
On the Existence of Doubling Measures with Certain Regularity Properties
Author(s): Per Bylund and Jaume Gudayol
Source: Proceedings of the American Mathematical Society, Vol. 128, No. 11 (Nov., 2000), pp.
3317-3327
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2668668
Accessed: 06/02/2009 08:20

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Proceedings of the American Mathematical Society.

http://www.jstor.org

http://www.jstor.org/stable/2668668?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ams


PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 128, Number 11, Pages 3317-3327 
S 0002-9939(00)05405-8 
Article electronically published on May 11, 2000 

ON THE EXISTENCE OF DOUBLING MEASURES 
WITH CERTAIN REGULARITY PROPERTIES 

PER BYLUND AND JAUME GUDAYOL 

(Communicated by Dale Alspach) 

ABSTRACT. Given a compact pseudo-metric space, we associate to it upper and 
lower dimensions, depending only on the pseudo-metric. Then we construct a 
doubling measure for which the measure of a dilated ball is closely related to 
these dimensions. 

1. INTRODUCTION 

Let (X,p) be a compact metric space. Suppose that (X,p) is homogeneous. 
This means that there exists a doubling measure ft supported by X; i.e. there is a 
constant c such that, for x E X and R > 0, one has 0 < fu(B(x, R)) < oc and 

(1) u(B(x, 2R)) < cu(B(x, R)). 

Dynkin proved in [Dyn] that for certain subsets E of the unit sphere TW C C there 
exists a doubling measure on E, and he conjectured that any compact E C R' 
is homogeneous. This conjecture was proved in [V-K] by using a dimension first 
defined in [Lar] called the uniform metric dimension, in this paper denoted by 
T(E). More precisely, Volberg and Konyagin proved that (X, p) is homogeneous if 
and only if there is some s < oc such that any ball B(x, kR) contains at most CkS 
points separated from each other by a distance of at least R. The uniform metric 
dimension T (X) = T (X, p) is then defined as the infimum of such s. Furthermore, 
given s < oc in the condition above Volberg and Konyagin proved that for any 
s' > s there exists a measure [t such that, for 0 < R < kR, 

(2) fu(B(x, kR)) < Cks '1(B(x, R)). 

Clearly, any measure satisfying (2) is a doubling measure, and conversely, it- 
erating (1) one gets (2) with s' = log2c. In particular, Volberg and Konyagin 
proved Dynkin's conjecture by showing that on any compact E C R' there exists 
a measure fu satisfying (2) with s = n (in the maximum metric). 

In this paper we generalize their result by showing the existence of a measure 
Au not only satisfying (2), but also the following analogous lower bound condition. 
Suppose there is a t > 0 such that any ball B(x, kR) contains at least Ckt points 
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separated from each other by a distance of at least R. Then for any t' < t there 
exists a measure [t such that, for 0 < R < kR, 

(3) Ckt 1u(B(x,fR)) < 1u(B(x,kfR)). 

In [J-W] Jonsson and Wallin studied function spaces on subsets of R' supporting 
measures fulfilling both (2) and (3) in the special case sl = t'. Such sets are also 
called s-sets or Ahlfors-regular sets. 

The general case t' < s' was considered in [Jon]. 
The authors of this paper, independently of each other, also studied the general 

case t' < s' in [Byl] and [Gud]. Each of these works contains the main result of this 
paper, in [Byl] formulated for Euclidean spaces and in [Gud] for metric spaces. 

In this paper the result is stated in terms of pseudo-metric spaces. 

2. DEFINITIONS AND STATEMENTS OF RESULTS 

Throughout we denote by X = (X, d) a compact pseudo-metric space, where 
d: X x X |-* [0, +oo) is a pseudo-metric on X, i.e. 

1. d(x,y) = ## x = y, 
2. d(x, y) = d(y, x), Vx, y E X, 
3. there is a constant Cd such that d(x, z) < Cd(d(x, y) + d(y, z)), Vx, y, z E X. 

