SAMPLING SEQUENCES FOR HARDY SPACES OF THE BALL

XAVIER MASSANEDA AND PASCAL J. THOMAS

(Communicated by Steven R. Bell)

ABSTRACT. We show that a sequence $a := \{a_k\}_k$ in the unit ball of \mathbb{C}^n is sampling for the Hardy spaces H^p, $0 < p < \infty$, if and only if the admissible accumulation set of a in the unit sphere has full measure. For $p = \infty$ the situation is quite different. While this condition is still sufficient, when $n > 1$ (in contrast to the one dimensional situation) there exist sampling sequences for H^∞ whose admissible accumulation set has measure 0. We also consider the sequence $a(\omega)$ obtained by applying to each a_k a random rotation, and give a necessary and sufficient condition on $\{|a_k|\}_k$ so that, with probability one, $a(\omega)$ is of sampling for H^p, $p < \infty$.

§1. INTRODUCTION

Let \mathbb{B}_n denote the unit ball of \mathbb{C}^n. Let S^n denote the unit sphere and $d\sigma$ its normalized Lebesgue measure. Recall that for any $0 < p \leq \infty$ the Hardy space $H^p(\mathbb{B}_n)$ is the set of functions f holomorphic in \mathbb{B}_n such that

$$
\|f\|_p := \left(\sup_{r<1} \int_{S^n} |r\zeta|^p \, d\sigma(\zeta) \right)^{1/p} < \infty,
$$

where the integral is replaced by a supremum in the case $p = \infty$.

Roughly speaking, we would like to say that a sequence $a := \{a_k\}_k$ of the unit ball is sampling for the space H^p when the values of any function $f \in H^p$, restricted to the sequence, determine the function uniquely, and moreover some inequalities between the H^p-norm and an appropriate norm on the space of functions on the sequence a hold. In [Th] it was shown that a natural notion of sampling for H^p is the following.

Given $\alpha > 1$, let

$$
\Gamma_\alpha(\zeta) := \{z \in \mathbb{B}_n : |1 - \zeta \cdot \bar{z}| < \frac{\alpha}{2} (1 - |z|^2)\}
$$

be the admissible approach region with vertex at $\zeta \in S^n$ and aperture α (see [Ru1, p. 72] for the properties of these regions).

The admissible maximal function on S^n is then defined, for every $\alpha > 1$, as

$$
M^\alpha f(\zeta) := \sup_{z \in \Gamma_\alpha(\zeta)} |f(z)|.
$$

Received by the editors May 4, 1998.

1991 Mathematics Subject Classification. Primary 32A35, 32A30; Secondary 30B20, 30D50.

Both authors were partially supported by a program of the Comunitat de Treball dels Pirineus. The second author was also supported by DGICYT grant PB95-0956-C02-01 and CIRIT grant GRQ94-2014.
For any $0 < p \leq \infty$ and for any $\alpha > 1$ we have $\|M^\alpha f\|_p \leq C_{p, \alpha}\|f\|_p$, where, for functions defined on the unit sphere, $\| \cdot \|_p$ stands for the usual norm in the space $L^p(\mathbb{S}^n)$ ([Ru1, 5.6.5]).

Following [Br-Ni-Oy] we also consider the corresponding maximal function associated to the sequence a:

$$M^\alpha_a(f)(\zeta) := \sup_{z \in a \cap \Gamma_\alpha(\zeta)} |f(z)|.$$

From the above it follows that $\|M^\alpha_a(f)\|_p \leq C_{p, \alpha}\|f\|_p$.

Definition. A sequence a is called a sampling sequence for H^p when there exists $\alpha > 1$ and a constant $C > 0$ such that $\|M^\alpha_a(f)\|_p \geq C\|f\|_p$ for every $f \in H^p$.

In the case where $p = \infty$ this simply says that $\sup_a |f| \geq C\|f\|_\infty$, and by taking powers of f we see that $\sup_a |f| = \|f\|_\infty$.

