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Abstract: 

Defects in SnO2 nanowires have been studied by cathodoluminescence, and the obtained spectra have been 

compared with those measured on SnO2 nanocrystals of different sizes in order to reveal information about 

point defects not determined by other characterization techniques. Dependence of the luminescence bands 

on the thermal treatment temperatures and pre-treatment conditions have been determined pointing out their 

possible relation, due to the used treatment conditions, with the oxygen vacancy concentration. To explain 

these cathodoluminescence spectra and their behavior, a model based on first-principles calculations of the 

surface oxygen vacancies in the different crystallographic directions is proposed for corroborating the 

existence of surface state bands localized at energy values compatible with the found cathodoluminescence 

bands and with the gas sensing mechanisms. CL bands centered at 1.90 eV and 2.20 eV are attributed to the 

surface oxygen vacancies 100º coordinated with tin atoms whereas CL bands centered at 2.37 eV and 2.75 

eV are related to the surface oxygen vacancies 130º coordinated. This combined process of 

cathodoluminescence and ab initio calculations is shown to be a powerful tool for nanowire defect analysis.  
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1.- Introduction: 

Tin dioxide (SnO2) plays a key role in solid state gas sensors [1]. So a lot of experimental work 

has been done in order to characterize SnO2 not only from the technological point of view as a sensor of 

different gases [2] but also from the materials science standpoint [3] so as to achieve improved 

performances by means of a better knowledge of the synthesized materials. The vacancy defects 

investigation deserves special attention as they have been clearly related to conductive and sensing 

properties of metal oxides [2]. This article will deal with the analysis of point defects using  

cathodoluminescence (CL) spectra of nanostructured SnO2, as this technique reveals complementary 

information about radiative transitions related to these point defects that is not determined by other 

characterization techniques 

This experimental procedure is not new. Since the mid-1970s, however, few works have been 

published presenting the CL spectra of SnO2 with different morphologies [4,5,6,7]. In all known cases, 

several bands between 1.9 and 2.6eV have been reported but there still remains some uncertainty on their 

origin [6]. However, there are no systematic and detailed works considering nanowires and their 

comparison with nanoparticles of different sizes. 

On the other hand, first-principles methodologies based on the density functional theory (DFT) 

now provide precise calculations of the energetic properties of bulk materials and their surfaces in moderate 

computing times [8]. Consequently, it is attractive to link theoretical findings with unclearly interpreted 

experimental results in order to attain better materials knowledge with a straightforward technological 

application such as a fast and low cost defect detection. 

The aim of this article is to show how CL, with its notable spatial resolution, can be 

methodologically combined with the ab initio calculation and applied to analyze the role played by the 

surface oxygen vacancy defects in nanostructured SnO2.  

First, data from the literature about intra-gap energy levels and new DFT calculations are reported 

and discussed. Second, CL spectra of liquid pyrolysis synthesized SnO2 nanoparticles with different grain 

sizes are presented and four different bands are identified. On the basis of these experimental results, a 

model is proposed. Finally, this model is applied to the surface oxygen vacancy defect detection of two 

different samples of SnO2 nanowires. 
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2.- Experimental details: 

The cathodoluminescence measurements (CL) were carried out in a Gatan XiCLone system 

attached to a JEOL JSM-820 scanning electron microscope. The collected luminescence was analyzed by a 

300-line grating monochromator and detected by a Peltier cooled CCD, whose spectral range covers 

[200,1200]nm (around [6.2,1.0]eV). The CCD records the whole spectrum at once in the selected spectral 

window, thus reducing the measuring times. The system is equipped with a cryostat that allows low 

temperature measurements. 

The measurements were carried out at liquid nitrogen temperature (~ 80K). The excitation beam 

conditions for the SnO2 powders were 20kV for accelerating voltage and ~40nA for beam current. The 

nanowires were measured with an accelerating voltage of 10kV and a beam current of approximately  

~5nA. Details on sample synthesis are given below. 

 

The structural and morphological characterization of some of our samples was carried out by 

means of transmission electron microscopy (TEM) and selected area electron diffraction (SAED). In order 

to obtain the high-resolution TEM (HRTEM) results we used a Jeol 2010F field emission gun microscope, 

which works at 200kV and has a point-to-point resolution of 0.19nm. To improve the contrast and 

resolution of our images, minimizing the chromatic aberration inherent in HRTEM micrographs, we 

obtained the images by filtering the electron zero loss peak, using a Gatan Image Filter (GIF 2000).  

