peninsula domain, hereafter referred as IP. The statistical model skills have 5 

been analyzed for the whole year 2004. For the daily cycle analysis, only the data from the 6 

ozone campaign (April  to September) have been analyzed. The ground level O3 concentration 7 

has been taken into account as representative of the surface concentration and compared with 8 

observations. 9 

2.2 Observations 10 

The  model simulations  are  tested  against  the  hourly  observations from  a network  of 82 11 

stations (hereafter referred as RedESP) covering the  entire  Iberian Peninsula domain (Fig. 12 

1). The hourly measurements provided by “Centro de Estudios Ambientales del Mediterraneo 13 

(CEAM)”, were subjected to a preliminary quality control. Monitoring data were available for 14 

the full year 2004, but only stations with temporal coverage of 85% were taken into account 15 

and compared with the model results. The temporal minimum data coverage of 90% as 16 

recommended in the Directive 2008/50/EC, refers to the data without calibration and 17 

maintenance, thus it reduces to minimum data coverage of 85 % after the quality control 18 

(Garber et al., 2002). The uncertainty of the measurements is within the limit established by 19 

the European Directive 2008/50/EC equal to 15%. 20 

 21 

 The air quality monitoring stations are classified as urban, suburban and rural according to 22 

their locations (Garber et al., 2002; Annex III of the Directive 2008/50/EC). To extract the 23 

model results corresponding to the stations considered we apply two procedures: for the urban 24 
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and suburban stations the mean value of the corresponding 4 km x 4 km grid cell has been 1 

taken. For the rural stations it has been done a bilinear interpolation with the closest cells. One 2 

limitation of this method is that, for example, if two urban stations are located in the same 3 

grid cell, the modelled values for these stations will be the same.  Nevertheless, the accuracy 4 

related to the way of retrieving the modelled data, does not affect the main results presented 5 

in our work, as we are looking at the stations globally. 6 

 7 

We compute the daily maximum of the hourly data (max 1-hr) and the daily maximum of the 8 

8 hours running average (max 8-hr) for each station over the full year and compare them with 9 

the observations. When computing the daily maximum, for both hourly and 8-hr averaged 10 

data, only the days with a minimum of 75% of hourly data have been taken into account 11 

(according to the Spanish national law for air quality, Real Decreto 102/2011). Following this 12 

criterion 24 days of the entire year have been eliminated in the case of the max-1hr 13 

calculation and 27 days in the case of max 8-hr calculation. In this work no focus on the type 14 

of stations has been done. We analyze the ensemble of stations, without going into details in 15 

the stations type. For a detailed analysis of the performance of different kind of stations of the 16 

RedESP for the year 2004, the reader can refer to Baldasano et al. 2011. 17 

 18 

3 Post - processing and definition of the uncertainty  19 

3.1 The Kalman filter 20 

The model results have been post-processed by the application of a bias-adjustment technique 21 

based on Kalman filter. The Kalman filter (KF) is a post-processing method that uses recent 22 

estimates and measurements to revise and improve the current estimate (Kalman, 1960). The 23 



 10 

Kalman filter is a linear, adaptive, recursive and optimal algorithm; it works by a mechanism 1 

of prediction and correction of the bias (between the model results and the observations) at 2 

each time steps. The filter estimates the systematic component of the simulation bias, which is 3 

present in model results (Delle Monache et al., 2006). Once the future bias has been 4 

estimated, this bias is removed from the model results to produce improved model results, 5 

which are more similar to the observations.  6 

The application of the KF bias adjustment technique involves two main steps: 7 

 Estimation of the bias at the next time step, using all available data (model and 8 

observed) at the current time step. 9 

 Correction of the modeled estimation at the next time step with the recent bias found 10 

in the previous step 11 

 12 

The Kalman filter bias-adjustment is a well known and widely used technique. However, for 13 

the sake of completeness a description of the method is reported. We follow Delle Monache et 14 

al., 2006 for the description of the filter. 15 

 16 

The state of the unknown process at time t, for example the bias between the simulation and 17 

the true concentration of a variable, is related to the state at prior time (t - Δt) through the 18 

following equation: 19 

 20 

 21 

                                                                                        Eq. 1 22 

 23 
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where η is a white noise term and assumed to be uncorrelated in time, and is normally 1 

distributed with zero mean and variance , Δt is a time lag, and t|t - Δt implies dependency 2 

of  the variable at time t on values at time t - Δt. 3 

 The bias  is not observable, but is related to the measurable bias , which is the 4 

differences between forecasts and observations. Still, it is to be considered that   is 5 

corrupted from the true bias  by a random error . Therefore  is related to  by: 6 

 7 

                                                                         Eq. 2 8 

 9 

 where  represents the measurement noise and is assumed to be uncorrelated in time and 10 

normally distributed with zero mean and variance  ;  represents the process noise.  11 

According to Kalman, 1960, the optimal recursive predictor of  (derived by minimizing the 12 

expected mean square error) can be expressed as: 13 

 14 

                                                                  Eq. 3 15 

 16 

where the hat (^) indicates the estimate of the variable and β is the weighting factor, called the 17 