On X we consider the topology generated by the open pseudo-balls, and without 
loss of generality we assume that diam(X) < 1. 

Given any ball B(x,kkR), x E X and 0 < R < kR, denote by N(x,fR,k) the 
maximum number of points in B(x, kR) separated by a distance greater than or 
equal to R from each other. 

Definition 1. Define X E T, if there exists C = C(s) such that, for 0 < R < kR, 

(TS) N(x, Rf k) < CkS. 

The upper dimension T(X) is then defined as 

T(X) = inf{s I X E TU}. 

T(X) was introduced in [Lar] called the uniform metric dimension. 

Definition 2. A positive Borel measure ft E Us if there exists C = C(s) such that, 
for x E X and 0 < R < kRf 

(Us) /l(B(x, kR)) < Cksiu(B(x, R)). 

The dimension U(X) is then defined as 

U(X) = inf{s I Us #& 0}. 

Note that by taking k = 1/R in (Us) one gets the weaker condition 

(Us) 1u(B(x,fR)) > CRs, X EX, X 0 < R. 

Also note that if 1u E Us, for some s, then supp(tu) = X. As mentioned in the 
introduction, fu is doubling precisely when 1u E Us for some s < oo. We will write 
U = Us Us for the set of all doubling measures on X. 

Volberg and Konyagin proved ([V-K]) that T(X) < U(X), and furthermore: 

Theorem 1 (Volberg-Konyagin). Let X be a compact metric space. If X E T, 
then for any s' > s there exists a measure 1t E Us/. Consequently, T(X) = U(X). 
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Our main result is Theorem 2 extending Theorem 1 to the analogue lower di- 
mension. Note that Theorem 2 is stated for pseudo-metric spaces. 

We start by defining the concept of the lower dimension. 

The lower dimension. 

Definition 3. Define X E At if there exists C = 0(t) such that, for x E X and 
0 < R < kR, 

(At) N(x, R. k) > Ckt. 

The lower dimension A(X) is then defined as 

A(X) = sup{t I X E At}. 

A(X) was introduced in ([Lar]) called the minimal dimension. Note that X E Ao 
is trivial. 

Definition 4. A positive Borel measure ft E Lt if there exists C = 0(t) such that, 
for x E X and 0 < R < kR) 

(Lt) fu(B(x, kR)) > Ckt~u(B(x, R)). 

As before, by taking k = 1/R in (Lt) one gets the weaker condition 

(Li) fu(B(x, R)) < CRt, xEX, O<R. 

Now, observe that defining the lower dimension as 

L(X) = supf t I Lt # 0} 

will not work since 1u E Lt does not imply supp(tu) = X, so this will say nothing 
about X \ supp(fu). The appropriate definition is as follows. 

Definition 5. Define the lower dimension L(X) as 

L(X) = supf t I Lt n U 7 0}. 

Note that Lo poses no restriction on ft E U. 

The main theorem. We now state the main result of this paper. Note that in 
the special case t = 0 one can take t' = t = 0. 

Theorem 2. Let X E T, n At, 0 < t < s < +oo, be a compact pseudo-metric 
space. Then for any s' > s and t' < t there is a probability measure ,t E Us,/ n Lt. 

From Theorem 2 and Propositions 4 and 5 below we then get 

Corollary 3. If T(X) < +oo, then T(X) = U(X) and A(X) = L(X). 

3. PROOF OF THE THEOREM 

To prove Theorem 2 we construct a sequence of measures with certain properties 
and the desired measure ,u will be a limit point of this sequence. 

We start by proving the trivial inequalities T(X) < U(X) and A(X) > L(X). 
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3.1. The trivial inequalities. 

Proposition 4. If 1u E Us, then X E T5, i.e. T(X) < U(X). 

