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A NUMERICAL CHARACTERIZATION 
OF HYPERSURFACE SINGULARITIES 

JUAN ELIAS 

(Communicated by Louis J. Ratliff, Jr.) 

ABSTRACT. In this note we give a numerical characterization of hypersurface 
singularities in terms of the normalized Hilbert-Samuel coefficients, and we 
interpret this result from the point of view of rigid polynomials. 

1. INTRODUCTION 

Herrmann and Ikeda proved that for several types of singularities (Buchs- 
baum of positive depth, homogeneous, and equimultiple), if the minimum 
among the multiplicities of the hypersurfaces containing the singularity coin- 
cides with the multiplicity, then the singularity is a hypersurface [HI]. 

In this paper we prove that the condition above, plus a condition expressed in 
terms of the normalized Hilbert-Samuel coefficients, give a characterization of 
the hypersurface singularities, Theorem 2. 1; we prove this result without any hy- 
pothesis on the singularity. We end this paper interpreting the characterization 
of the hypersurface singularities from the point of view of rigid polynomials, 
Corollary 2.2. 

2. CHARACTERIZATION OF HYPERSURFACE SINGULARITIES 

Let R be the power series ring k[[X1, ... , XNi]], where k is an infinite field. 
Let I c R be a proper ideal of R; we denote by s(I) the order of I and by 
eo(A), ... , ed(A) the normalized Hilbert-Samuel coefficients of A = R/I. 

Let x = {x1, ... , xt} be a set of elements of A such that xi is a de- 
gree one superficial element of A/(xi, ... , xi-,) for all i = 1, ... , t [ZS]; 
we say that x is a superficial sequence of A of length t. We define l(x.) = 
length((x1, ..., Xt1): Xt/(Xl, ... , xt-1)); if A is d-dimensional, d > 2, then 
we put 1(A) =Min{l(x.)Ix. superficial sequence of length d - 1 of A}. We put 
l(A) = 0 for d = 1. Since k is infinite there exists a nonempty Zariski open 
set U(A) of the N(d - 1)-dimensional affine space over k, parameterizing the 
sets of d - 1 linear forms of R such that: for all (LI, ... , Ld-1) e U(A), the 
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cosets in A of L1, ..., Ld are a superficial sequence of length d - 1 and 
s(I) = s(I + (x.)/(x.)). 

For every pair of positive integers (b, e) we define Po, b, e = (r + 1 )e - (r+b) 

where r is the integer such that (b+r1) < e < (b+ and we put l,b,e 
e(e - 1)/2 - (b - 1)(b - 2)/2. 

Theorem 2.1. Let A = R/I be a d-dimensional, d > 1, local ring with embed- 
ding dimension b > 2. Assume that eo(A) = s( I) > 2. The following conditions 
are equivalent: 

(1) el(A) > l(A) + po,b-d+l,e-Pl,b-d+l,e, with e = eO(A). 
(2) There exists F e Ms \ Ms+1, such that I = (F) with s = s(I). 

Proof. If (2) holds then A is Cohen-Macaulay, so l(A) = 0. Since e1 (A) > 0 
and O > PO,b-d+l,e - P1,b-d+l,e [E], we deduce (1). 

Assume d = 1. Condition (1) says e1(A) > PO,b,e - P1,b,e - Let B denote 
the associated graded ring to A, and let J be intersection of the minimal 
primary components of 0 in B. Since B/ J is a one-dimensional graded Cohen- 
Macaulay ring of multiplicity e, for all n > e - 1 we have dimk((B/J),) > e 
[M, Proposition 12.10]. Hence for all n > e - 1 we deduce dimk(Bn) > e. 
From the assumption e = s(I) we obtain dimk(Bn ) = (b-ltn) for n < e - 1. 
Hence we have for n > 0 

en - el(A) = length (A/mn) > en - PObe + (b e 2) e 

m is the maximal ideal of A, and we deduce PO,b,e -Pl,b,e < el(A) < 

PO,b,e (b-1y)+e- 
From this we obtain 0 < Pi ,b e - (b+e-2) + e . Note that the right-hand side 

of the inequality is a decreasing function of b and is negative for b = 3, so we 
deduce b = 2. 

Assume that d > 2. For all superficial sequence x. e U(A) the follow- 
ing holds: dim(A/(x.)) = 1, b(A/(x.)) = b - (d - 1), e = eo(A/(x.)) = 

s(I+ (x.)/(x.)) > 2, and el(A/(x.)) = el(A)-l(A) > Po ,b-d+l1,e -Pl,b-d+1,e; 
so from the case d = 1 we obtain b - d + 1 = 2. Hence we have proved that 
for all d > 1, b = d + 1 holds, and then ht(I) = 1. Let J = (F) be the 
intersection of the minimal primary components of I of height 1. Note that 

order(F) = eo(R/(F)) = eO(A) = s(I); 

from I c (F) we deduce I = (F). 

3. INTERPRETATION IN TERMS OF RIGIDITY 

Definition [E]. Let &' be a set of local rings. We say that a polynomial p(T) e 
Q[T] is rigid for F if there exists a numerical function Fp: N -* N such that 
for all A E F with Hilbert-Samuel polynomial p we have the Hilbert-Samuel 
function is Fp, i.e., the Hilbert-Samuel polynomial determines the Hilbert- 
Samuel function. 

For the basic properties of rigid polynomials see [E, EV, S]. 
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Corollary 2.2. Let F be the set of local rings A = R/I with 1(A) < 1, embedding 
dimension b, and such that eo(A) = s(I) > 2. Then every polynomial p(T) = 

id o(_1)iei(T+d Wi) with el > l + PO,b-d+l,eo = Pl,b-d+l,eo is rigidfor F; 
the associated Hilbert-Samuel function is Fp (n) = (b+ny1) _ (b+n-l-eo) 
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