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KILLING VECTOR FIELDS AND HOLONOMY ALGEBRAS 

CARLOS CURRAS-BOSCH 

ABSTRACT. We prove that for each Killing vector field X on a complete Riemannian 
manifold, whose orthogonal distribution is involutive, the (1, 1) skew-symmetric 
operator A x associated to X by A x = Lx-Vx lies in the holonomy algebra at each 
point. By using the same techniques, we also study when that operator lies in the 
infinitesimal and local holonomy algebras respectively. 

Introduction. Kostant (see [2 or 3]) proved that if X is a Killing vector field on a 
compact Riemannian manifold M, for each point x of M, (AX)X lies in the 
holonomy algebra (M(x), Ax is associated to X by Ax = LX- vX (L is the Lie 
derivative and V the Riemannian connection). The proof is based on a decomposi- 
tion, A = Sx + BX, where (Sx)x E (M(x) and (BX)X E (3(x)', where O5(x)' is the 
orthogonal complement of (M(x) in the algebra E(x) of skew-symmetirc endomor- 
phisms of TX(M), with respect to the inner product given by (A, B) = -trace(A o B). 
One observes that BX is parallel and as div(BxX) = -trace(Bk), if M is compact it 
results in BX = 0. 

In this paper we are concerned with noncompact and complete Riemannian 
manifolds and a Killing vector field X whose orthogonal distribution is involutive. 
We prove in ?2 that (AX)X E (M(x), Vx E M. We apply the techniques used in this 
proof to study in ?3 when (AX)X lies in (i'(x) and (M*(x) (infinitesimal and local 
holonomy algebras respectively). 

1. Properties of some distributions. Throughout this paper we suppose that M is a 
complete, connected Riemannian manifold of dimension n + 1, with metric g and 
Riemannian connection V. We set w = ixg, where X is a Killing vector field. 

LEMMA 1.1. dw(Y, Z) = -g(A Y, Z). 

PROOF. 

2dw(Y, Z) = Y(w(Z)) - Z(w(Y)) - w([Y, Z]) 

= Y(g(X, Z)) - Z(g(X, Y)) - g(X, [Y, Z]) 
= g(vyX, Z) + g(X, vyz) - g(vzX, Y) 

-g(X, vzY) - g(X, vyZ - vzY) 
= g(v-X, Z) - g(vzX, Y). 
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98 CARLOS CURRAS-BOSCH 

As A xU = - Vu X for each vector field U, and Ax is skew-symmetric, we have 
2dw(Y, Z) = -2g(AxY, Z). 

We assume that the orthogonal distribution to X is involutive; i.e., there exists a 
1-form 4 such that dw = 4 A w. 

We can assume that dw is nowhere zero because if (AX)X = 0, at some point x of 

M, (BX)X = 0 and as Bx is parallel, Bx = 0. 
We also assume that X is nowhere zero, because we consider its orthogonal 

distribution, but as is well known, if a vector bundle has a nowhere zero cross- 
section then its Euler class must be zero (see [1, Theorem 8.3, p. 242]). So from now 
on, the manifolds to consider must have Euler class zero. 

Let VP be the involutive orthogonal distribution to X, and let {Z1,... , Zn} be a 
local orthonormal basis of VP near x, so that throughout that neighborhood dw = Xz 
A w, where {(1/IIXII)w; z1,. . . ,z'} is the dual basis of {(1/IIXII)X; Z1,. . .,Zn} 

In such a basis the matrix of Ax takes the form 

o -xiixii o ... o 
XIIxII 0 0 

o 0 

o 0 0 

From Ax we know all the curvature transformations R( X, Z1) (1 < i < n) because 
R(X, Z1) = vz,Ax- 

We can observe 

LEMMA 1.2. The integral manifolds of 'P are all totally geodesic. 

PROOF. g(Vz Zj, X) = -g(Zj, vz X) = g(Zj, AxZj) = 0 (1 < i, j < n). 

LEMMA 1.3. {Z2,.... Zj} and {X, Z1} are involutive distributions. 

PROOF. Consider the indices a, f3; 2 < a, f3 < n. We already know that 

g(X, Vz Z) = 0. 

