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A NOTE ON QUADRICS 
THROUGH AN ALGEBRAIC CURVE 

FERNANDO SERRANO 

(Communicated by William C. Waterhouse) 

ABSTRACT. In this note we describe the intersection of all quadric hypersur- 
faces containing a given linearly normal smooth projective curve of genus n 
and degree 2n + 1. 

Let C be an irreducible nonsingular curve of genus g, defined over an algebraically 
closed field of any characteristic. Let C be embedded in Pr by a complete linear 
system ILl. Saint-Donat [5] has proved that if deg L > 2g + 2 then the homogeneous 
ideal Ic of C C PT is generated by quadrics, and if deg L = 2g + 1 then Ic is 
generated by quadrics and cubics (see also Fujita [1]). In [2], Green and Lazarsfeld 
have announced the following result: In case deg L = 2g+ 1, Ic fails to be generated 
by quadrics if and only if C is hyperelliptic or L embeds C with a trisecant line, i.e., 
HO OC(L - Kc) # 0, where Kc denotes the canonical divisor on C. In this note 
we describe the intersection of all quadric hypersurfaces passing through C C P' 
in the borderline situation deg L = 2g + 1. The main ingredient of the proof is a 
theorem of Castelnuovo on the postulation of points. 

A g9 on a curve is, by definition, a base-point free linear system of degree d and 
dimension 1. For the definition and properties of rational normal scrolls see [3]. 

Our result is the following. 

THEOREM. Let C C pn+l be a linearly normal smooth irreducible curve of genus 
n > 4 and degree 2n + 1. If W(C) denotes the intersection of all quadric hyper- 
surfaces of pn+1 which contain C, then either W(C) consists of C plus (possibly) 
a line and finitely many isolated points, or W(C) is a rational normal scroll of 
dimension 2. In case W(C) is a scroll, one of the following situations occurs: 

(i) W(C) is smooth and C meets every fiber of W(C) at three points. C is 
trigonal and embedded by the linear system IKc + g9 . 

(ii) W(C) is a cone with vertex P, and C passes through P and meets every fiber 
of W(C) at P plus two other points. C is hyperelliptic and embedded by IP + ng' I. 

(iii) W(C) is smooth and C is a divisor in W(C) of class 2H + R, where H 
denotes a hyperplane and R a fiber of the ruling. In particular C is hyperelliptic, 
the g9 being given by restriction of the ruling of W(C). 

PROOF. Throughout this proof we will assume that W(C) is not the union of C 
and (possibly) a line plus finitely many points. Consequently, there exists a curve 
G C W(C), G # C, with degree of G > 2. G is allowed to be a pair of distinct lines. 
Pick two distinct general points Qi and Q2 on G, none of them on C. If G is a 
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union of two lines, then by a general pair we mean that Qi is a general point on one 
of the lines and Q2 is general on the other line. Choose now a general hyperplane 
pn in pn+1 passing through Qi and Q2, and set r = C n pnf. Let w(r) be the 
intersection of all quadric hypersurfaces of pFn which contain r. If Ic, Ir denote 
the ideal sheaves of C in pn+1 and r in pn respectively, then the exact sequence 

0 = Ho (Pn1 Ic (1)) -- Ho (Pn+, Ic (2)) 
-Ho(PM, Ir(2)) - H'(P C1, IC(1)) = 0 

yields W(r) = W(C) n pn. 
CLAIM 1. r consists of 2n + 1 points in general linear position (i.e., any subset 

of n + 1 points of r spans Pn). 
PROOF OF CLAIM 1. Let (pn+l)* be the space of hyperplanes of pn+,. It is 

a well-known fact that the set 

U = {H E (pln+l)* I Hn c is in general linear position} 

is dense in (Pn+l)*. For i = 1,2, the set M(Qi) = {H E (pn+l)* j Qi e H} is a 
hyperplane of (pln+l)*. Since degree of G > 2 we have 

U (M(Q1) nM(Q2)) 
= 

(pn+l)* 
Q1 ,Q2EG 

and thus M(Q1) n M(Q2) n UI 0 for a generic choice of Qi and Q2. This proves 
Claim 1. 

Choose linear subvarieties pn-1 pn of pn+1 of dimensions n - 1 and n respec- 
tively. Let ir: C - pn-l be the projection of C from the line Q1Q2 spanned by 
Q1 and Q2, and let 7r1: C -* pn be the projection of C from Qi. 

CLAIM 2. 7r and 7r, are generically one-to-one. 
PROOF OF CLAIM 2. It suffices to prove the statement for ir. Since n + 1 > 5, 

any hyperplane passing through Qi and Q2 contains at least three fibers of 'r. If 'r 
has degree k > 2 then those three fibers consist of 3k > 6 points which span a P3 
or a P4, so that they are not in general linear position. But this contradicts Claim 
1. 

