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A COHOMOLOGICAL CLASS OF VECTOR BUNDLES 

ROSA M. MIRO-ROIG 

(Communicated by Louis J. Ratliff, Jr.) 

ABSTRACT. The goal of this paper is to give a cohomological characterization 
of F,, t, where F, t:=Ker((n + t; n)&pn (- t) - &pn). 

0. INTRODUCTION 

Fix an algebraically closed ground field k of characteristic zero. We set 
S = k[Xo, ..., Xn], m = (XO, ..., Xn) c S, and pn = Proj(S). For all 
positive integers a, b with a > b, ((a; b)) will denote the binomial coefficient 
((a; b)) = (a!)/(b!(a - b)!). 

Choose a basis V I, ... , Vao(nt) , ao(n, t) ((n + t; n)) of HO(Pn$pn (t)) 

t > 0. Let ID(n, t): Mpn -- ao(n, t)&pn(t) be the morphism defined by 
D(n, t)(c) :=(c, ...C , CVao(nt)). Set En, t := Coker(ID(n, t)) and Fnt 
En t its dual. Note that En, tF, n, t are homogeneous and uniform vector bun- 
dles on pnf. Furthermore, En, 1 = Tpn and Fn, 1 = Q1 n, while En, t and En, 

- 

for t > 1, for instance, are as defined in [G, MM]. In [G] they are used to give 

a new proof of the explicit Noether-Lefshetz Theorem and [MM] (see also [B]) 

stressed their importance for studying the Hartshorne-Rao module of a space 

curve. 

However, not only the cotangent bundles Q1n are important but so are their 

exterior powers. So, we define En t: ArFn, t for all r > 1 with the hope that 

they will also play an important role in the study of the cohomology groups of 

the ideal sheaf of closed subschemes of pn . 
In ? 1 we will compute the cohomology groups and the order of En t and prove 

that Fnt are simple vector bundles on pn . In ?2 we restrict our attention to 

the case r = 1 and give the main theorem of this paper. Concretely, given a 

vector bundle E on pn, we find sufficient conditions involving only suitably 

chosen cohomological groups in order that E be the direct sum of Fnt and 

line bundles. Our essential tool will be the Beilinson spectral sequence. 

Notation. For a coherent sheaf F on pn we use the abbreviation sF = F D 

*.. D F for the s-fold direct sum of F, HiF(d) = Hi(Pn, F ? &pn (d)), and 
hiF(d) = dimk HiF(d) . 
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1 

First of all, we recall the definitions and basic facts that will be needed 
throughout this paper. 

Definition 1.1 [E]. Let E be a rank r vector bundle on PI . We set o(j)(E) = 

inf{tlmt(@i HjE(l)) = O}. In other words, o(j)(E) = r means that the mor- 
phism HJE(l) -) HJE(l + r) given by multiplication by any homogeneous form 
of degree r is zero. The order of E is o(E) = max{o(j)(E)1I < j < n - 1} . 

Proposition 1.2 [Ei, Proposition 1.1]. Let E be a rank r vector bundle on PI 
Assume that E is generated by its global sections. If HnE(-n - 1) :$ 0, then 
E _ Mpn D F for some vector bundle F of rank r - 1 on PI. 

Beilinson Theorem [Be]. Let F be a coherent sheaf on PIn. There is a spectral 
sequence Er with E1 -term Ef1 = Hq (PIn, F(p)) ?Q Ppn (-p) such that EPq = 0 
for p + q 54 0 and pn=o EooPP is the associated graded sheaf of a filtration of 
F. 

Definition 1.3. For all integers r > 1, n > 2, set ao = ao(n, r) := ((r + n; n)) 
and Fn, r := Ker(aocpn (-r) -- Spn ) . Fn, r are homogeneous and uniform vector 
bundles of rank a0 - I on PI . Note that Fn, 1 = QKpn , Fn, r IPn- 

I Fni -, r D 
((n +r- 1; r- 1))&pn-l (-r) where PI- c PI is a hyperplane, and the splitting 

r times 

type of Fn,r is (-r - 1, ...,-r - 1 , _r, .. ., _ r). 

ao-r-1 times 

Proposition 1.4. For all integers r > 1, n > 2 the following hold: 

(1) HiFn,r(t) =0 for all t, for all i= 1, 2, ...,n- 1. 
(2) 

h1Fnr(t) =~f ((t+n; n)) if O< t < r- 1, 
10 otherwise. 

(3) Fn, r has order r . 
(4) Fn,r is (r+1)-regular. Inparticular, Fnr isgloballygeneratedforall 

t> r+ 1. 

Proof. The proof follows from the exact sequence 

(*) O Fn,r -ao~pn(-r)> pn --0. 