Kalman gain, which is recursively computed as follows: 18 

 19 

                                                                                      Eq. 4 20 

  21 

With p the expected mean square error: 22 

 23 



 12 

                                             Eq. 5 1 

                                                              2 

Given the forecast and observation time series, the estimates of  and , and the initial 3 

estimate of state  and p at time zero, KF can recursively generate  (Delle Monache et 4 

al., 2006). After that the bias    is calculated, the new simulation results, “KF-output”, 5 

can be simply retrieved by: 6 

 7 

                                                                      Eq. 6 8 

Where   is the mode result for the next time step.  9 

 10 

The Kalman Filter has been applied in previous O3 studies (van Loon, 1997, 2000; Sagers, 11 

2002; Hanea et al., 2004; Eben et al., 2005; Delle Monache et al., 2006, 2008; Kang et al., 12 

2008). In this work we apply it following Delle Monache, 2006.  The Kalman Filter is applied 13 

only to discrete points (our 82 monitoring stations) to improve the simulation at those points. 14 

In other words: given the model simulations at those 82 points stations and the observations at 15 

the same points, the calculation of the bias is carried out each hour  and  the  simulation of the 16 

next hour is recursively corrected. For the correction of the O3 concentration of the day n,   17 

past observations and model results up the day n are used. In such way we improve our 18 

modelled O3 concentrations on day n. The KF has been applied to the original hourly O3 19 

values to develop a KF-adjusted hourly O3 time series, which is then used to compute the 20 

daily maximum 8-hr and 1-hr O3 from the adjusted hourly time series. The mean of the 21 

adjusted O3 concentrations for all the stations, is then considered as representative of the 22 

whole domain. 23 

 24 



 13 

The ratio    represents the so called “error ratio”. In Delle Monache (2006 and 2008) is 1 

pointed out that the error ratio is a crucial parameter to be calculated in the application of this 2 

post-process.  It indicates the relative weighting of the observed and simulated ozone values.  3 

If the ratio is too high, the error white-noise variance (  ) will be relatively small compared 4 

to the true bias white-noise variance ( ). Therefore, the filter will put excessive confidence 5 

on the previous simulated values, and the predicted bias will respond very quickly to previous 6 

calculated errors. On the other hand, if the ratio is too low, the predicted bias will change too 7 

slowly over time. Consequently, there exists an optimal value for the ratio, which can be 8 

estimated by evaluating the filter performance in different situations.  9 

 10 

To test which could be the best error ratio for our O3 simulation, error ratios ranging from 11 

0.01 to 2 have been selected for all the stations considered over the entire year 2004. We 12 

consider that, in the case of O3, due to its dynamics, it is important to take into account the 13 

variations of the ratio over the seasons. Therefore, we calculate root mean square error and 14 

correlation coefficient values over the four seasons to gauge the impact of different error ratio 15 

values on the model performance (Fig. 2). The optimal error ratio will minimize the root 16 

mean square error and maximize the correlation coefficient for all the stations. Based on this 17 

approach we finally use one optimal value varying seasonally for all the stations (Table 1). 18 

According to Delle Monache et al., 2006; Kang et al., 2008; 2010, O3 simulation over 19 

different areas (e.g. rural versus urban), or for different model results may have different 20 

optimal ratio value. However, we assume valid the hypothesis of spatial uniformity as in 21 

Kang et al, 2008, and consider that the error ratio at the single station does not have a 22 

significant impact on the global results.   23 

Comment [v1]: This part has been largely 
changed 
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  1 

3.2 Uncertainty according to European Directive 2008/50/CE  2 

The model uncertainties can be associated with model formulation regarding 3 

misrepresentation of atmospheric dynamics and chemistry, numerical solutions, choice of 4 

modelling domain and grid structure; with the model input regarding emissions, 5 

meteorological data; or with the stochastic processes that are not known (Borrego et al., 2008; 6 

Chang and Hanna, 2004). Reducing the uncertainties is fundamental in order to obtain high 7 

quality model results. 8 

 9 

 In this work we refer to “model uncertainty” as defined in the European Directive 10 

2008/50/CE: “the uncertainty for modelling is defined as the maximum deviation of the 11 

measured and calculated concentration levels for 90% of individual monitoring points, over 12 

the period considered, by the limit value (or target value in the case of ozone) without taking 13 

into account the timing of the events....”. The “without timing” in the above definition, 14 

implies that the time factor is not taken into consideration, nor the sequences of the events 15 

(e.g. when an exceedance of concentration limit occurs), which is fundamental in the case of 16 

air quality modelling systems.  17 

The Guidance on the use of models for the European air quality directive proposes the 18 

statistical calculations needed to calculate the uncertainty according to the Directive and to 19 

validate the air quality models (Denby et al., 2010). The model uncertainty calculated for a 20 

single station is defined mathematically as the “Relative Directive Error” (RDE) (Equation 7): 21 

 22 



 15 

RDE = 
LV

M
LV


LV

O

                                                                    Eq.7 1 

 2 

 Where OLV is the closest observed concentration to the limit value concentration (LV) and 3 