CLAIM 3. A general hyperplane of pn passing through the point Q1Q2 nf Pn 
cuts 7r1 (C) at a set of points in general linear position. 

PROOF OF CLAIM 3. We argue as in Claim 1. The set 

U' = {H E (pln)* I Hn fir (c) is in general linear position} 

is dense in (Pn)*, and N(Q2) = {H E (pln)* IQ1Q2 n p'n E H} is a hyperplane of 
(pn)*. Fix Qi. Since degG > 2, the points Q1Q2 n Pn describe a curve in pn as 
Q2 varies along G. Therefore 

(pfn)* U N(Q2), 
Q2EG 

and thus N(Q2) nul '= 0 for at most finitely many Q2's. 

CLAIM 4. r U {Qi, Q2} is in general linear position in pn. 
PROOF OF CLAIM 4. Choose any subset Ql of n + 1 points in r U {Q1,Q2}. 

We have to show that Ql spans pn. 
Case 1. Ql C r. The claim is obvious because r is in general linear position. 
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Case 2. Ql = {Q1, T1,. . . XT,} with_{T1,. . . IT,n} C r. By Claim 3, a general 
hyperplane Pn C Pn+' containing Q1Q2 cuts PI along an (n - 1)-plane Pn-` such 
that pn-l nl7r(C) is in general linear position. By Claim 2, ri (Ti),.. ., ir1(Tn) are 
all distinct and belong to pn-l nlri(C). Since {7r, (TI),... I, 7r (Tn)} spans Pn-1, it 

follows that {Q1,ir1(T1)... . . r,(Tn)} spans pnI and so does Ql. 
Case 3. Ul = {QlQ2, T1 X... *Tn-l} with {T1 X.. ..XTn} C r. If pn-2 = pn-I n 

pn then On-2 fl r(c) is in general linear position. The points 'X(Ti),.. ., r(Tn_1) 
are all distinct because of Claim 2, and they belong to pn-2 n 7r(C). Inasmuch as 

{fr(Ti),. .. ,ir(Tn_)} spans pn-2 we get that {Qi,Q2,7r(Ti),.. .,r(Tn_1)} spans 
pn, and so does 17. 

Let us summarize the results obtained so far. For a general hyperplane section 
r = Cn Pn of C we can find two points Q1,Q2 Ew(r) such that rU{Q1,Q2} is in 
general linear position. Since r imposes exactly 2n + 1 conditions on quadrics [3, 
p. 36], so does r u {Q1,Q2}. Hence ru{Ql,Q2} is a set of 2n + 3 points in general 
linear position in pn which imposes 2n + 1 conditions on quadrics. Here we use 
the main ingredient of the proof: a lemma of Castelnuovo states that r u {QI,Q2} 
must lie on a rational normal curve B C lPn [3, p. 36]. 

Pick a quadric R in Pn which contains r. If B is not contained in R then 2n+1 = 
cardinal of r < cardinal of (R n B) = 2n, absurd. Hence B C R. Since the ideal of 
B is generated by quadrics we get w(r) = B. Now recall that w(r) = W(C) n Pn. 
Notice that the above considerations hold for a general hyperplane Pn of pn+1. It 
follows that W(C) is a surface of minimal degree. W(C) cannot be the Veronese 
surface in P5 because C has odd degree and is contained in W(C). Therefore W(C) 
is a rational normal scroll of dimension 2 [3, p. 51]. The homogeneous ideal of C 
in pn+1 is generated by quadrics and cubics [5] and thus C meets every fiber of 
W(C) at no more than three points. Next we are going to classify the possible 
configurations (W(C), C). 

Assume first that W(C) is a cone. The vertex P of W(C) must belong to C 
(otherwise C would have degree 2n or 3n), and C meets every fiber of W(C) at two 
other points. Now it is obvious that C is hyperelliptic, and that any hyperplane 
section of C passing through P belongs to the system IP + ng' j. 

Suppose that W (C) is nonsingular, and denote by F a general fiber of W(C). 
If C meets F at three points then C is trigonal, and an easy application of the 
Riemann-Roch formula shows that the divisors of the g9 span lines only when the 
hyperplane divisor belongs to the system IKc + g9 j. In case C meets F at two 
points and H denotes a hyperplane divisor of W(C) we have H2 = n, CH = 2n +1 
and C is linearly equivalent to 2H + bF. One concludes that b = 1. 

REMARK. By Green-Lazarsfeld's claim, quoted in the Introduction, it follows 
that in case W(C) is not a scroll and W(C) contains a line, then this line is a 
trisecant of C. 
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