 

3.- Results and discussion: 

3.1- Intra-gap energy levels of SnO2: 

For SnO2, it is established the abundance of shallow donor levels mainly located between 0.15 and 

0.30eV below the conduction band minimum (CBM). Henceforth, we will refer to those levels as bulk 

shallow levels. According to electro-physical study data, ionized oxygen vacancies in tin dioxide form 

shallow donor levels with an energy of ~0.03 and ~0.15eV below the bottom of the CBM [9,10,11]. In 

electron spin resonance measurements, other authors have observed the existence of donor levels from 

~0.15eV up to ~0.30eV underneath the CBM [12].  Note that the literature only shows how, for a given 
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sample, one (or several) discreet levels are placed around this 0.15eV broad energy region but does not 

suggest the existence of a continuous band 0.15eV wide. In what follows, the level at ~0.03eV will not be 

considered as long as it is indistinguishable from the CBM with the computational techniques and the 

experimental results shown below. In terms of luminescence, the existence of these bulk shallow levels 

means that when a SnO2 sample is excited not only the very bottom states of the CBM but also the bulk 

shallow levels are populated, all those levels being the initial possible states of an eventual radiative 

recombination. 

As far as the surface is concerned, there is much less previous data in the literature. However, 

these surface defects are relevant in determining the gas sensing mechanisms, especially in tiny 

nanostructured materials where the surface characteristics stand out clearly. Initially, we will center the 

discussion on the (110) surface that is considered the most common faceting orientation [13]. Figure 1 

shows the atomic arrangement on the SnO2-cassiterite (110). A striking feature of this surface is the 

presence of so-called ‘bridging’ oxygen atoms (OBridg). These coordinate with their first neighboring tin 

atoms, forming an angle of 100º. It has been observed that simple heating of a stoichiometric SnO2-

cassiterite (110) surface to temperatures above 225ºC leads to loss of OBridg and the formation of oxygen 

bridging vacancies (OBridgVac) [14,15]. According to the literature, if the temperature is raised above 525ºC, 

in-plane oxygen vacancies (OInPlaneVac) can be formed [14]. Such a vacancy coordinates with neighboring Sn 

atoms forming an angle of 130º. It is worth noting that, as stated in [14], the given vacancy generation 

temperatures may be dependent on the particular samples used. 

At this point, we recall that real samples are not only faceted with (110) surfaces; therefore, a 

plethora of different oxygen vacancy sites over different surface orientations arise. In fact, deeper analysis 

shows that there are only two relevant surface oxygen vacant configurations: those that coordinate and form 

and angle of 100º (OBridgVac  in the case of the (110) surface) and those of 130º (OInPlaneVac). In order to 

investigate the band structure consequences of the surface vacancies formation ab initio, calculations of 

several low index surfaces of SnO2-casiterite were performed.  

The first-principles methodology used in the present calculations is based on the density functional 

theory [16,17] (DFT) as implemented in the SIESTA code [18,19]. We make use of the generalized 

gradient approximation (GGA) for the exchange-correlation functional [20]. For all atomic species double 
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ζ  plus polarization orbital basis-sets were used. Total energy convergence is guaranteed below 10meV as is 

usual in this kind of calculations [21]. A real space mesh cut-off of 250Ry and a reciprocal space grid cut-

off of approximately 15Å were used. The structural relaxations were done by means of a conjugate gradient 

minimization of the energy, until the forces on all the atoms were smaller than 0.04eV/Å (which provides 

relaxed total energy values more stable than 10meV). No constraints were imposed on the relaxation where 

the forces were calculated as analytical derivatives of the total energy [22]. The convergence of the present 

results was verified for slabs thicker that 2 stoichiometric layers, 2x1 bulk unit cells wide, and with 7Å of 

vacuum spacing.  

The initially considered low-index orientations are (110), (100), (101) and (001), which are 

accepted as some of the most common faceting surfaces of SnO2-cassiterite [13]. It is worth noting that 

100º coordinated oxygens are present on (110) and (100) surfaces and 130º coordinated oxygens appear in 

surfaces (110), (101) and (001). For all these cases, electron densities of states were computed for 

stoichiometric and reduced surface (i.e. without and with the oxygen vacancy). In all cases, the vacancy 

formation implies the creation of allowed states near the top of the valence band (energetic positions are 

given in Table 1). In summary, it is clear that two families of levels appear: one due to a 100º coordinated 

vacancy at approximately 1.40eV above the valence band and a second, due to 130º coordinated, at 0.90eV. 