MLV is the corresponding ranked modelled concentration. The maximum of this value found 4 

at 90% of the available stations is then the Maximum Relative Directive Error (MRDE). The 5 

MRDE represents the uncertainty of the model in the evaluation of the air quality. The 6 

Directive considers that the model uncertainty related to O3 simulation must be ≤ 50%; 7 

therefore models with uncertainty minor to 50% will meet the EU directive requirements. The 8 

Directive also requires an uncertainty ≤ 15% for measurements.  9 

 10 

By the calculation of the Maximum Relative Directive Error (MRDE), we verify that our 11 

model system accomplishes the uncertainty limits according to the European Directive 12 

2008/50/CE and according to the Spanish Real Decreto 102/2011, related to the air quality in 13 

Spain. 14 

 15 

3.3 Statistics 16 

The model skills are evaluated over the maximum hourly (max 1-hr) and 8-hr running mean 17 

O3 concentration (max 8-hr) in order to verify the ability of the model to reproduce the day-18 

by-day maximum variation. The model skills are also evaluated over the mean daily cycle, as 19 

average of all the concentration of all the available days for the 24 hours, in order to verify the 20 

ability to capture the day to night variations (Appel et al., 2007; van Loon et al., 2007; 21 

Vautard et al., 2007). In addition, the exceedance of the threshold concentration has been 22 
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considered by the analysis of a contingency table. All the statistics are calculated over the full 1 

year 2004; the daily cycle is analyzed only for the O3 campaign (April to September).  2 

 3 

Since the statistical parameters both for the max 1-hr and max 8-hr consistently show similar 4 

results for stations located in urban, suburban and rural areas, we don´t analyze the statistics 5 

for the different stations types, but we focus rather on the general level of improvement due to 6 

the post-process. Specific results for the different type of stations are here omitted. However, 7 

for details on the performance of the model for different stations type, refer to Baldasano, 8 

2011.  9 

 10 

 The model evaluation is carried out using classical statistical indicators for the ground level 11 

daily maximum 1-hr and 8-hr O3 concentration (Dennis et al., 2010). Namely the statistic 12 

metrics used are: Mean Bias (MB), the Root Mean Square Error (RMSE), the correlation 13 

coefficient (COR). Additionally we compute the Mean Normalize Bias Error (MNBE) and the 14 

Mean Normalized Gross Error (MNGE) according to the model evaluation objectives 15 

suggested by the United States Environmental Protection Agency (US-EPA). The US-EPA 16 

establishes that these parameters should be: MNBE %15  and MNGE %35  (US-EPA, 17 

2007, 2009).   18 

 19 

The categorical statistical skills are also evaluated (Kang et al., 2005, Eder et al., 2006), by  20 

calculating  the Accuracy (A), which measures  the fraction of exceedances and no-21 

exceedances correctly predicted; the Bias (B), which measures  if there are under-predictions  22 

or over-predictions; the Probability of Detection (POD), which measures what fraction of the 23 
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exceedances are correctly predicted; the False Alarm Ratio (FAR), which measures what 1 

fraction of the predicted exceedances did not occur; the Probability of False Detection 2 

(POFD), which  measures  what fraction  of the  observed no-exceedances  are incorrectly 3 

predicted; and the Critical  Success Index (CSI), which measures how well both model 4 

exceedances and observed  exceedances are predicted.  5 

 6 

4 Results and Discussion 7 

4.1 General Performance 8 

The CALIOPE air quality system reproduces the temporal variability of O3 properly, as in 9 

previous studies (Gonçalves et. al., 2009; Pay et al., 2010; Baldasano et al., 2010).   In 10 

Baldasano et al., 2011, the highest mean concentrations are showed to be located in the open 11 

Mediterranean Sea (up to 90 μg/m
3
) and the Spanish Mediterranean coast (~80 μg/m

3
). Such 12 

concentrations are favoured by the prevailing intense photochemistry in the region, the local 13 

formation and transport the persistent subsidence over the region, and the low O3 dry 14 

deposition over sea (EEA, 2005; Lelieveld et al., 2002; Vautard et al., 2005b; Gerasopoulos et 15 

al., 2005; Cristofanelli and Bonasoni, 2009). The Spanish oceanic region in the north and 16 

north-western Spain, characterized by high frequency of precipitation show lower O3 levels 17 

than the Spanish arid and Mediterranean areas. O3 is found lowest (~50 μg/m
3
) in either 18 

regions of low precursor emissions (northern and southern plateaus) or in areas affected by 19 

large NO-to-NO2 concentration ratios (e.g., zones of intense on-road and ship traffic), such as 20 

the major Spanish metropolitan cities (i.e., Madrid, Barcelona, Valencia, Sevilla), highways 21 

of high traffic flow and the strait of Gibraltar (Baldasano et al., 2011). Considering the totality 22 

of 82 stations of the RedESP Baldasano et al., 2011, found that the mean O3 concentration for 23 
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2004 was 57.7 μg/m
3
. The correlation coefficient respect to the results obtained with 1 