Now, 

XIIXII2g(Z Z vz) = g(AxX, Vz.Z) = -g(vz(AxX), ZO) 

= -g((vzAx)(X), Z) -g(Ax(vz X), ZO) 

= -g(R(X, Za )X, Z)- 

So we have 
(1) g(AxX, vz Z,B) = -g(R(X, Za)X, Z.) and 

(2) g(A xX, VZ,Za) = -g(R(X, Z)X,Za) 
Subtracting (2) from (1) gives us g(AxX, [Za, Zn]) 0. 
To prove that { X, ZI } is involutive, we consider 

Lx(AxX) = Lx(XIIXI12Z1) = X(XIIXI12)Z + XIIXI12LxZ= 0 

because Lx(AxX) = Lx(-vxX) = 0, soLxZj = 0. 
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It is well known (see [2, Corollary 4.3, p. 246]) that if X is an infinitesimal affine 
transformation, then at each x E M, (AX)X belongs to the normaliser of ( (x), 
N( O5 (x)). The same result is true for (i'(x) as can be proved easily, using that 
(i'(x) is spanned by all linear endomorphisms of TX(M) of the form 
(VkR)(Y, Z; VI,.., Vk), where Y, Z; Vl,. . ., Vk E TX(M) and O < k < oo. 

It is not difficult to give some examples of Riemannian manifolds with a Killing 
vector field X, such that the condition dw = 4 A w is verified. We give here three 
examples such that: 

(i) the orbits of X are all diffeomorphic to R; 
(ii) the orbits of X are all diffeomorphic to S'; 
(iii) the orbits of X are solenoids on a torus. 
(i) Let (N, g') be a complete Riemannian manifold. We consider R X N. Let t be 

the parameter in R given by the identity map and X = d/dt. 
Take in R X N the Riemannian metric g such that its restriction to T(N) is g', X 

is orthogonal to T(N) at all points and IIXII is given by a definite positive function 
on N. Take wx = ixg. It is verified that dwx= 4 A wx and the vector field Z1 
considered above is -y- grad(II XII). 

(ii) Taking S' instead of R, by the same argument, we obtain a Killing vector field 
with dw = 4 A w, and now the orbits are all diffeomorphic to S'. 

(iii) Taking S' X S1 X N, we associate Y to the first S' factor and Z to the second 
S' factor. We define g such that g(Y, Z) = 0 and g(Y, Y) = g(Z, Z) is given by a 
definite positive function on N; Y and Z are orthogonal to T(N), and g restricted to 
T(N) is g'. Now it is verified that dwy = 4 A wy, dwz = 4 A wz, 4 is the same for 

wY and wz; so the same condition is verified considering X = aY + f3Z, a and f3 real 
numbers; then taking a and f3 such that a/,8 5 Q, it is verified that dwx = 4 A wx 
and the orbits of X are solenoids on a torus. 

It should be pointed out that these three examples give us the three possible types 
of orbit for Killing vector fields on noncompact manifolds (take N noncompact in 

(ii) and (iii)). 

2. (AX)X belongs to (M(x). We calculate R(X, Z1) (1 < i < n). We begin by the 
following observations. 

AxX = XIXI2Z1, as we proved in ?1, so VXX = -XIIXII2Z1, and vx((l/IIXII)X) 
= (1/IIXII)vxX= -XIIXIZI. 

As the integral manifolds of V are totally geodesic, Vz((/IllXll)X) = 0, so for 
i =1, 

vzl((l/IIXII)X) = Z(1/IIXII)X + (1/IIXII)vz x 

= Z1(/IIIXII)X- (/IIxIIX)AxZ1 

= Z1(1/IIXII)X + (1/IIXII)/X = 0. 

For Za, 2 < a < n, we have 

VZ7( /I IXII)X) = 0, so Za(IIXII) = 0. 



100 CARLOS CURRAS-BOSCH 

As R(X, Z) = Vz Ax, in the basis {(I/IIX I)X, Z Z,...,Zn}, we obtain 

0 -Z(IXIIXII) -XIIxIri2F -_,XIIXIIFn 

Z1(XIIxII) 0 0 0.. O 

xIIxIFi2 0 0 0 o 
R( X, Zl )= ... .. . . 

,XIIXIIF:n 0 0 .. 0 

In order to simplify the notations, we let 

O -a -a2 ... -an 0 -b 0 ... 0 
a 0 0 0.. O b O O *-- 0 
a2 0 0 ' 0 0 0 0 ... 0 

11= ~~~~~~~~K= 

ar 0 0 ... 0 0 0 0 ... 0 

R(X, Zj) is of the form q and belongs to (5(x), while Ax is of the form K and 
belongs to N(O5(x)). 

We calculate the elements of (M(x), [K, rl] and [K, [K, rl]]. 