Proof. Let ft E Us, fix any x E X and let x1,. .. ,XN be points in B(x, kR) with 
d(xi,xj) > R for i :z j. Since ft E Us and B(x,2CdkR) C B(xi,4Cd2kR), 

ft(B(x, 2CdkR)) < [t(B(xi14Cd2kR)) < C8sCd3'k'[t(B(xi, RC) 
20d 

Also, the balls B(xi, R/(2Cd)) are disjoint and lie in B(x, 2CdkR), so 

ft(B(x, 2CdkR)) > E (B (xi , 2c )) > Nll (s3.9ks ) 

Thus N < Ck5, i.e. T(X) < U(X). E 

Proposition 5. If 1u E Lt nu, then X E At, i.e. A(X) < L(X). 

Proof. Let {x1,... , XN} be a maximal set of points in B(x, kR) separated by a 
distance greater than or equal to R. Fix any ,u E Lt n U. Then, since ,u is doubling 
and B(xi, kR) c B(x, 2CdkkR) for all i, 

Ctt(B(x, kR)) > ft(B(x, 2CdkR)) > ft(B(xi, kR)) > Cktt(B(xi, R)). 

Also, B(x, kR) c UN=1 B(xi, R), since {x1, .. ., XN} is maximal, i.e. 
N N 

f (B (x, k R)) < ft(B (xi, R)) < Ck t I(B (x, k R)). 

Thus, N > Ckt, i.e. X E At. El 

3.2. The main lemma. Assume that X E Alt n T. Let Cd be the constant 
associated to the pseudo-metric d, Ct the constant appearing in At and C5 the one 
in T,. Given t' < t and s' > s, choose A > 16C4 large enough such that As-'S > Cs 
and At-t' > 4tCYtCT-. For each non-negative integer j, let Sj be a maximal set of 
points in X separated by a distance greater than or equal to A-i. 

Define mappings E = E m?: S+ Sm for m > 0 as follows. For g E Sm+, 
choose one of the points e E Sm for which d(g, e) = d(g, Sm), and denote it by 
e = ?(g). Then for e E Sm let 

Sem+i = {g E Sm+i, e = SWI} 

It is easy to see that {Se,m+i I e E Sm} form a partition of Sm+i. 
The desired measure ,u will be a limit of measures fUm supported by Sm. Lemma 

7 below will allow us to perform the inductive step that constructs btm+l from fUm. 
First though we need the following preparatory lemma. 

Lemma 6. Let e E Sm. Then 

At' < #(Sem+i) < As', 

where # denotes the cardinality of a set. 

Proof. Fix any e E Sm. Clearly Se,m+1 c B(e, A-m) since Sm is maximal. There- 
fore, and since X Ei T, and As'-s > Cs, 

#(Se,m+i) < #(Sm+i n B(e,A-m)) < N(eA-m-l1A) < CsAs < As ' 

which proves the right inequality of the lemma. 
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For the left inequality, we first note that there exists g E Sr+i for which d(g, e) < 
A-m-1, and as A > 2Qd it is clear that e = E(g) for such g. 

Also, for e' 7 e" we have B(e', A-m/2Cd) n B(e", A-`/2Cd) = 0. Thus, 

(*) Sm+l n B(e, A-m/(2Cd)) C SeM+i. 

Next, for {gi}jL' = S m+il n B(e, Arn/2Cd) we have 

(t) n > N(e, A-M- IA/2Cd2 - 1). 

To check it, suppose the contrary, that is, suppose that 

n < N(e, A-m-l1 A/2Cd2 _1) = ni . 

Then there would exist points X1,... ,xn in B(e, (A/2Cd2- 1)A-m-r) separated 
from each other by a distance greater than or equal to A-m-1. 

But, for g E Sr+i \ (Sm+i n B(e, A-m/2Cd)) we have 

d(gxi) > Cd(g, e)-d(exi) > 22 A - (2C - ) A- = 

which means that the set 

Sr+i = ({xi}j~11 u sm+i) \ (sm+il nB(e, 
A 

A-M-i)) 

fulfills #(Sm/+i) > #(Sm+r), a contradiction to the maximality of Sm+i. 