Given a sequence a let

$$AD_a(a) = \{ \zeta \in S^n : \zeta \in a \cap \Gamma_\alpha(\zeta) \}$$

and define the admissible accumulation set as $AD(a) := \bigcup_{n \geq 1} AD_a(a)$.

Brown, Shields and Zeller showed that the condition $\sigma(AD(a)) = 1$ characterizes the sampling sequences for H^∞ of the disk ([Br-Sh-Ze, Th. 3, (iii)-(iv)])). It will be important to keep in mind that $\sigma(AD(a)) = 1$ if and only if $\sigma_\alpha(AD(a)) = 1$ for some $\alpha > 1$ large enough (see [Th]). Recently the second author showed that the same condition is actually necessary and sufficient for a to be of sampling for any H^p of the disk, $p < \infty$ [Th, Theorem 1].

In this note we first prove that when $n > 1$, the condition $\sigma(AD(a)) = 1$ also characterizes the sampling sequences for H^p, $p < \infty$.

Theorem 1. A sequence a is sampling for H^p, $p < \infty$, if and only if $\sigma(AD(a)) = 1$.

In particular, sampling sequences for H^p are the same for all values $p < \infty$.

For $p = \infty$ the situation is more complicated.

On the one hand it is clear that if a is sampling for H^∞, then necessarily $\overline{a} \cap S^n = S^n$ (if a avoids an open set $\{ \zeta \in S : |1 - \zeta \cdot \eta| < \delta \}$, any peak function for η, for instance $f(z) = z \cdot \eta$, violates the sampling condition). Although $\overline{a} \cap S^n = S^n$ is also sufficient for sampling in the ball algebra $A(B_n)$, for general H^∞ functions this is far from being sufficient: there are sequences which are contained in an H^∞ zero set such that $\overline{a} \cap S^n = S^n$ (for example any sequence a with $\sum_k (1 - |a_k|) < \infty$ having S^n as cluster set).

The proof of Theorem 1 shows that $\sigma(AD(a)) = 1$ is as well sufficient for a to be sampling for H^∞. This condition is far from being necessary.

Definition. A set E in S^n is a max-set when $\text{esssup}_E |f| = \|f\|_\infty$ for all $f \in H^\infty$.

It is clear from the definition that if $AD(a)$ contains a max-set, then a must be sampling for H^∞. Since there exist max-sets of arbitrarily small measure [Ru2, 13.4] it is possible to construct, for every $\varepsilon > 0$, a sampling sequence a with $\sigma(AD(a)) < \varepsilon$. This can be pushed a little further:

Theorem 2. If $n > 1$, there exist sampling sequences for H^∞ with $\sigma(AD(a)) = 0$.

Several conjectures can be made regarding necessary or sufficient conditions for sampling in H^∞, although we have not been able to prove any of them. All the
attempts to prove any of these conjectures have led us to the well-known Fatou problem on radial behaviour of holomorphic bounded functions in higher dimension (see [Ru1, Chapter 11]).

We also prove a probabilistic result on random sampling sequences for H^p with prescribed radii, along the lines of the results in [Bo], [Co] and [Ma].

Consider the probability space $\Omega = \prod_{k=1}^{\infty} \Omega_k$, where Ω_k is the unit sphere S^n for all k. \mathcal{A}_k denotes the σ-algebra of Lebesgue measurable sets on S^n, and P_k denotes the normalized Lebesgue measure σ on the sphere. An element of Ω is denoted by $\omega = (\zeta_1, \zeta_2, \ldots)$, where $\zeta_k \in S^n$. Each $\zeta_k : \Omega \rightarrow S^n$ can be viewed as a random variable defined on S^n, with values on S^n as well. To construct the space of probability, one can alternatively take $\Omega_k = O(2^n)$, the group of rotations of \mathbb{C}^n, P_k the Haar measure on $O(2n)$ and \mathcal{A}_k the σ-algebra of measurable sets with respect to the Haar measure in $O(2n)$. Then the elements of Ω are denoted by $\omega = (\mathcal{R}_1, \mathcal{R}_2, \ldots)$.