Finally, it is worth pointing out that this description in terms of coordination angles seems general enough 

to describe the rich surface vacancies casuistic, independently on the surface orientation (or the particle 

morphology). 

 

3.2.- Nanocrystalline powder CL spectrum: 

Figure 2 shows the acquired CL spectra obtained using samples of  SnO2-cassiterite 

nanocrystalline particles prepared by liquid pyrolysis. This synthesis technique involves thermal treatment 

of a microdrop of tin chloride solution deposited onto a polished substrate [23]. Samples analyzed in this 

study were treated for 24 minutes at stabilization temperatures ranging from 300 to 1000ºC. More details 

on this particular samples synthesis and characterization can be found in reference [24].  

Table 2 presents the corresponding fitting data of the CL spectra. It is a remarkable feature that the 

CL signal increases with the treatment temperature. According to these results, it is possible to identify four 
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different contributions centered at 1.90eV, 2.20eV, 2.37eV and 2.75eV. The two lower energy bands 

appear in all samples whereas the two higher ones emerge at temperatures above 700ºC (see Figure 3).   

 

In light of the theoretical vacancy analysis presented above and the SnO2 experimental spectra 

evolution, it is possible to sketch a fairly simple model. Figure 4 shows schematically the energetic intra-

gap positions of the bulk shallow levels and the two kinds of surface oxygen vacancies (100º and 130º 

coordinated). According to this, the four recombinations from conduction band and bulk shallow levels to 

the surface vacancy levels would arise four mean energy values compatible with the bands found 

experimentally within the computational accuracy (±0.05eV): 1.98eV, 2.20eV, 2.48eV and 2.70eV. 

Linking these four bands with their contribution to the spectra as a function of the sample 

treatment temperature, one could propose that 1) bulk shallow levels are present at all temperatures as long 

as their energy level is the origin of the recombination of at least one band (1.90 eV) in all samples; 2) at 

lower temperatures, 100º coordinated oxygen vacancies are present whereas the apparition of 130º oxygen 

vacancies begins above 700ºC.  

Regarding the first proposal, it is worth noting that, as discussed above, bulk shallow levels are 

commonly present in SnO2 in the studied range of treatment temperatures (this is, for example, the case of 

bulk oxygen vacancies).  

Finally, and concerning the second proposal, it is congruent with the vacancy formation evolution 

previously described where 130º coordinated vacancies are harder to generate by heating than the 100º 

coordinated ones. In this sense, it should be remarked that, based only on a particular set of samples, 

strongly setting a fixed threshold temperature for the production of one kind of surface vacancy or another 

seems difficult. 

 

3.3.- Nanowires CL spectrum: 

Unlike nanoparticles, nanowires present better defined crystallographic surfaces and, depending 

on their geometric dimensions, the role played by surface oxygen vacancies becomes more essential for 

determining their electrical characteristics as well as their gas sensing mechanisms. Therefore, for 

understanding the nanowire properties and their applications as gas nanosensors, it is also basic to verify 
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the role of these oxygen surface vacancies. In this context, the previous experimental and analytical 

procedure was also applied to different SnO2 nanowires with different surface oxygen vacancy 

configuration. 

 

The deposition of SnO2 nanowires was performed in a tubular furnace with either quartz or 

alumina tubes. The deposition system was equipped with a vacuum pump in order to obtain a pressure 

lower than 1mbar, and mass flow controllers in order to inject a controllable amount of gas carrier during 

the deposition.  

Two different deposition procedures were pursued. In the first one (A-type nanowires), tin 

monoxide was used as source material, allowing lower working temperatures.  Tin monoxide is placed at 

the center of the quartz tube and the alumina substrates are positioned in the lower temperature region; 

then, the system is pumped and the temperature is raised to 300°C in vacuum. A subsequent temperature 

ramp to 900°C is imparted, keeping a 100sccm flux of Ar/H2 at 300mbar in order to prevent the oxidation 

of tin monoxide.  At temperatures higher than 750°C, the dissociation of tin monoxide into tin and tin 

dioxide takes place and leads to a complete dissociation. The carrier gas transports tin vapors and, due to 

the lower temperature of the substrates, there is a condensation in liquid droplets with dimensions ranging 

from tens of nanometers to microns. The temperature is then slowly decreased to 870°C and an Ar/O2 flux 

is introduced. Oxygen reacts with tin droplets and forms SnO2 nuclei, which then develop in elongated 

nanocrystals. Finally the system is cooled to room temperature. 