In [G], Green proves that Fn, r(r) is 1-regular. We will compute the precise 
graded Betti numbers appearing in a minimal free resolution of Fn, r (r) . 

Corollary 1.5. For all integers r > 1, n > 2, Fn, r has a resolution of the 
following kind: 

0 an(n, r) &pn(-n 
- 

r) ai(n, r)&pn(-r 
- 

i) 

a2(n, r) &pn(-r -2) a,(n, r)&pn(-r -1) --+Fn,r )?+ 

where a1(n, r) = , (-1)j-'((n +j; j))ai-j(n, r) + (-1)i((n + r + i; n)). 

Proof. The proof follows after a tedious computation. 
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Definition 1.6. For all integers r, p > 1 n > 2, we define FP, r as the pth 
exterior power of the vector bundle Fn, r thus, FEP, r F= APF, r . 

Fact 1.7. Let 0 -- E -- F -- G -- 0 be an exact sequence of vector bundles. 
Then we have the following exact sequences involving alternating and symmetric 
powers (Eagon-Northcott complexes): 

0 AqE AqF -- Aq-'F 0 G F 0 Sq- 1G Sq G 0 

and 

O SqE ,Sq-'E oF , o Aq-1F ,- AqF ,AqG ,0. 

Proposition 1.8. For all integers r > 1, n > 2, and ao - 1 > p > 2, the following 
hold: 

(1) FP, r is p(r + 1)-regular. In particular, FP, r is globally generated for all 
t > p(r + 1). 

(2) HiFP,r(t) = O for all t, for all i = p + 1,..., n - 1. 
(3) FP, r has order less or equal to r + p - 2. 

Proof. (1) By Proposition 1.4, Fn, r is (r + 1)-regular. Since we are working in 
characteristic zero, FPr := APFnr are direct summands of the p-fold tensor 
product TPFn, r of Fn, r which are p(r + 1)-regular. 

From the pth exterior power of the exact sequence (*) taking into account 
Fact 1.7 we get the exact sequence 

(**) 0 ) Fnp,r(pr) -) ((aO;p))&pn -) FnP-f(pr) -) 0. 

Now, (2) and (3) easily follows from the exact sequence (**). 

It seems not easy to decide whether the vector bundles Fn,r are stable or 
not, however, we can prove that they are at least simple. 

Proposition 1.9. For all integers r > 1, n > 2, Fn, r are simple. 
Proof. We tensor the exact sequence 

0 -- 6pn -- aO0pn (r) -n F, r ?_ 0 

with Fn, r and obtain 

O - Fnr - aoFnr(r) - Fnr Fn,r O ? 

The cohomology sequence is as follows: 

Ho (P, aoFn, r (r)) -+ H0(Po Fn, r 0 Fn r) 

4H1(Pn, Fn,r) ) H1(Pn, aOFn,r(r)) . 

From Proposition 1.4, it follows that HO(P, Fn, rn F, n* rH(P, Fn,r)- k. 
Thus, Fn, r is simple. 

2 

Now, using Beilinson's theorem, we will give sufficient conditions involving 
only a finite number of suitably chosen cohomology groups in order that a vector 
bundle E on pn be the direct sum of Fn, r and line bundles. 
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Theorem 2.1. Let E be a rank p vector bundle on pn such that: 
(1) HiE(t) = O for all t, for all i = 2,..., n - 1; 
(2) 

( ) t{nO)otherwise; 

(3) HE = -O. 
Then E has order r and E _ Fn, r(r) D (line bundles). 
Proof. From Definition 1.1 it follows that the order of E is r. Let t = 
max{lIHnE(l) :$ O}. If t > -n, then E(t + n + 1) is generated by its global 
sections and HnE(t) 54 0. Hence, by Proposition 1. 2, E Eo D &pn (-t - 1 - n) 
for some (p - 1)-vector bundle Eo on pnf. Repeating this argument we may 
assume that E - F D (($i6&pn(ai)) where -t - n - 1 < a < 0 and F is a 
vector bundle on pn such that: 

(1) HF= -O; 
(2) HiF(t) =O for all t, for all i = 2,..., n - 1; 
(3) HnF(t) = for all t > -n; 
(4) 

h1Fnr(t)= { ((t+r+n;n)) if -r<t<-1, 
1.0 otherwise. 

To end the proof it is enough to see that F Fn, r(r) . We apply Beilinson's 
spectral sequence with El -terms Eq = Hq (pn, F(p))Qippn(-p). The diagram 
of the El -terms is as follows: 

q 

o 0 0 0 

o . 0 0 0 
Qn(n)h1F(-n) ... Q2(2)h1F(-2) n1(l)h1F(-1) 0 

o 0 0 0 

Since E2pq = Eoc, the only nonzero row is exact with only one exception 

Qpn (1)hFF-1) where the cokernel is F. So, we have the exact sequence 

(*** *) 0 +Qn(n)h'F(-n) , ... ,- Q2( 2) 

1nQ (I)hlF(1) -) F - 0. 