Thus, from (*), (t), the choice of A and the fact that X E At, we conclude 

#(Se m+n) > #(Sm+i nfB(e, Ar/2Cd)) > N(e, A-m-1 ,A/2C2 -1) 

> Ct (A/2Cd2 - )t > CtAt(4Cd) > At' 

Lemma 7. Let fo be a measure on Sm such that for any e, e' E Sm we have 

fo(e') ? Cifo(e) 

whenever d(e,e') < C2A-m, with Ci = As'-t', and C2 = 8Cd. Then there is a 
measure fi on Sm+l with the following properties: 

(a) fi(g') < Cifi(g) for any g, g' E Sm+l with d(g, g') < C2A-n-l. 

(b) If g E Sem+i, then A-s fo(e) < fi(g) < A-t'fo(e). 
(c) fo(X) = fi(X). 
(d) The construction of the measure fi from the measure fo can be regarded as 

a transfer of mass from the points in Sm to those of Sm+i, with no mass 
transferred over a distance greater than 2CdA-m. This means that if g e 
Sm+l receives mass from e E Smn, then d(g, e) < 2CdA-m. 

Proof of the lemma. Let foo be the measure obtained by homogeneously distribut- 

ing the mass of each e E Sm on the points in Se,m+i. By doing so, we obtain a 

measure satisfying (b) (because of Lemma 6), (c) and (d). If foo satisfies (a), 
then let fi = foo and we are done. 

Assume that foo does not satisfy (a). Let {f g } g/=l be all the pairs of points in 

Sm+i with d(g', g") < C2A-m- . We will construct a finite sequence of measures 

fgj I j = 1, ,T}, such that foj will satisfy (a) for all the pairs (gl',g)}l=I, 
and as we will see fi = foT is the desired measure. 
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The construction of foj+j from foj is as follows: 
If CT1foj(g " ) < foj(g +i) < Cifoj(g " 1), then let fOj+1 = foj Otherwise, 

only one of these inequalities can fail, and without loss of generality we may assume 
that foj( Y+i) > Cifoj(g (+D). Then we move mass from g+j+ to gY1+1 by defining 
fj+ 1 as 

foj(g +1) - Clfoj(g (+i) 

foi+l(" /1) = f(j( 1)+ +) -Cif3(g>) 

fOj+i(g) = fo3(g) if g g {gj/+, gj+i}. 

With this definition foj+i(gj+1) = Cifoj+i(gj'+1), which means that (a) is true 
for foj+1 with respect to (gjl+i'g!+D). In particular, note that (a) is true for foi 
with respect to (g9, g9'). 

We are now going to check condition (b) for foj+,. To do so, suppose that (b) 
holds for foj, i.e. suppose that 

A-s'fo(e) < fi(g) < A- fo(e), g E Se,m+i 

If foj+i = foj or g , {fgjl+i,,g+l}, then there is nothing to check. Otherwise, 
as before we can assume that foj(gjl+i) > Cifoj(gYll+i). Let e' = S(gj+ ) and 

e" = S%11+1). It is clearly enough to prove that foj+l(gj+1) > A-s'fo(e/) and 

foj+i(gj'+,) < A-t'fo(e") (because foj+i(gj+1) < foj(gj+i) < A-t'fo(e') and 

foj+l(gjl+l) > foj(gj'+i) > As fo(eff)). Now 

d(e',e") < Cdd(e',gj+l) + Cd2d(gj+igjj'+i) + Cdd(gj'+ 1e") 
< CdA-m + C2CA-m- + Cd2A-m < C2Am, 

so fo(e') < Cifo(e"l). Therefore 

fOj+l (gjl+l) = C1-fo~j+i(gj+1) < C11foj (gj+>) 
< C-1lA-tfo(e') < A-tfo(e") 

Analogously, fo(e") > CT1fo(e'). Thus, 

foi+l (gj+l) = Clfoj+l(gj+l) > Clfoj(gl+l) 

> CA-81 fo(ell) > A-8 /fo e'). 