For the second deposition procedure (B-type nanowires), tin dioxide powder was used as source 

material: tin dioxide is place at the center of the alumina tube at 1370°C and a flux of 75sccm of Ar is used 

as gas carrier at a pressure of 100mbar. Tin oxide nanowires are collected at temperatures ranging from 430 

to 470°C.  

Notice that whereas A-type nanowires are finally grown and collected at temperatures above 

700ºC, B-type nanowires are collected at temperatures around 450ºC. These final thermal conditions 

determine the final surface vacancy configuration of the wires. 
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The presented nanowires were observed with SEM and TEM. A-type samples present 

nanostructures with widths ranging from 20 to 200nm, while lengths of up to 200µm are found. The 

example micrograph shown in Figure 5.a was captured by means of bright-field TEM (BFTEM). At this 

point we obtained selected area electron diffraction (SAED) patterns from several nanowire-like structures 

in order to determine their structural composition. A SAED example is shown in Figure 5.b, corresponding 

to the diffraction pattern obtained on the squared area in Figure 5.a. A priori, SAED results confirmed our 

previous X-ray diffraction (XRD) analysis where a clear SnO2 cassiterite (P42-mnm) structure seemed to be 

mainly present in our samples. As regards B-type sample, it presents well-formed wire structures with 

widths from 50 to 1500 nm and lengths of over 100µm. Figure 6 shows a representative SEM view. By 

means of HRTEM we found that the SnO2 cassiterite nanowires observed in sample A mainly grow along 

the [101] direction, with lateral facets defining a square prism corresponding to {010} and {10-1} planes. 

However, in the case of B samples, we found that the SnO2 cassiterite  nanowires crystallize along the 

[010] direction while the lateral most favorable facets, attending to HRTEM analysis, are the {200}, {101} 

and {10-1}, defining a hexagonal prism morphology. Nevertheless, both structures differ from those Pd 

doped SnO2 cassiterite nanowire-like structures reported previously [25], which grew along the [001] 

direction, and had a square prism morphology with {110} and {1-10} lateral facets. 

 

CL spectra of both kinds of SnO2 nanowires are shown in Figure 7, while fitting values are 

presented in Table 3. Notably, both CL spectra somehow present a mixture of the four previously presented 

CL emissive bands. Comparing both spectra, it is remarkable that B-type sample (450ºC) exhibits a clearly 

higher CL emission with contributions of four bands whereas A-type sample (700ºC) only shows 

contributions of the higher energy bands. According to the previously described model, these experimental 

facts can be understood as follows: 1) both samples seem to present bulk shallow levels; 2) B-type sample 

may contain both kinds of surface oxygen vacancies, whereas A-type sample only shows evidence of 130º 

coordinated oxygen vacancies. 

Remarkably, the fact that it is mainly A-type nanowires that present the hardest to produce kind of 

vacancies (130ºC coordinated), whereas B-type nanowires present a dominant contribution of 100º 

coordinated vacancies, seems compatible with the final synthesis temperatures of both samples. As 
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mentioned before, a fixed, well-defined temperature threshold for the production of one kind of vacancy or 

the other seems hard to establish, since it is strongly related to the experimental synthesis and thermal 

treatment procedures. 

 

4.- Conclusions: 

A model based on first-principles calculations was proposed to explain the catadoluminescence 

spectra obtained using nanocrystalline SnO2 powders treated at different temperatures and using different 

nanowires. According to this, four experimental bands centered at 1.90eV, 2.20eV, 2.37eV and 2.75eV 

were identified and related to recombinations from the conduction band and bulk shallow levels to levels 

near the top of the valence band corresponding to surface oxygen vacancies (100º and 130º tin atoms 

coordinated). Significant difference in the energy formation of both types of surface oxygen vacancies 

explains the appearance of these bands. Whereas 100º tin coordinated oxygen surface vacancy is related to 

1.90 eV and 2.20 eV bands;  the 130º tin coordinated oxygen surface vacancy is related to 2.37 eV and 2.70 

eV bands. This appears to be significant in the gas interaction mechanisms and, hence, in the gas sensor 

performances of these nanostructured materials. 
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Tables: 

 

 

 

 

Table 1: Ab initio results of oxygen vacancy levels over the top of the valence band. The computational 

accuracy was established to be better than 0.05eV. Consequently, the presented results arise with two 

families of solutions with average values approximately 1.40eV and 0.90eV above maximum valence band. 

