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A SINGULAR STOCHASTIC INTEGRAL EQUATION 

DAVID NUALART AND MARTA SANZ 

ABSTRACT. This note is devoted to the discussion of the stochastic differential 
equation XdX + YdY = 0, X and Y being continuous local martingales. A 
method to construct solutions of this equation is given. 

Let (0, 1, P) be a complete probability space and {Yt, t > O} a filtration on it 
satisfying the usual properties. That means, Ft is right continuous, and ro contains 
the null sets of S. 

Let X = {Xt, t > O} be a continuous local martingale with respect to the 
filtration { t, t > O}. The continuous local martingale Mt = ft X, dX, has an 
associated increasing process given by (M)t - t X= 2 d(X)s. Denoting by (M) and 
(X) the measures on R induced by the sample paths (M)t and (X)t, respectively, 
we obviously have (M) < (X), and d(M)/d(X) = X2. Reciprocally, (X) << (M), 
and d(X)/d(M) = 1/X2. In fact, it is known that (X) does not charge the set 
{x =o}. 

By Ito's formula X2 - X 2Mt + (X)t. So, applying the preceding result we 
have 

X 2_X2=2Mt+ f 2d(M)s. 

Therefore, a continuous local martingale Y is a solution of the stochastic differen- 
tial equation 

(1) XdX + YdY O, 

if and only if 

(2) y2-y2 =-2Mt + d(M)S. 

Equation (1) arises in a natural way in the theory of two-parameter martingales 
with path independent variation adapted to the c-fields generated by two indepen- 
dent couples of two-dimensional brownian motions (see [4]). 

First we prove a lemma that will be used to construct Y2. 

LEMMA 1. Let b(t) be a continuous real function defined on R+ such that b(O) 2 
O and ,u a continuous measure on R+. Assume that b(t) takes constant values on 
every interval [a, c] such that u([a, c]) = 0. Then the integral equation 

(3) r(t) = b(t) + 4 -(T) du s 

has a unique, nonnegative, continuous solution. 
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PROOF. The case d,u = ds was proved by McKean in [3]. In the general case 
define G(s) = inf{t: F(t) > s}, F being the distribution function of ,u. G is right 
continuous and F o G = Id. 

b o G is continuous. Indeed, fix a point s > 0, and suppose that G(s) =c, 
G(s-) = a. Then F(t) = s for all t in [a, c] and, by hypothesis, b is constant on 
[a, c], which proves the continuity of b o G on s. 

Using McKean's result, we know that equation 

r' (t) = b(G(t)) + r(s) ds 

has a unique, nonnegative, continuous solution. 
Then, if we define r = r' o F, r is a solution of (3). In fact, 

rF(t) 1 
r'(F(t)) = b(G(F(t))) + r'(s) ds, 

but 
fF(t) 1 fF(t) 1 d ft 1 

Jo r'(s) JO r'(F(G(s))) Jor'(F(s)) 

and b o G o F = b as easily follows from the assumption made on b. 
Now we can state the main result. 

THEOREM 1. Let X be a continuous local martingale. Assume that there exists 
a sequence On of independent random variables, with On E { 1, 1} and E(qn) 
0, such that they are independent of X and p0-measurable. Then there exists a 

continuous local martingale Y such that ft (X, dX, + Y, dY8) = 0 for all t > 0. 

PROOF. First we choose an integrable random variable Yo which will be the 
value of Y at the origin. 

Let us consider the equation 

(4) r(t) = Y- - 2M(t) + / s) 

where Mt =fO Xs dXs. 
It is well known (see [2]) that there exists a null set N C Q such that for all 

w 0 N, (M)([a, c]) = 0 implies that M takes a constant value on the interval [a, c]. 
So, for w 0 N fixed, we can apply Lemma 1 to b(t) = YO 2M(t) and M =(M), 

and state the existence of a unique, nonnegative, continuous solution of (4). 
Now r(t) is a local submartingale because it is the sum of a local martingale and 

the increasing process fJt(1/r(s)) d(M)8. We want to show that x/t also is a local 

submartingale. To do this, apply Ito's formula to f(r(t)) = r(t) + X, where X is 
any real positive number, 

rt) +X= r() + X - (r(s) + X)'/2 dM(s) 
J + 

X-12 1 
+ / (r(s)+ d(M)S 

Let {Tn, n E N} be an increasing sequence of stopping times such that Tn t ?? 
and MTn is a martingale bounded by n. Set Rn = inf{t, r(t) > n} and Sn = Tn A 
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Rn. Then /r(t A Sn) + X is a positive submartingale, and letting X tend to zero 
we obtain, by monotone convergence, the submartingale property of r(tA . 
Therefore ifr(t) is a local submartingale because Sn t oo. 

The increasing process given by the Doob decomposition of x/Vt) is At 

x~~- / V +f (r(s))-1/2 dM(s). In fact, for any X > 0, Vr(t A Sn) + 
V r -o t^ASn12 /r(O) + X + f n0 (r(s) + X)'/2 dM(s) is increasing. 

We next show that fo 1vf/-(>o dA = 0. Indeed, we have 

r(t) = (At + r(O))2- 2(At + r(0)) (r(s))1/2 dM(s) 

+ (r(s))-1/2 dM(s)) 

Computing the bounded variation part of each term we obtain 

r(O) + J d(M)s = (At + r())2 - 2 j (/ (r())/ dM(u)) dA8 

/ 
+ J:r(s) d(M)S. 

Therefore, 

0 = (At + r(0))2 - r(O) -2 / ( (r(u))-1/2 dM(u)) dA, = 2 / r(sdA 

which implies the assertion. 
Henceforth, for any n > 1, {pn(t) = S+t)ASn i+tt,t > 0} is a 

submartingale which satisfies fo 1 P >O} dAn = 0, where 

Atn = A((Sn + t) A Sn+1 ) 

is the increasing process associated to pn(t). Using Barlow's procedure (see [1]) 
it is possible to find a martingale Mn(t) such that Mn(t) = pn(t) and Mn(O) 
Mn-i(Sn) (we take So = 0 and Mo = Yo). Then Y = En MnlTn,Tn+lD is a 
nonnegative local submartingale whose absolute value is /(t). Note that according 
to Barlow's method, the sign of Y is defined in terms of the sequence O5n SO Yt= 
r(t) satisfies equation (2) and this finishes the proof of the theorem. o 

REMARKS. 1. Instead of assuming that the ov-field 70 is rich enough to contain 
the sequence On, we can adjoin a new probability space and show the existence of 
the local martingale Y in the product space. 

2. There is no uniqueness of the solution because -Y also is a solution. Moreover 
the random variable Yo is arbitrary. 

3. Let T = inf{t, Yt = 0}. If the initial value YO is given, there is uniqueness of 
the solution in [0, T]. Furthermore, to construct the solution in this interval we do 
not need the sequence qn5 

4. Suppose that YO = Xo. In this case, the processes X2 and Y2 may have the 
same law. A sufficient condition for it to hold is the equality between the law of 
{(Mt, (M)t), t > 0} and that of {(-Mt, (M)t), t > 0}. For example, this condition 
holds if Mt is a Wiener process. 
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5. As a consequence of Theorem 1 we obtain the existence of nonnull two- 
dimensonal martingales with increasing norm. 
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