Consequently, since (b) holds for foo it is clear that it holds for fi = foT as well. 
We are now going to check that when a pair satisfies (a) with respect to foj, 

it also does with respect to foj+,. To this end, pick any pair (g1,g2), d(gl,g2) < 

C2A-M-1, for which 

C1 lfOj(gi) < fOj(g2) < Clfoj(gl). 

If (g1,g2) and (gj+1,g>!+,) have no point in common or if fOj+1 = foj, then we are 
done. Otherwise, fOj+1 #& foj and foj(gjl+) > Cifoj(gj'+1). Then the two pairs 
have only one point in common, say gi. In this case fo++1(g2) = foj(g2). 
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We have two possible cases to consider, either g= g=+1 or gi = // + 
1. If g, = then foj+1 (gi) > foj (gl). Thus, in this case it is enough to prove 

that foj+1(g1) ? Clfoj+1(g2). Let e' = S( /+,) and e2 = S(g2). Then 

d(e', e2) < Cdd(e',gj+l) + Cd3d(g'+,Igl) + Cd3d(glg2) + Cd2d(g2,e2) 

(4) < CdA-m + 2Cd3C2A-m + Cd2A-m < C2A-m 

so fo(e') < Clfo(e2). Also, since we already know that (b) is true, we have 
fo(e2) < As'foj+1(g2) and foj+i(gj+i) < A-t'fo(e'). Thus, 

foj+l(gl) = foj+l(g'"+l) = Cl lfo3+l(g+l) < C7lA-'1fo(e') 

< A-tfo(e2) < AS-t foj(g2) = As8-t f0j+l(g2) = Clf0j+1(g2)- 

2. Otherwise, if gi gjY+i, then foj+?(gi) < foj(gi). Thus, it is enough to 
check that foj?i(gi) ? CT 1foj+1(g2). But, for e" = S(gl-1+i), then as in (4), 
d(e", e2) < C2A-m. Also, foj+l (gl) = C1fo +l (gj!+,). Thus, from (b) we then get 

foi+l(gl) = Cifoj+i(gjll) > ClA--'fo(e") > A-81fo(e2) 

> At-s'fo?il(g2) = C1foj?1(g2). 

This concludes the proof that (a) is true for fi. 
Clearly foj+1(X) = foj(X), so (c) is also true for fi. 
It remains to check (d). When passing from fo to foo no mass is moved over 

a distance exceeding A-m, because Se,m+l C B(e, A-m), and when going from foj 
to fo +1 no mass is moved over a distance exceeding C2AM- 1, and C2/A < 1. It 
therefore remains to prove that in the construction of fi from fo there are no pairs 
(g1, g2) and (g2, g3) in Sm+1 for which mass is first moved from g, to g2 and then 
at a subsequent step from g2 to g3. To prove this, assume the opposite. Then 

foo (9) > Clfoo(g2) and foo(92) > Clfoo(g3)- 

But, if ei = S(gl) and e3 = S(g3), then as in (4), d(el,e3) < C2A-m, so by the 
hypothesis CT1fo(el) < fA(e3) < Cifo(el). Also, 

A-s fo(ei) < foo(gi) < A t'fo(ei), 

for i = 1 and i = 3. Adding these two inequalities, we would then get 

fo(el) > At'foo(gl) > ClAt/foo(g2) > Ci2At foo(g3) > C2At1-s8fo(e3), 

contradicting fo(ei) < ClfA(e3), as d(el, e3) < C2A-m and Ci = As't'. D 

3.3. Proof of the theorem. We will now use Lemma 7 to construct a sequence 
of probability measures and prove that any limit point of this sequence belongs to 
Ltm nuS. 

