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COHEN-MACAULAY THREEFOLDS IN P5 
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(Communicated by Louis J. Ratliff, Jr.) 

ABSTRACT. In [B], Banica considers the problem of determining the integers 
d such that there are smooth threefolds which are not arithmetically Cohen- 
Macaulay. Moreover, he gives a partial answer to this question. In this note, 
using liaison, we will complete his answer. 

INTRODUCTION 

In a recent work [B], Banica determines the integers d such that there ex- 
ist smooth surfaces of degree d in P4 which are not arithmetically Cohen- 
Macaulay. Concretely, these are precisely the integers d > 4 with the excep- 
tion d = 6. Furthermore, he considers the problem of determining the integers 
d such that there exist smooth threefolds in P5 which are not arithmetically 
Cohen-Macaulay, and he gives a partial answer to this question. Namely, for any 
odd integer d > 7 or any even integer d = 2k > 8 with k = 5s+ 1, 5s+2, 5s+3 
or 5s + 4, there exist smooth threefolds in P5 of degree d which are not arith- 
metically Cohen-Macaulay. 

On the other hand, Beltrametti-Schneider-Sommese prove that any smooth 
threefold of degree 10 is arithmetically Cohen-Macaulay [BBS]. So, the problem 
of determining the integers d = 1 On, n > 1 , such that there exist smooth 
threefolds in P which are not arithmetically Cohen-Macaulay, remains open. 

The goal of this note is to prove that, for any integer d = 1 On, n > 1, there 
exist smooth threefolds in P5 of degree d which are not arithmetically Cohen- 
Macaulay. To this end, we begin with well known smooth non-arithmetically 
Cohen-Macaulay threefolds in P5 of low degree, and we use the fact that the 
property of being arithmetically Cohen-Macaulay is preserved under liaison. 

1. Let k be an algebraically closed field of characteristic zero, S = k[xo, . . ., x5] 
and P5 = Proj(S). Recall that a threefold X in P5 is arithmetically Cohen- 
Macaulay if and only if EtEzHi(P5, IX(t)) = 0 for 1 < i < 3. The notion of 
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liaison among closed subschemes of pn was introduced in [PS]; we will quote 
from that paper what we need in our proofs. 

Our aim is to show 

Proposition 1.1. For any integer d = 1 On, n > 1, there exist smooth threefolds 
in P5 of degree d which are not arithmetically Cohen-Macaulay. 
Proof. Let Y c P5 be a smooth non-arithmetically Cohen-Macaulay threefold 
of degree 12 having a locally free resolution of the following kind (see [B,?2.5] 
for the existence of Y ): 

0 -- & E &@(I) 3- Q(3) - Iy (6) O- . 

In particular, Iy(6) is globally generated. Let X be the threefold linked to Y 
by means of two general hypersurfaces of degree 6 and 7, respectively, passing 
through Y. By [PS, Proposition 2.5], the ideal sheaf of X has resolution 

0 -* T(-10) - (-8) 3E (- 7) 2E (- 6) - Ix - 0. 
In particular, the degree of X is 30, it is not arithmetically Cohen-Macaulay 
and IX(8) is globally generated. Now we use X in order to construct non- 
arithmetically Cohen-Macaulay threefolds of degree d = 10n, n > 5. 

In fact, for all n > 5, write d + 30 = 10(n + 3) and take two general 
hypersurfaces of degree 10 and n + 3, respectively, passing through X. As a 
residual, we get a smooth non-arithmetically Cohen-Macaulay threefold, Z c 
P5, of degree d = IOn, n > 5. 

Finally, it remains to construct smooth non-arithmetically Cohen-Macaulay 
threefolds of degree d = 20, 40. 

Case d = 20. Let Y C P5 be a smooth non-arithmetically Cohen-Macaulay 
threefold of degree 9 having a locally free resolution of the following kind (see 
[B, ?2.5] for the existence of Y): 

O - T(-6) -- 6(_ 4) 6-- I Iy 0. 

Note that Iy(4) is globally generated. So, taking two general hypersurfaces of 
degree 5 passing through Y, we get, as a residual, a smooth non-arithmetically 
Cohen-Macaulay threefold, X c P5, of degree 16. By [PS, Proposition 2.5], 
the ideal sheaf of X has resolution 

0 '(-6)6 - - )D26 __2 Ix 0. 

Finally, taking two general hypersurfaces of degree 6 passing through X we 
get, as a residual, a smooth threefold of degree 20, which is not arithmetically 
Cohen-Macaulay. 

Case d = 40. We take Y, a smooth non-arithmetically Cohen-Macaulay three- 
fold of degree 9 as above, and two general hypersurfaces of degree 7 passing 
through Y. The residual threefold is smooth of degree 40 and it is not arith- 
metically Cohen-Macaulay. o 
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Corollary 1.2. For any integer d > 7 with exception d = 8, 10, there exist 
smooth threefolds in P5 which are not arithmetically Cohen-Macaulay. 

Proof. It follows from [B], [BBS], and Proposition 1.1. o 

Remark 1.3. Until now there is no example of smooth subvariety of codimen- 
sion 2 in pnf, n > 5, which is not arithmetically Cohen-Macaulay. Further- 
more, Hartshorne conjectures that such an example does not exist [H]. 
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