CALIOPE modelling system was 0.75 and the RMSE 24.1 μg/m
3

. 2 

 3 

In Figure 3 the average of all the observations (red line) is overall well represented by both 4 

the model results (dark blue) and the KF-output (bright blue) for max-1hr and max-8hr. The 5 

model results tend to underestimate the max 1-hr concentration mostly in winter/autumn 6 

months (January to April and September to December). It is a known problem of CMAQ to 7 

misrepresent O3 variability in winter months due to the difficulties in the reproduction of the 8 

cross stratosphere-troposphere exchanges (Lam and Fu, 2009; Pay et al., 2010).  9 

 10 

The KF is able to correct the simulated concentrations, independently on the magnitude of the 11 

bias. The filter adjusts satisfactorily the model results even when the most severe deviation of 12 

the model results from the measurements is observed, like during the months March – May. 13 

The filter is able to adjust different magnitudes of bias, without the necessity of recalibration; 14 

it shows ability to correct both periodic and episodic events. 15 

  16 

We have to take into account that the observed bias is not solely due to the measurement or 17 

the model, but also to the limitation in the comparison methodology. This is what the filter 18 

method is called to mitigate. This is particularly true for stations type such as the urban and 19 

the industrial, for which the model result is representative of an area of 4x4km, while in the 20 

reality the measurement value is representative of a couple of kilometers. Nevertheless, the 21 

improvement of the simulation after the application of the KF, for these types of stations, is of 22 

the same order of magnitude than for the rural stations.   23 
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 1 

The results in fig. 3 show that the O3 chemistry is well represented in summer, and the overall 2 

performance improves notably after applying the Kalman filter. The overall O3 concentration 3 

shows improvement after the application of the post-processing (bright-blue line): the O3 4 

concentration improves in reproducing the observed values even for those months in which 5 

the model results fail to reproduce the observed concentration. In the same figure are plotted 6 

the mean bias, for the model results (dark blue line with triangle) and for the KF-output (light 7 

blue line with triangle). It is notable that in the KF-output the bias is reduced mostly for the 8 

winter months, while for the summer months the bias is already quite low due to the good 9 

representation of the summer O3 behaviour.  10 

 11 

The main statistics are summarized in Table 2. The statistical parameters both for the max 1-12 

hr and max 8-hr consistently show similar results for stations located in urban, suburban and 13 

rural areas. We don´t analyze the statistics for the different stations types, but we focus rather 14 

on the level of improvement due to the post-process. The level of improvement in the results 15 

has been found to be independent on the type of stations. Specific results for the different type 16 

of stations are here omitted. However, for details on the performance of the model for 17 

different stations type, refer to Baldasano et al., 2011.  18 

 19 

All the considered statistics show improvements after the application of the KF, both for max 20 

1-hr and max 8-hr. The RMSE improves of ~30% for max 1hr and ~40% for max 8-hr.  A 21 

minor degree of improvement is observed for the correlation coefficients, which are anyway 22 

considerable high already for the model results: improvement of 30% for the max 1-hr and of 23 

~32% for the max 8-hr. Taking into account the threshold limits established by the US-EPA 24 
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(MNBE  15% and MNGE  35 %) we see that the model results would meet the US-EPA 1 

target for MNBE for the max 1-hr, but not for the max 8-hr. After the application of the KF 2 

this US-EPA target would be accomplished also for the max 8-hr. In the same way the MNGE 3 

target for the max 1-hr would be accomplished, but not for the max 8-hr. After the application 4 

of the KF, the MNGE target would be met also for the max 8-hr. The improvements in the 5 

statistical metrics are easily visible when looking at their spatial distribution (Fig. 4a and Fig. 6 

4b). All the stations, independently on the type of station, show better statistical parameters 7 

for the KF-output. Generally speaking this finding is true for both the max 1-hr and max 8-hr.  8 

In general no spatial patterns in the model simulation’s ability are observed. For all the 9 

available stations, independently on their locations, the degree of improvement after the 10 

application of the KF is comparable. This is due to the fact that the post-process is applied to 11 

the single stations, independently on their location. 12 

 13 

 The found statistics are comparable with the results of similar studies. At the present only 14 

one other study has been conducted with the same modelling system CALIOPE and the same 15 

KF bias adjustment technique, but on a different domain, Portugal. In Borrego et al., 2011, 16 

after the application of the KF to 13 monitoring stations in Portugal, the correlation for all the 17 

stations improves from 0.75 to 0.85 for max 1-hr (improvement of ~12%) and 0.76 to 0.86 18 

(improvement of ~13%) for max 8-hr. In the same study the improvement in the RMSE is of 19 

~30%. The results of other two studies have been compared with ours since the same KF 20 

algorithm has been applied.  In Kang et al., 2008 (over 1000 stations over the US domain) the 21 

improvement in RMSE after the application of the KF is from ~27 µg/m
3
 to ~19 µg/m

3
 22 

(improvement of ~30%) for the max 8-hr. In Delle Monache et al., 2008, (358 monitoring 23 

stations along the East of US domain) the COR improves from ~0.62 to ~0.75 (improvement 24 



 21 

of ~20%) for the daily max, and the RMSE improves from ~39 µg/m
3 

to ~27 µg/m
3
 1 

(improvement of ~30%).  It is easily understood that when the statistics are globally 2 

calculated, the number of the stations is crucial. In the same way, the improvements for the 3 

max 8-hr are always higher than for the max 1-hr.  4 

 5 

We summarize the improvements in statistics between model results and KF-output using the 6 