Given a sequence a we consider a sequence of independent and uniformly distributed random variables $\zeta_k(\omega)$ in S^n (resp. \mathcal{R}_k^ω in $O(2n)$) and define the associated random sequence as $a(\omega) := \{a_k(\omega)\}_k$, where $a_k(\omega) = |a_k|\zeta_k(\omega)$ (resp. $a_k(\omega) = \mathcal{R}_k^\omega(a_k)$). Notice that $|a_k| = |a_k(\omega)|$ for all ω and for all k.

Theorem 3. Let a be a sequence in \mathbb{B}_n.

(a) If $\sum_{k=1}^{\infty} (1 - |a_k|)^n = \infty$, then $P(\{\omega : \sigma(AD(a(\omega))) = 1\}) = 1$.
(b) If $\sum_{k=1}^{\infty} (1 - |a_k|)^n < \infty$, then $\sigma(AD(a(\omega))) = 0$ for all ω.

As a consequence of Theorem 1 we have the following:

Corollary. Let a be a sequence in \mathbb{B}_n.

(a) If $\sum_{k=1}^{\infty} (1 - |a_k|)^n = \infty$, then $P(\{\omega : a(\omega) \text{ is sampling for } H^p\}) = 1$ for any $p \leq \infty$.
(b) If $\sum_{k=1}^{\infty} (1 - |a_k|)^n < \infty$, then $P(\{\omega : a(\omega) \text{ is sampling for } H^p\}) = 0$ for any $p < \infty$.

Some remarks are in order.

When the generalized Blaschke condition $\sum_k (1 - |a_k|)^n < \infty$ holds, the sequence is actually almost surely contained in an H^p zero set, for all $p < \infty$ [Ma, Theorem 1.2]. Thus the generalized Blaschke condition distinguishes two sharply contrasting situations: either $a(\omega)$ is almost surely sampling for H^p or it is almost surely contained in an H^p zero set.

In the unit disk the Blaschke condition on a implies that every $a(\omega)$ is an H^p zero sequence, for all $p \leq \infty$. In particular, $a(\omega)$ is never a sequence of sampling for H^p, even for $p = \infty$. On the other hand, when $n > 1$ and $\sum_k (1 - |a_k|)^n < \infty$ we have $\sigma(AD\alpha(a(\omega))) = 0$ for all ω, but as seen in Theorem 2, this is not enough to deduce that $a(\omega)$ is not sampling for $H^\infty(\mathbb{B}_n)$.

As in [Co, Corollary 1] one can also randomize the moduli $|a_k|$ independently of $\{\zeta_k(\omega)\}_k$, and show that Theorem 3 also holds for $a_k(\omega) = r_k(\omega)\zeta_k(\omega)$, where the $\zeta_k(\omega)$ are as before and $\{r_k(\omega)\}_k$ satisfy:

(i) $r_k(\omega) \in (0, 1)$ for all k and: in case (a) almost surely $\sum_k (1 - r_k(\omega))^n = \infty$; in case (b) almost surely $\sum_k (1 - r_k(\omega))^n < \infty$.
(ii) each $r_k(\omega)$ is independent of $\{\zeta_k(\omega)\}_k$.

In the following three sections we prove respectively Theorems 1, 2 and 3.
§2. Proof of Theorem 1

A function f defined on \mathbb{B}_n is said to have admissible limit at $\zeta \in S^n$ when the limit $\lim_{z \to \zeta} f(z)$ exists, is finite and is the same for all $\alpha > 1$. The limit is denoted by $f^*(\zeta)$.

The proof that $\sigma(AD(a)) = 1$ implies a sampling for H^p, $p \leq \infty$, is essentially due to Brown, Shields and Zeller, and we include it for the sake of completeness.