 

 

 

 

Surface Sn-coordination angle [º] 
Ovacancy energy level over 

valence band [eV] 
(±0.05) 

(110) 100 (Bridging) 1.38 
 130 (In Plane) 0.94 

(100) 100 1.42 
(101) 130 0.86 
(001) 130 0.90 
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Table 2: Gaussian deconvolution parameters of the spectra shown in Figure 2. Notice that these results 

reveal the existence of four different bands at approximately 1.90eV, 2.20eV, 2.37eV and 2.75eV. Also 

observe that the two higher energy bands only appear at temperatures above 700ºC. Gains sizes estimated 

by XRD analysis corroborated by TEM observation are given when available. 

 

 

 

Temperature [ºC] Grain size [nm] Center [eV] FWHM [eV] Height [a.u.] 
1000 46.7 2.76 0.28 0.21 

  2.37 0.37 1.00 
  2.19 0.38 0.70 
  1.87 0.22 0.38 

800 22.9 2.74 0.26 0.10 
  2.38 0.34 0.50 
  2.20 0.35 0.36 
  1.87 0.23 0.14 

700 16.9 2.19 0.50 0.38 
  1.90 0.21 0.12 

500 8.4 2.20 0.46 0.32 
  1.87 0.29 0.10 

400 7.0 2.21 0.46 0.24 
  1.89 0.23 0.07 

300 –  2.18 0.46 0.06 
  1.94 0.21 0.01 
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Table 3: Gaussian deconvolution parameters of the spectra shown in Figure 7. Notice that for B-type 

sample it was possible to identify contributions of the four identified bands, whereas in the A-type sample 

only contributions of the two bands possibly related to 130º coordinated oxygen vacancies were detected. 

 

 

 

Sample Center [eV] FWHM [eV] Height [a.u.] 
B-type 2.72 0.31 0.35 

 2.38 0.29 0.67 
 2.17 0.27 1.00 
 1.95 0.18 0.47 

A-type 2.76 0.20 1.00 
 2.42 0.46 0.54 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

Figure Captions: 

 

Figure 1: SnO2-cassiterite (110) surface model. Most relevant atoms are indicated. Note how OBridging 

coordinates form a 100º angle with six-fold coordinated tin atoms (Sn6c) while OInPlane forms a different 

angle of 130º with Sn5c and Sn6c. 

 

Figure 2: CL spectra of SnO2 nanocrystalline particles thermally treated at temperatures ranging from 

300ºC to 1000ºC. All spectra were acquired under the same experimental conditions: acceleration voltage 

of 20kV and beam current of ~40nA with the sample cooled at ~80K. It is remarkable how emission 

increases with the sample treatment temperature. The approximate centers of the four fitted bands are 

shown; fitting details are given in Table 2.  

 

Figure 3: Evolution with the sample thermal treatment temperature of the intensity of the four peaks fitted 

to the spectra shown in Figure 2 (numerical values are given in Table 2). Remarkably, there is a general 

tendency that shows an increase of all contributions with the treatment temperature. Besides, the increase is 

even stronger for temperatures above 700ºC appearing two new contributions at 2.37 and 2.75eV. 

 

Figure 4: Schematic representation of the intra-gap levels of SnO2 corresponding to bulk shallow levels and 

oxygen surface vacancies. For clarity, energy zero was set at the top of the valence band.  Recombinations 

compatible with the acquired CL spectra are shown. In the case of recombinations from bulk shallow levels 

(which are located within a 0.15eV wide energy region) the two extreme values are given. From now on, 

we will consider the average values of the four proposed transitions: 2.70, 2.48, 2.20 and 1.98eV but 

keeping in mind the uncertainty in the energy of shallow levels. It is also worth remembering that the 

computational accuracy of the oxygen surface vacancy levels was estimated at ±0.05eV. 
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Figure 5: a) General bright field TEM view of the SnO2 A-type nanowires. b) SAED pattern of the area 

squared in orange in Figure 5.a. 

 

Figure 6: General SEM view of the B-type sample. Inset: detail SEM view of the same sample. 

 

Figure 7: CL spectra of SnO2 nanowires synthesized with two different methods. All spectra were acquired 

under the same experimental conditions: accelerating voltage of 10kV and beam current of ~5nA with the 

sample cooled at ~80K. The approximate centers of the four fitted bands are shown; fitting details are given 

in Table 3. 
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