Taylor diagrams (Taylor, 2001). The Taylor diagram allows us to gauge the improvements 7 

between the model results and the KF-output by the means of the visualization in a single 8 

polar plot of RMSE, correlation coefficient, and standard deviation for all the stations (Fig. 5). 9 

The standard deviation is not normalized to avoid masking the difference between station 10 

types. Almost all the stations for the model results (dark blue symbols) have a correlation 11 

coefficient in the range 0.6 to 0.7, which becomes 0.7 to 0.9 after applying the KF (light blue 12 

symbols). This result is valid for all the stations, independently on their type and geographical 13 

location. Also, the standard deviation improves for the KF-output: high correlation coefficient 14 

and low standard deviation indicates that the observed variability is well captured. These 15 

findings are valid both for the max 1-hr and max 8-hr.   16 

 17 

Improvements by the application of the KF are much noticeable by looking at the scatter plot 18 

of models versus observations for all the stations over the whole year (Fig. 6). The KF- output 19 

(left side of Fig. 6)  respect to the  model results (right side of Fig. 6)  fit more satisfactorily  20 

with  the  observations,  as  reflected  by  the reduction of the scattered area in Figure 6. On 21 

the same figure are reported the r
2
 of the best fit line, the slope and the intercept. After the 22 

application of the KF the all the points fit adequately the regression line.  23 

 24 
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4.2 Categorical performance 1 

 We perform a categorical analysis of our results in order to highlight the ability of the 2 

modelling system to detect the O3 concentrations that exceed the air quality target for O3 as 3 

established in the EU Directive 2008/50/EC. A visual evaluation of the model performance 4 

regarding the exceedance limit is provided in Fig. 6. The figure represents the categorical 5 

evaluation of the model results and KF-output, for the max 1-hr and max 8-hr for all the 82 6 

stations. The letters on the plots represent the variable  used  to  formulate  the  categorical  7 

metrics,  where a  are the exceedances that did occur and were simulated by the model (hits); 8 

b are the exceedances that did not occur but  were simulated by the model (false alarms); c are 9 

the exceedances that did occur but were not simulated by the model (misses), and d are the 10 

exceedances that did not occur  and were not simulated by the model (correct negatives). 11 

These variables, together with some categorical metrics (Table 3), help to enlighten the 12 

improvements carried by the application of the Kalman filter.     13 

 14 

In Fig. 6 the higher the aggregation of points, the more the model simulation matches the 15 

observations.  For the KF-output (light blue points on Fig. 6) most of the points are grouped 16 

around the line, indicating better correspondence between the model results and the observed 17 

values. The number of hits (a in the Fig. 6) increases substantially after the KF post-18 

processing for both the max 1-hr and max 8-hr. The improvement in the hits detection 19 

improves up ~35% for max 8-hr, comparable with the results of Kang et al., 2008, in which 20 

the improvement is ~30% . In case of the max 1-hr the improvement is higher, due to the fact 21 

that the model results give a very poor hits performance.  The false alarms decrease (b in Fig. 22 

6) after the KF post-processing for the max 8-hr, while for the max 1-hr they remains in the 23 

same order of magnitude. The misses (c in Fig. 6) decrease after the application of the KF 24 
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both for the max 1-hr and max 8-hr. The correct negatives (d in Fig. 6) are well represented 1 

by the model and improve slightly after the application of the KF post-processing, see Table 2 

3. 3 

 4 

We must take into account that the categorical statistics depend on the number of exceedances 5 

or no-exceedances captured by the model; therefore caution is needed when interpreted. In 6 

particular in cases as ours, in which the number of exceedances are about the 10%, we must 7 

have caution when analyzing the Accuracy (A) (ideally 1) that measures the percentage of 8 

simulations that correctly reproduce an exceedance or no-exceedance. The Accuracy is 9 

already very high for the model results and no improvements are observed after the post-10 

processing; this is due to the few exceedances observed, respect to the total. The Bias (ideally 11 

1) indicates if our hindcasts are over-predicted (false positive) or under-predicted (correct 12 

negative) and improves after the KF post-processing.  The Bias improves hardly after the 13 

application of the KF. We attribute the low improvement in the Bias in the KF-output to a 14 

poorer performance in detecting the exceedances in already in the model results. 15 

 16 

 To evaluate how many times the model simulates the exceedances, which actually did not 17 

occur, we look at the value of False Alarm Ratio (FAR). The application of the KF reduces of 18 

almost the half the value of the FAR for the max 1-hr. This finding indicates the ability of the 19 

post-processing to reduce the number of projected false alarms. The FAR index decreases for 20 

the max 8-hr as well, even if at a less important rate. The Probability of Detection (POD) 21 

improves strongly after the KF post-processing for both the max 1-hr and max 8-hr. This 22 

means that by the application of the KF the exceedances would be captured by the modelling 23 

system with significantly certainty. The Probability of False Detection (POFD) improves after 24 
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post-processing the data and in this way the false alerts for the population would be reduced. 1 