For $\alpha > 1$, every $f \in H^p$ has admissible limit at almost every ζ and $\|f^*\|_p = \|f\|_p$ [Ru1, 5.6.8]. Thus for almost every $\zeta \in AD\alpha(a)$,

$$M_\alpha^p(f) \geq \lim_{z \to \zeta} |f(z)| = |f^*(\zeta)|.$$

Hence if $\sigma(AD\alpha(a)) = 1$, then necessarily $\|M_\alpha^p(f)\|_p \geq \|f^*\|_p$.

Let us see now that $\sigma(AD\alpha(a)) = 1$ is also necessary, if $p < \infty$.

Assume $\sigma(AD\alpha(a)) < 1$. By the same argument as in [Br-Sh-Ze], we may assume that there exist a compact $A \subset S^n$ and $N \in \mathbb{N}$ such that $\sigma(A) > 0$ and $\Gamma_\alpha(\zeta) \cap a \subset B(0, 1 - 1/N)$ for all $\zeta \in A$. We will use the following technical result.

Lemma. For any $m \in \mathbb{N} \setminus \{0\}$ and $p > 0$, there exists a positive real function $\psi_m \in C(\overline{\mathbb{B}_n})$ such that:

(i) $\psi_m(z) \leq m$ for all $z \in \overline{\mathbb{B}_n}$, and $\psi_m(z) = m$ for $z \in A$;

(ii) $\psi_m(z) \leq 1$ for $z \in B(0, 1 - 1/N)$;

(iii) $\sigma(\{\zeta \notin A : M_\alpha^p\psi_m(\zeta) \geq 1\}) \leq m^{-p}$.

Proof. Let $\varrho(\zeta, \eta) = |1 - \zeta \cdot \eta|$ denote the non-isotropic pseudodistance on $\overline{\mathbb{B}_n}$ and let $\varrho(z, A) := \inf_{\zeta \in A} \varrho(z, \zeta)$. Define

$$\psi_m(z) := |z|^{\mu_m} \max\left(m(1 - \lambda_m \varrho(z, A)), 1/m\right),$$

where λ_m and μ_m are sequences of positive numbers increasing to infinity whose growth will be determined later on.

The property (i) is then clear, and we ensure (ii) by choosing μ_m large enough so that $m(1 - 1/N)^{\mu_m} \leq 1$.

Let us now prove (iii). Take $\zeta \notin A$ and suppose that there exists $z \in \Gamma_\alpha(\zeta)$ such that $\psi_m \geq 1$. This implies that $m(1 - \lambda_m \varrho(z, A)) \geq 1$; thus $\varrho(z, A) \leq 1/\lambda_m$.

Then, by the triangle inequality for $\varrho^{1/2}$,

$$\varrho(\zeta, A)^{1/2} \leq \left(\frac{\alpha}{2} (1 - |z|^2)\right)^{1/2} + \varrho(z, A)^{1/2} \leq (\sqrt{\alpha} + 1)\varrho(z, A)^{1/2} \leq \frac{(\sqrt{\alpha} + 1)}{\sqrt{\lambda_m}}.$$

Since $S^n \setminus A$ is an open set of finite measure, we may end the proof by choosing λ_m large enough so that

$$\sigma(\{\zeta \notin A : \varrho(\zeta, A) \leq (\sqrt{\alpha} + 1)^2 / \lambda_m\}) \leq m^{-p}.$$

□

This Lemma and [Ru2, Theorem 3.5] give us, for any $\varepsilon > 0$, a polynomial P_m such that $|P_m| \leq \psi_m$ on the closed ball, and

$$\sigma(\{\zeta \in S^n : |P_m(\zeta)| < \psi_m(\zeta) - \varepsilon\}) < \varepsilon.$$
For a given \(p > 0 \), and taking \(\varepsilon \) small enough, we use Lemma (i) to obtain the following lower bound:

\[
\int_{S^n} |P_m|^p d\sigma \geq \int_A |P_m|^p d\sigma \geq \frac{1}{2} \int_A |\psi_m|^p d\sigma = \frac{m^p}{2} \sigma(A).
\]