0 0 0 .. 0 
O O -ba2 -baa 

O ba2 0 ... 0 

[K, rl . . . . 

ba. 0 ... 0 

0 0 b2a2 ... b2a 

0 0 0 .. 0 

-b2a2 0 0 ... 0 

[K, [K,r]] . 

-b2a 0 0 ... 0 

If a # 0, there exist real numbers A, B such that n = AK + (1/B2)[K, [K, SO]], SO 
K = (1/A)(q - (1/B2)[K, [K, r l]), whence the right side clearly belongs in (M(x). 
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If a = 0 and at least one of a2,.... ,an is =# 0, we calculate [,[Kc t17] E @(x) and 
obtain 

O -b(a2 + *+a ) 0 * 0 

b(a 2 + +a 2) 0 0 0 * 

O 0 0 **. 0 

[71,[K,qt]] = . . ... 

O 0 0 .. 0 

Therefore, there exists a real number C such that K = C[, [K, q]. 
If a = a2 = =an = 0, then this means that at all points of M, ixR 0. 

Hence , = , = 0, for all a, EC .2.... ,n}. In this case the distributions {X, Z1} 
and {Z2.... Zn) are parallel, so that the elements of (M(x) are of the form 

-A 0 ? 
A1 0 ... 0 

0 0 

A2 

L0 0 

where A1 is a 2 X 2 matrix and A2 is (n - 1) X (n - 1). 
At each point x, R(X, Z1) = 0, A1 = 0; so, (AX)X C ((3(x))' and Ax = Bx. 
In this case 4,? (the restricted holonomy group) is reducible and TX(M) has an 

invariant subspace on which CO? acts trivially, of dimension > 2, which contains X at 
all points. Let M be the universal covering manifold of M with the induced 
Riemannian metric. The holonomy group of M at x (w(x) = x) is ixo and by the 
De Rham Decomposition Theorem, we have M = R2?q X N, where in the R2+q 
factor we have the Killing vector field induced by X, which we also represent by X, 
such that dw = 4 A w. But this cannot occur in R2+q unless X is parallel and 
Ax= 0. 

So we have 

THEOREM 2.1. Let (M, g) be a complete and connected Riemannian manifold. Let X 
be a Killing vector field on M, such that dw = 4 A w, for w = ixg. Then, (Ax)x E 
@3(x), for all x in M. 

3. Local and infinitesimal holonomy algebras. Throughout this section we continue 
to assume that dw = 4 A w. 

LEMMA 3.1. If (ixR)X 7# 0, (AX)X C @'(x). 

PROOF. There exists some i, 1 < i < n, such that R(X, Zj) #d 0, so in (5'(x) there 
is some element of the form 71, and as (AX)X is of the form K C N( W'(x)), by using 
the same method as in ?2, we obtain (AX)X E ('(x). 
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We study which of the above mentioned holonomy algebras contains Ax. 
We can assume that Ax =# 0, so X -# 0, because we have supposed dw = A w. 
Let U = {x E Ml (ixR)x #0 ). U is an open set and if x E M U, there exists 

an open neighborhood of x, Vx, where ixR =#O. In Vx, {X, Z,) and {Z2 ... Zj} are 
parallel distributions and, in the same way as in ?2, we can prove that (AX)x E 

(03*(x))i, A*(x) (the local holonomy group) is reducible and TX(M) has an 
invariant subspace on which +*(x) acts trivially, of dimension - 2. 

If x E a(U), the boundary of U, we consider an open neighborhood of x, Wx, 
such that for each y E W. and the parallel transport T along any curve in W, from x 
to y, we have T-rl*(y)T C (*(X). Such Wx exists by Proposition 10.1, Chapter II 
of [2]. 

Let {yn} be a sequence {yj -n x andyn E Wx n U, Vn; we have (Ax)y E 0'(yn) 
C S '*(yn). Let Tn be the parallel transport along the minimizing geodesic from x to 

y,n (we can take Wx convex), then rTn,j*(yn)Tn C @*(x), and as (Ax)y E (0'(yn) C 
0 *(yn), we obtain Tr-'(Ax)Y"Tn E (M*(x); so (AX)X E ( *(x). 

We have proved 

THEOREM 3.1. There exists an open set U, defined by U = {x E Ml (ixR) # 0) O, 
such that: 

(a) if x E U, (AX)X E (i'(x), 
(b) if x E M ? U, (AX), E (0*(x))? 

(c) if x E a(U), (AX)X E (i*(x). 
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