In particular, we get that ci(F) = ci(Fn,r(r)) for i = 1, .I. , n; and rk(F) = 

rk(Fn, r(r)) . Hence, in order to prove that F and Fn, r(r) are isomorphic it is 
enough to see that there is a monomorphism between Fn, r and F. First of all, 
note that applying Hom(. , F) to the exact sequence 

0 - Fn,r(r) -+ ao~pn --+ Apn(r) -+ 0 

we get the exact sequence 

0 - Hom(&pn (r), F) ao Hom(&pn, F) Hom(Fn, r(r), F) 

- ExtI (&~pn (r), F) - aO Ext1 (&pn , F) -- 
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Since Hom('pn, F) = HO(Pn, F) = 0 and Ext1(cp'pn, F) = H1(pn, F) = 0, 
we conclude that Hom(Fn,r(r), F) Ext1(&pc(r), F) - 

(Pn, F(-r)) - k. 
Similarly, applying Hom(, Fn, r(r)) to the exact sequence *** *) we get that 
Hom(F, Fn,r(r)) :$ 0. Now, we choose a nontrivial morphism iI: Fn,r(r) -) F 
and T: F -- Fn,r(r) and consider the composition TV: Fnr(r) + Fnr(r). 
Since Fn,r(r) are simple, we have TO = cIdFn r(r) for some c E k. 

Claim. c :$ O. 
Since c is a nonzero constant, we conclude that 1D is a monomorphism, 

which gives the desired result. 

Proof of the Claim. Assume that TP = 0. Set ai = h1F(-i). We have the 
exact sequences: 

(1) O 
-Q;n (n)an . n(2-)a2 

Q 
1n (1)a, Fn, r(r) O 

Pn P3 P2 /3 

and 

(2) ? n(n)a n (2) a2 3 Q F O 

Cutting (2) into short exact sequences, we prove that the morphism 1,/ can 
be lifted to a nontrivial morphism f: Qn~ (1)ai -- Q1n (1)ai in order that the 
following square commutes: 

n Q (1)ai )6 Fn, r(r) - 0 

lf 1s 

, Q1 (I)a, F 0 

In the same way we get a commutative diagram: 

n4n (2)a2 , n- (1 )a4 - ' Fn, r(r) - 0 

Qn4(2)a2 , nI (1)a, - F - 0 

1 ~ ~~ di'1 

Pn (2)a2 
2 

4( n -6 
Fn, r(r) ) 0 

Hence, we have 0 = TPD,8 = /Bgf. Therefore, Im(gf) c Ker(/J) = Im(p2) 
and gf can be lifted to a nontrivial morphism h: Q4n (1)ai - Img(p2). Fi- 
nally, applying the functor Hom(K24n (1 )ai, *) to the short exact sequence 

0 -* Ker(p2) * > 4~n(2)a2 Im g(p2) = Ker(,B) -* 0 
P2 

and taking into account that Ext1(Q4n (1)ai, Ker(p2)) = 0, we get that h and, 
hence, fg can be lifted to a nontrivial morphism QLn (1)ai __ Qn4 (2)a2 . This 
is a contradiction because Hom(Q 1 n (1) , Q42 n(2)) = 0. 
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As a corollary, we have the following well-known result: 

Corollary 2.2. Let E be a rank p vector bundle on pn such that HiE(*) = 0 
for 0 < i < n with the only exception h'E(-1) = 1. Then, E _ Q1(l) D 
(line-bundles) . 
Proof. Set t = min{lIHOE(l) :$ 0}. If t < 0, then HiE(t - i - 1) = 0 for 
o < i < n. Hence, by [AO, Theorem 2], E F1 D &(_t)hOF(t) where F1 
is a locally free sheaf on pn such that HWFE(*) = 0 for 0 < i < n with 
only exception h1F1(-1) = 1 and min{lIHOE(l) # 0} < min{lIH0Fi(l) # 0}. 
Repeating this process we may assume that E _ F D (line-bundles) where F 
is a locally free sheaf on pn such that HIF(*) = 0 for 0 < i < n with only 
exception h1F(-1) = 1 and min{lIHOF(l) # 0} > 0. Now, applying Theorem 
2.1, we have F _ QV(1) D (line-bundles), which gives the desired result. 

Question 2.4. Given a vector bundle E on pn, are there sufficient conditions 
involving only a finite number of suitably chosen cohomology groups in order 
that the vector bundle E be the direct sum of FnP, r and line bundles? 
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