On the other hand, \(M^\alpha P_m(\zeta) \leq M^\alpha \psi_m(\zeta) \) for \(\zeta \notin A \), and by Lemma (ii) also \(M^\alpha P_m(\zeta) \leq \sup_{z \in B(0,1-1/N)} \psi_m(z) \leq 1 \) for \(\zeta \in A \). This and Lemma (iii) yield:

\[
\int_{S^n} (M^\alpha P_m)^p d\sigma \leq \sigma(A) + \int_{S^n \setminus A} (M^\alpha \psi_m)^p d\sigma
\]

\[
\leq \sigma(A) + \int_{\{\zeta \notin A : M^\alpha \psi_m > 1\}} (M^\alpha \psi_m)^p d\sigma + \int_{\{\zeta \notin A : M^\alpha \psi_m \leq 1\}} (M^\alpha \psi_m)^p d\sigma
\]

\[
\leq \sigma(A) + m^{-p}(\sup_{B_n} \psi_m)^p + \sigma(S^n \setminus A) \leq 2.
\]

Since this is bounded independently of \(m \), \(a \) cannot be sampling for \(H^p \). This finishes the proof of Theorem 1.

§3. PROOF OF THEOREM 2

Let \(\{\eta_k\}_k \) be a dense sequence on the sphere, and consider for each \(k \) the big circle \(C_{\eta_k} = \{e^{i\theta} \eta_k : \theta \in [0, 2\pi)\} \). Denote \(E = \bigcup_k C_{\eta_k} \).

Take next a dyadic decomposition of each big circle \(C_{\eta_k} \): for any \(m \in \mathbb{N} \) consider the intervals

\(f_{m,j}^{(k)} = \{ e^{i\theta} \eta_k \in S^n : (j-1)2^{-m} \leq \frac{\theta}{2\pi} < j2^{-m} \}, \quad j = 1, \ldots, 2^m. \)

Let \(c_{m,j}^{(k)} = e^{i2\pi 2^{-m}(j-1/2)} \eta_k \) denote the center of the subinterval \(f_{m,j}^{(k)} \).

Our sequence is defined as \(a = \{a_{m,j}^{(k)}\}_{k,m,j} \), where \(a_{m,j}^{(k)} = (1 - \frac{\alpha_k}{2}) c_{m,j}^{(k)} \) and \(\{\alpha_k\}_k \) is such that \(\sum_k (k \alpha_k)^{-1} < \infty \).

Let us see first that \(a \) is sampling for \(H^\infty \). By construction, and according to the theorem of Brown, Shields and Zeller, on each slice \(D_{\eta_k} = \eta_k \mathbb{D} \) the sequence \(\{a_{m,j}^{(k)}\}_{m,j} \subset D_{\eta_k} \) is sampling for \(H^\infty(D_{\eta_k}) \), since the non-tangential accumulation set is all \(C_{\eta_k} \). Thus, given \(f \in H^\infty \), every slice function \(f_{\eta_k}(\lambda) = f(\lambda \eta_k), \lambda \in \mathbb{D} \), has radial limits \(f_{\eta_k}^{*} \in L^\infty(\mathbb{T}) \) satisfying \(\|f_{\eta_k}^{*}\|_{L^\infty(\mathbb{T})} \leq S_f \), where \(S_f = \sup_a |f| \).

The maximum principle then yields \(|f| \leq S_f \) in \(\bigcup_k D_{\eta_k} \), which by the density of \(\{\eta_k\}_k \) in \(S^n \) already implies \(\|f\|_{\infty} \leq S_f \).