We start by defining a probability measure [uo on So (note that So consists of one 
point only, by the assumption diam(X) < 1). Obviously [uo satisfies the hypothesis 
of Lemma 7. By using Lemma 7 to construct ,tt+l = fi on Sj+j from [tj = fo, 
j > 0, we then get a sequence {ftj}j~o of probability measures. This sequence 
belongs to the unit ball of the dual of the Banach space C(X), and thus has at least 
one weak limit point. Let ,u be any limit point of this sequence. In the proof we 
will frequently use the following proposition, based on (d) of Lemma 7. 
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Proposition 8. Let j E N, r > 0, x E X and put C3 = 2C2/( - Cd/A). Then 

[uj (B(x, r)) < fu(B(x, r + C3A-3)) 

and 

,u(B(x,r)) < M3u (B(x, r + C3A3)). 

Proof. According to (d) of Lemma 7 no mass is moved at a distance exceeding 
2CdA-3 when constructing tfj+l from 1uj. Thus, when passing from ,uj to ,Uj+k, 

k > 1, no mass is moved at a distance exceeding 
k-1i Q 

20CdA- Z(Cd/A) < 206 A-3 = C3Ai, 
n==O 1Cd/A 

which means that there is no mass transfer from B(x, r) into the complement of 
B(x, r + C3A-j), and vice versa. Thus, 

tj (B(x, R)) _< Aj+k(B(x, r + C3A-3)) 

and 

Atj+k(B(x,r)) < A3.(B(x, r + C3A-j)). 

Now, as ,u is a weak limit point of {Atj+k}, the same is true for At as well. ElI 

We will now prove that ,u E Lt, n Us,. To this end, fix x E X and some R and k 
for which 0 < R < kR. Then choose integers m and M such that 

(5) kR<A-mr<AkR and R <A-M<R. 
A- 

Denote by eM+j one of the points in SM+i closest to x (there may be several) and 
for j = 0, .. ., M - m define eMj = '(eM-j+i) E SM-j. 

First claim. 

(6) Atrm+2(erm+2) < At(B(X, kR)) < C,3s'(1 + C3)'CliAmi(em). 

Proof. By the definition of eMj and property 3 of the pseudo-metric d, we have 

-m-2 
00 

Cd -m-2 
d(x, em+2) < CdA Z (Cd/A) - = 

-Cd/AA 
j=O -C/ 

Let y E B(em+2, C3A-m-2). Then, by (5), 
2 2 

d(y,x) < CdC3Anm-2 + -Cd A-m-2 < A-m- < kR, 

1 -Cd/A -<kt 

i.e. B(em+2, C3A-m-2) c B(x, kR). PRom Proposition 8 we then get 

Am+2 (em+2) < A(B(em+2, C3A-rn2)) ?< At(B(x, kR)), 

proving the left inequality in (6). To prove the right inequality, note that (5) and 
Proposition 8 imply 

At(B(x, kR)) < Atm(B(x, kR + C3A-m)) < Atm(B(x, (1 + c3)A-m)). 

But, d(x, em) < iCd/AAm. Thus, if e E Sm n B(x, (1 + C3)A-m), then 

c2 

d(e, em) < Cd(l + C3)A-m + 1-C /AA m < C2A-mv 
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so from Lemma 7 it follows that um(e) < Clim(em). Now, 

# (Sm n B(x, (1 + C3)A-m)) < Cs(I + C3)s, 

so from Proposition 8 and the fact that kR < A-m, we get 

1u(B(x, kR)) < itmt(B(x, (1 + C3)A-m)) < Cs(1 + C3)sCli/m(exm), 

which concludes the proof of the first claim. 

Second claim. 

(7) I1-M+1(eM+1) < 1u(B(x,R)) < CS(1 + C3) A 2s'C1LM+1(eM+?). 

Proof. By the definition of eM+1, 

d(eM+1, X) = d(x, SM+1) < A-M-1 < R/A. 

Thus, for y E B(eXM+lC3A-M-1)I 

d(y, x) < CdC3A M-1 + CdA M-1 < A-M < R. 

Again by Proposition 8, 

/AM+1(eM+1) < p(B(eM+l C3AM1)) < AL(B(X, R)), 

proving the left inequality in (7). To prove the right inequality, note that from 
Proposition 8 and the fact that R < A-M+1, by the choice of M, 

pt(B(x, R)) < ItM-1(B(x, R + C3A-M+l)) < ItM-1(B(X, (1 + C3)A-M+l)). 