Finally the Critical Success Index (CSI), which indicates how well both the observed 2 

exceedances and the false exceedances are projected, improves after the application of the KF. 3 

Unlike the POD and the FAR, the CSI takes into account both false alarms and missed events, 4 

and it is therefore a more balanced score. 5 

 6 

For the model results, while the mean variability of O3 has been satisfactorily well 7 

represented, in case of episodic conditions, the O3 levels are not so well represented. 8 

However, the KF-bias adjustment brings a significant improvement in terms of CSI. The 9 

model, without the KF correction would not be suitable for operational purpose. On the 10 

contrary the KF adjusted results would be adequate for operational episodic O3 event. 11 

Therefore the KF-output are adequate as operational means to inform and alert the population, 12 

as indicated in the European directive 2008/50/EC.  13 

 14 

4.3 Temporal analysis 15 

To detect common periodicities in our time series, a standard method of time-series analysis 16 

has been used:  computing the Fourier transform and plotting the power density spectrum over 17 

the frequency. We compute the spectral analysis of the hourly data in order to catch the signal 18 

of characteristic periods as done in previous studies (Hies et al., 2000; Sebald et al., 2000; 19 

Marr et al. 2002). We use the periodogram method as estimate of the spectral density 20 

calculated in its simplest form: the squared amplitude in function of frequency (Alter, 1937). 21 

The time series is decomposed into spectral bands representing the different time scales: intra-22 

day, diurnal, synoptic, seasonal and long term fluctuations. The highest amplitudes of a 23 
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spectrum indicate the main periodicities of the underlying processes (Fig. 7). The 1 

periodogram in Fig. 7 reveals the ability of the modelling system to capture the variability 2 

associated with synoptic to long-term scales. The annual cycle in the O3 time series is not 3 

visible in this periodogram because of the limited data range, since the length of the record 4 

should be 10 times as long as the longest significant period (Hies et al., 2000). The results 5 

show poor model ability in representing the observed daily and intra-day variability. The 6 

modelling system shows a tendency to underestimate the high frequency variability (intra-day 7 

and hour-to-hour variability), a feature which is corrected by the post-processing. Such 8 

behaviour is further investigated by the temporal analysis of the daily cycle. 9 

 10 

We compute the average daily cycle of observed and simulated hourly ozone concentrations 11 

for both the model results and the KF-output (Fig. 8). The box plot helps to visualize the 12 

distribution, its central value, and spread of the represented values. The lower and upper 13 

quartiles and the median are also shown in Fig. 8. The mean is over-plotted for completeness. 14 

The model results show poor performance when representing the daily cycle amplitude and 15 

the extreme values. In the model results the amplitude of the daily cycle is underestimated 16 

(dimension  of the  boxes in Fig. 8),  both  the  night minimum and  the daytime  maximum 17 

are underestimated while the overall mean value (overlaying line on the  boxes) is 18 

overestimated. The simulation improves after applying the Kalman filter: the amplitude of the 19 

cycle becomes well represented and the extreme values are better estimated (Fig. 8). 20 

A known problem of the air quality models is to reproduce the night minimum. The possible 21 

explications of such behaviour are examined by several previous studies (Appel et al., 2007; 22 

van Loon et al., 2007; Vautard et al., 2007; Chemel et al., 2010). It is probable that the model 23 

chemistry does not represent properly ozone nighttime’s titration; therefore the model not 24 
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only does not simulate production of O3, but also it omits the mechanism of O3 consumption. 1 

Possible causes of the observed mismatch are the bad representation of the nocturnal 2 

boundary layer or the height of the emissions injection.  In stable surface layers, such as 3 

night-time, a misrepresentation of the height of concentration in the model can lead to a great 4 

disagreement with the observations. At the same time a misrepresentation of the emission 5 

height injection can affect the surface layer ozone titration (Appel et al., 2007; van Loon et 6 

al., 2007; Vautard et al., 2007; Chemel et al., 2010).  7 

 8 

In Pay et al, 2010, and Baldasano et al., 2011, the highest uncertainties are found in the 9 

reproduction of O3 levels are related to NO2-limited regime. Under this regime, corresponding 10 

to background conditions, the modeled O3 overestimates the observed values, specifically 11 

during nighttime. At the same time, under no NO2-limited regime, the NO2/O3 ratio is better 12 

represented in the model. This behaviour highlights the need to better characterize the 13 

emission inventory in either rural or urban areas (Baldasano et al., 2011). Nevertheless in our 14 

case we observe high improvements by the application of the post process for all the kind of 15 

stations.   16 

 17 

  18 

 19 

4.4 Model Uncertainty  20 

The European Directive 2008/50/CE establishes that numerical models have to meet certain 21 

model quality, namely have a certain modelling uncertainty, to be considered suited for air 22 
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quality assessment. The level of uncertainty associated with the air quality modelling is a 1 

crucial issue to take into account when evaluating an air quality performance.  2 

 3 

We compute the model uncertainty as defined in the above mentioned European Directive and 4 

expressed as MRDE, before and after the Kalman filter post-processing to verify any 5 

improvements. In both cases the computed uncertainty is within the limit established by the 6 