It remains to prove that \(\sigma(AD(a)) = 0 \). Define

\(F = \{ \zeta \in S^n : \varrho(\zeta, C_{\eta_k}) < k\alpha_k \text{ for infinitely many } k \} \),

where \(\varrho \) is the non-isotropic pseudodistance defined at the beginning of the proof of the Lemma. Since \(\sigma(F) \leq \sum_{k \geq p} (k \alpha_k)^{n-1} \) for all \(p \in \mathbb{N} \), we deduce that \(\sigma(F) = 0 \).

On the other hand, for every \(\zeta \notin E \cup F \), the quotient \(\alpha_k/\varrho(\zeta, C_{\eta_k}) \) (which is bounded by \(1/k \) for \(k \) big enough) tends to 0, so \(\zeta \) is not approachable within an admissible region by points of \(a \). Hence \(AD(a) \) is contained in the zero measure set \(E \cup F \).
§4. Proof of Theorem 3

Proof of (a). It will be enough to show that for some \(\alpha > 1 \)

\[
\int_\Omega \sigma(AD_\alpha(a(\omega))) \, dP(\omega) = 1.
\]

Notice that

\[
(1) \quad AD_\alpha(a(\omega)) = \bigcap_{p \in \mathbb{N}} \bigcup_{k \geq p} I_\alpha(a_k(\omega))
\]

\[= \{ \zeta \in S : \zeta \in I_\alpha(a_k(\omega)) \text{ for infinitely many } k \} \]

where \(I_\alpha(a_k(\omega)) = \{ \zeta \in S^n : a_k(\omega) \in \Gamma_\alpha(\zeta) \} \).

Since the random variables \(\zeta_k(\omega) \) are uniformly distributed one has:

\[
P(\{ \omega : \zeta \in I_\alpha(a_k(\omega)) \}) = \sigma(I_\alpha(a_k)) = C(1 - |a_k|^2)^n
\]

for some constant \(C > 0 \) depending only on \(\alpha \) and the dimension.

Now \(\sum_k P(\{ \omega : \zeta \in I_\alpha(a_k(\omega)) \}) = \infty \), so the Borel-Cantelli lemma yields:

\[
P(\{ \omega : \zeta \in I_\alpha(a_k(\omega)) \text{ for infinitely many } k \}) = 1.
\]

In particular

\[
P(\{ \omega : \zeta \in \bigcup_{k \geq p} I_\alpha(a_k(\omega)) \}) = 1
\]

for all \(\zeta \in S^n \) and all \(p \in \mathbb{N} \). Thus

\[
\int_\Omega \sigma(\bigcup_{k \geq p} I_\alpha(a_k(\omega))) \, dP(\omega) = \int_{S^n} \int_\Omega \bigcup_{k \geq p} I_\alpha(a_k(\omega))(\zeta) \, dP(\omega) \, d\sigma(\zeta) = 1
\]

for all \(p \in \mathbb{N} \). This together with (1) shows that the required equality holds. \(\square \)

Proof of (b). This is immediate from (1) and the fact that \(\sigma(I_\alpha(a_k(\omega))) = C(1 - |a_k|^2)^n \) for all \(\omega \). \(\square \)

Acknowledgements

We would like to thank Joaquim Ortega Cerdà for valuable conversations on the subject.

References

[Bo] Bomash G., A Blaschke-type product and random zero sets for Bergman spaces, Ark. Mat. 30 (1992), 45-60. MR 93g:30047

DEPARTAMENT DE MATEMÀTICA APLICADA I ANÀLISI, UNIVERSITAT DE BARCELONA, GRAN VIA, 585, 08071-BARCELONA, SPAIN

E-mail address: xavier@cerber.mat.ub.es

LABORATOIRE EMILE PICARD, UNIVERSITÉ PAUL SABATIER, 118 ROUTE DE NARBONNE, 31062 TOULOUSE CEDEX, FRANCE

E-mail address: pthomas@cict.fr