Also, for g E B(X, R + C3A-M+l) n SM-1i 

d(g, eM-i1) < Cdd(g, x) + Cd d(x, eM+1) + Cd d(eM+1, eM) + Cd d(eM, eM-1) 
<Cd(l + C3)A-M~l + Cd3A-M-1 + Cd3A-M + CdA-M+l ? C2A-M+1 

Thus, from (a) and (b) of Lemma 7 we get (recalling eM-3 = ?(eM-3+1)), 

AM-1 (9) <- cilM-tm(eM-i) < C1A2,'M+1 (eM+l )- 

But, 

# (B(x, (1 + C3)AM+i) n SM-1) < C(1 + C3), 

so 

,u(B(x, R)) < I-M- i(B(x, (1 + C3)A-M+i)) < C8(1 + C3)SA2S CLM~ i(eM+l), 

proving the second claim. To conclude the proof, note that 

p1(em) < A8'(M+1m)tM+i(eM+i) and utm?2(em+2) > At'(M-m-i)uM+i(eM+i) 

by (b) in Lemma 7. Also note that k < AMrn < A2k, by the choice of m and 
M. 

Thus, from the two claims it follows that 

1u(B(x,kR)) < Citm(em) < CAS'(M-m)YM+l(eM+l) < Cks'1u(B(x,R)), 

and similarly, 

u(B(x,kR)) > pm+2 (em+2) > CAt'(M-m)/M+1(eM+?) > Cktpj(B(x,R)), 
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Note that the final constants C depend only on the given constants Cd, Cs, Ct 
and the choice of A, s' and t'. Also note that the last inequality depends on the 
fact that T(X) < +oo. D 

4. THE NON-COMPACT CASE 

In [L-S] Theorem 1 was generalized to a non-compact complete metric space X. 
It is easy to see that their proof holds for a pseudo-metric, too. We conclude this 
paper by showing that Theorem 2 combined with their proof gives the analogue 
generalization of Theorem 2 as well. Before that we just briefly sketch their proof, 
and refer to [L-S] for details: 

Let s' > s and cover X E TY with a countable collection of compact balls 
Xn = B(xo,rn), n E N, xo E X. Every Xn carries a Bun E Us,7 by Theorem 1. 

By using the weak-* compactness of the unit ball of C(Xn) and a Cantor's 
diagonal process they show the existence of a subsequence {, } of {Jan} such that, 
for every continuous f > 0 with compact support on XP, fX fdllj converges to 

fx f dl- for some ,u E Us/. 

Theorem 9. Let X E T, n At be any complete pseudo-metric space. Then there 
exists a ,u E Us/ n Lt. for every t' < t and s' > s. 

Proof. We use the notation above. It remains to prove ,u E Lt.. From Theorem 2 
it is clear that ,ut E Us/ n Lt., where the constant C in Lt. is the same for all j. Let 
x e X, r > 0, k > 1. Let 0 < E < (k - 1)/(k + 1) and pick continuous functions 
0 < fg < 1 such that f = 1 on B(x, (1- E)kr) and g = 1 on B(xr), and such 
that f and g have compact support on B(x, kr) and B(x, (1 + E)r), respectively. 
Put c-1 = Ckt' ((1 - E)/(1 + E))t', choose p such that B(x, kr) C Xp and choose j 
large enough that f X hdl- - fX hdl-jI < E for h = f, g. Then 

,i(B(x, r)) < gd < J gdlgt + E < c lg (B(x, (1 + E)r)) + E 
p p 

< CJL(B(x, (1-E)kr)) + E < c f dlli + E 

< cJ fdl- +cE+c < clu(B(x,kr)) +c +c 
xp 

Letting E -?0 gives Ckt',u(B(x, r) < ,u(B(x, kr), i e. , E Lt i'...................... DH 
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