European Directive 2008/50/CE that is 50%. The uncertainty of the model is 22% and 20% 7 

for the max-1h and max-8hr respectively, well under the uncertainty limit. This finding gives 8 

us confidence in the ability of CALIOPE system to simulate the O3 concentrations, already 9 

before the post-processing. Nevertheless, the improvement of the uncertainty after the 10 

application of the KF post-processing is considerable: the uncertainty is reduced from 22% to 11 

19% and from 20% to 7.5% for the max 1-hr and max 8-hr respectively. The stronger 12 

improvement observed for the max 8-hr is due to the fact that the model results for the max 8-13 

hr are already highly accurate and comparable with the observations. The difference OLV - 14 

MLV in Equation 7 is smaller in the case of max 8-hr than in the case of max 1-hr. 15 

 16 

The uncertainty, calculated in this way, indicates only whether the model is reliable or not. It 17 

is important to note that this definition of uncertainty does not take into account the temporal 18 

information related to the formation/destruction of ozone. Furthermore, the number of the 19 

exceedances is independent of the sequence of the events. This approach is in contrast to a 20 

time-related process, in which the temporal correspondence is an important evaluation 21 

parameter, as it is in air quality studies. 22 

 23 
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5 Conclusions 1 

We use the CALIOPE air quality modelling system to diagnose the daily maximum of O3 2 

ground level concentration over Spain for the full year 2004. To the hourly O3 values has 3 

been applied a bias-adjustment technique based on the Kalman filter to check whether the 4 

post-processed results reproduce satisfactorily the observations. From the result of the post-5 

process the daily maximum 1-hr and 8-hr O3 have been computed, following the EU directive 6 

2008/50/EC. The Kalman filter is applied only to discrete points (82 monitoring stations) and 7 

then an average of the concentration of all the points (stations) is presented as representative 8 

of the whole domain. Therefore, the improvements of the post-process are limited only to the 9 

points where data are available. The complexity of the domain, the limit number of stations 10 

over the territory, and the difference in emissions sources over the domain suggest that further 11 

research is needed to extend the benefit of the post-process correction to the whole domain. 12 

 13 

 The model results have been evaluated over the 82 stations of the RedESP. For all the 14 

stations, independently on the stations’ type, the application of the KF-bias adjustment 15 

technique leads to statistical improvements. Both the classical and categorical statistical 16 

metrics improve up to a 30% from the initial value after the application of the post-process.  17 

In particular, the analysis of the Critical Success Index (CSI) and the Probability of Detection 18 

(POD), which are the more suitable parameters since they take into account the misses of the 19 

model,  shows that by the application of the KF bias adjustment technique the CALIOPE 20 

system results to be high reliable for prediction of alert threshold. This result confirms the 21 

potential for operational use of the presented methodology for real time simulations. This is a 22 

remarkable result, indicating that the bias- adjusted results of the CALIOPE system are a 23 
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valid instrument in the relation to the measures of the EU Directive 2008/50/EC on 1 

alert/information thresholds. 2 

 3 

This article is the result of the developing work done within the operational CALIOPE 4 

system, which aims at establishing an air quality forecasting frame for Spain. We carried out a 5 

diagnosis of the system in the prospective of applying the post-processing to the near real 6 

time forecasts. The presented bias-adjustment method is now being applied on the operational 7 

air quality forecast system CALIOPE (www.bsc.es/caliope), and the extension of the method 8 

to correct areas where no observations are available is currently under development. 9 

 10 
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Tables 1 

Table 1: Error ratio values calculated in consideration of the bias-adjusted Root Mean Square 

Error and Correlation for the seasons of the year 2004. 

 SEASON ERROR RATIO  

 Winter 0.40  

 Spring 0.20  

 Summer 0.15  

 Autumn 0.60  

 2 

 3 

 4 

Table 2: Statistical comparison between model results and KF-output. The statistics are for the max 1-hr 

and max 8-hr for the whole domain, for the year 2004. RMSE is expressed in unit of O3 concentration 

(µg/m3). All the statistics were determined considering all the stations globally. The values in brackets 

are the min and the max for the stations. 

Statistics 
Max 1-hr Max 8-hr 

Model KF Model KF 

     

COR 0.64 (0.48-0.86) 0.83 (0.53-0.99) 0.65 (0.49-0.84) 0.86 (0.5-0-89) 

RMSE 25.50 (17.09-57.44) 17.09 (11.39-21.39) 24.50 (17.24-55.80) 15.80 (13.28-38.23) 

MB -1.3 (-26.15- 51.35) -2.2 (-11.64-4.85) 4.1 (-23.29-53.06) -1 (-4.08-5.52) 

MNBE (%) 10.60 (-21.34-317.55) 2.50 (-1.85-57.76) 23.79 (-22.74-277.15) 4.80 (-4.09- 55.62) 

MNGE (%) 32.48 (15.63-317.55) 19.7 1 (10.05-76.14) 40.87 (15.98- 277.15) 21.60 (10.37-74-16) 

 5 

 6 

 7 

Comment [v2]: We decided to update this table 

with the statistics values calculates over the entire 

cloud of points of figure 5. 



 42 

 1 

 2 

Table 3: Categorical Statistics for the model results and the KF-output over the max 1-hr and 

max 8-hr. All the statistics are calculated for the hourly data of the 82 stations, for all the 

2004. The perfect score is reported in parentheses. POD is the Probability of Detection, FAR 

is the False Alarm Ratio, POFD is the Probability of False Detection, CSI is the Critical 

Success Index, A is the Accuracy, and B is the Bias. Refer to the text for the interpretation 

of these parameters. 

Statistics 

(perfect score) 
Max 1-hr Max 8-hr 

 Model results KF-output Model results KF-output 

     

a (hits) 1 21 703 1085 

b (false alarm) 21 22 1622 756 

c (misses) 126 106 1462 1080 

d (correct negative) 27822 27821 23874 24740 

POD (1) 0.008 0.165 0.325 0.501 

FAR (0) 0.955 0.512 0.698 0.41 

POFD (0) 0.001 0.001 0.064 0.030 

CSI (1) 0.007 0.141 0.186 0.371 

A (1) 0.995 0.996  0.889 0.934 

BIAS (1) 0.173 0.339 1.074 0.850 

 3 

 4 

 5 

 6 

 7 
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Figures 1 

 

Fig. 1:  RedESP stations network measuring ozone concentration in Spain. Different 

types of stations (U: Urban; S: Suburban; R: Rural; B: Background; I: Industrial; and T: 

Traffic) are represented by symbols and color codes. 
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 1 

Ratio sensitivity. A: RMSE Ratio sensitivity. B: COR 

  

Fig. 2: Seasonal ratio sensitivity for the hourly O3 concentrations over the 82 RedESP stations. 

A: Root Mean Square Error and B: Correlation. Values are computed with the ratio raging 

from 0.01 to 2, plotted on logarithmic scale. Perfect RMSE would be 0, and perfect correlation 

coefficient 1. On the plots are reported RMSE and COR before the application of the Kalman 

filter. 
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 2 

 

Fig. 3: Time series of the max 1-hr (upper panel) and max 8-hr (lower panel) ground level O3 

concentration (µg/m
3
), averaged for all RedESP stations for the model results and the KF-

output, for the year 2004. The plot of the biases (µg/m
3
) is also included. 
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 1 

 

Fig4-a: Spatial distribution of correlation (COR, ideal value would be 1) and Root mean 

square error (RMSE, µ/m
3
) for the max 1hr. For all the RedESP stations, for all the year 

2004. The air quality monitoring stations are respresented according their type: urban (dots), 

suburban (triangles), and rural (squares). 
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Fig4-b: Same as figure 4-a, but for the max 8hr. 

 1 

 2 

 3 

 4 
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Fig. 5: Taylor Diagrams for the max 1-hr and max 8-hr. All the considered stations are plotted. 

The different symbols represent the types of stations. On the plots are depicted the Standard 

Deviation (µg/m
3
) of the simulated maximum O3 concentration (radius) and the Correlations 

(cosine of the angle to the horizontal axis). On the horizontal axis is located the standard 

deviation of the observed values, the closest are the points to this value, the better are 

simulated the values. The statistics are calculated over the year 2004. 
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Fig. 6: Predicted versus observed max 1-hr and max 8-hr O3 concentrations for the year 2004 

for all the stations considered. The plotted values are on hourly bases. On the plots are 

depicted the threshold limit 120 µg/m
3
 and 180 µg/m

3
 as established by the EU for the max 

1-hr and max 8-hr respectively. The letters a, b, c, d represent the exceedances that did occur 

(hits), the exceedances that did not occur (false alarms), the exceedances that were not 

predicted but observed (misses), and the exceedances that did not occur and were not 

predicted respectively (correct negatives), see section 4.2.The red line is the best-fit line. The 

linear regression equation and r
2
 are reported as well. 
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 1 

 

Fig. 7: Spectral analysis of daily O3 concentrations averaged for the whole year averaged 

over all the stations. The spectral power of the observations (red), model results (blue) and 

KF-output (bright blue) are compared. The axes are on logarithmic scale. 
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 1 

  

Fig. 8: Ozone daily cycle for hourly averaged concentration in µg/m
3
 for 2004 over all 

the RedESP stations. Model results are represented in (a) and KF-output in (b). The box 

plots represent the median, the 75th percentile (top) and the 25th percentile (bottom). The 

over-plotted lines represent the mean concentrations. 

 

 

 

 

 



 52 

List of Tables: 1 

Table 1: Error Ratio 2 

Table 2: Domain wide statistics 3 

Table 3: Categorical analysis 4 

 5 

List of figures: 6 

Figure 1: Map of stations 7 

Figure 2: Ratio sensitivity 8 

Figure 3: Time series of max O3 9 

Figure 4: Spatial Map of Statistics (max 1-hr and max 8-hr) 10 

Figure 5: Taylor Diagram 11 

Figure 6: Scatter Plot 12 

Figure 7: Spectral Analysis 13 

Figure 8: Diurnal Cycle 14 

 15 

 16 

 17 

 18 


