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ON A GENERALIZED CORONA PROBLEM
ON THE UNIT DISC

JORDI PAU

(Communicated by Juha M. Heinonen)

Abstract. Let g, f1, . . . , fn ∈ H∞. We give a sufficient condition on the size
of a function g in order for it to be in the ideal generated by f1, . . . , fn. In
particular, this improves Cegrell’s result on this problem.

Introduction

Let D be the unit disc in the complex plane, and let H∞ = H∞(D) be the
Banach algebra of bounded analytic functions on D. Carleson’s corona theorem
says that the unit disc is dense in the space MH∞ of maximal ideals of H∞ with
the weak-star topology. This result is equivalent to the following fact: if we have
functions f1, . . . , fn ∈ H∞ such that

n∑
j=1

|fj(z)| ≥ δ > 0, ∀z ∈ D,

then there exist solutions g1, . . . , gn ∈ H∞ of the equation

n∑
j=1

fjgj = 1.

In order to generalize this result, it is natural to ask if it is possible to replace the
function 1 by an arbitrary function g ∈ H∞; that is, one asks if the condition

(1) |g(z)| ≤ C
n∑
j=1

|fj(z)|, ∀z ∈ D,

implies that the function g belongs to the ideal I generated by f1, . . . , fn. Condition
(1) is clearly a necessary condition, but an example given by Rao (see [Ra]) shows
that the answer is, in general, negative. Thus the following problem arises naturally.
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Problem A. Let h be a positive continuous function on [0,∞) increasing in a
neighbourhood of zero, and let g, f1, . . . , fn ∈ H∞. For which functions h does the
condition

(2) |g(z)| ≤ h(|f1(z)|+ · · ·+ |fn(z)|), ∀z ∈ D,

imply that the function g is in the ideal generated by f1, . . . , fn?

For functions of the form h(s) = sα, with α ≥ 1, the problem is completely
solved. For 1 ≤ α < 2, a variation of Rao’s example shows that the answer is
negative, and for α > 2, work of Wolff, Cegrell and others gives an affirmative
answer (see [Ce1], [Ga]). The problem for α = 2 was an old question of Wolff,
which remained open for twenty years. However, Treil (see [Tr]) has recently shown
(using a connection with the best estimates of the solutions of the corona theorem)
that the answer is, in general, negative.

In [Li], Lin gave an affirmative answer for this problem for the function

h(s) = s2(− log s)−(3/2+ε)

with ε > 0, and in [Ce2] Cegrell established the following strongest known positive
case for this problem.

Theorem A (Cegrell). Let f1, . . . , fn ∈ H∞ with |f(z)|2 =
∑n

j=1 |fj(z)|2 > 0, for
all z ∈ D. Then, Problem A has an affirmative answer for

h(s) =
s2

(− log s)3/2(log(− log s))3/2 log log(− log s)
.

Our main result below is an improvement of Cegrell’s theorem.

Theorem 1. Let k : (0, 1) → [0,∞) be a nondecreasing bounded continuous func-
tion such that k(x)/x is nonincreasing and∫ 1

0

k(x)
x
| log x| dx < +∞,

and let H(x) =
√
k(x)

∫ x
0
k(s)
s ds. Furthermore, let g, f1, . . . , fn ∈ H∞, where

0 < |f |2 :=
∑n
j=1 |fj |2 < 1. Then the condition

|g| ≤ |f |2H(|f |2)

implies the existence of solutions g1, . . . , gn ∈ H∞ of the equation

g = f1g1 + · · ·+ fngn.

For example, if we take k(x) = | log x|−2(log | log x|)−3/2, we see that Problem
A has an affirmative answer for the function

h(s) = s2(− log s)−3/2(log(− log s))−1,

and this clearly improves Cegrell’s result.
For 1 ≤ p <∞, let Hp be the Hardy space of analytic functions in the unit disc

such that

‖f‖pp = sup
0<r<1

∫ 2π

0

|f(reiθ)|p dθ
2π

<∞.
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It is well known that an analytic function f belongs to Hp if and only if the
nontangential maximal function Mf(eiθ) = sup{|f(z)| : z ∈ Γ(θ)} belongs to the
usual Lebesgue space Lp(T), where

Γ(θ) :=
{
z ∈ D : |eiθ − z| < (1 + α)(1 − |z|)

}
is the Stolz angle with vertex at eiθ and fixed aperture α > 0 (the choice of α is
irrelevant here), and T denotes the unit circle. Several Hp versions of the corona
theorem have been considered. Concretely, one is interested in conditions on func-
tions f1, . . . , fn ∈ H∞ such that the equation

(3) 1 = f1g1 + · · ·+ fngn

has solutions g1, . . . , gn in Hp. If |f |2 =
∑n
j=1 |fj |2 and |g|2 =

∑n
j=1 |gj|2, it follows

from (3) that 1 ≤ |f ||g|, and hence M(|f |−1) ∈ Lp(T) is a necessary condition. We
note that when p =∞, this is the usual corona condition. However, for 1 ≤ p <∞,
this condition is far from being sufficient. In [ABN], it is shown that, for any ε > 0,
the stronger condition M(|f |−2+ε) ∈ Lp(T) is not sufficient. Our next result is the
Hp version of Theorem 1.

Theorem 2. Let k be as in Theorem 1, let H(x) =
(
k(x)

∫ x

0

k(s)/s ds
)1/2

and let

1 ≤ p <∞. Given functions g, f1, . . . , fn ∈ H∞, the condition

M
( g

|f |2H(|f |2)
)
∈ Lp(T)

implies the existence of solutions g1, . . . , gn ∈ Hp of the equation

g = f1g1 + · · ·+ fngn.

Finally, we want to remark that in both theorems, only the behavior of the
function k, and hence H , near zero is essential.

1. Carleson measures and the ∂-equation

Solutions of the ∂-equation with boundary control will be of vital importance in
the proofs of the main theorems, and Carleson measures play an important role in
obtaining these solutions. We recall that a positive Borel measure µ on D is called
a Carleson measure if there exists a constant C such that

(4)
∫
D
|h|2 dµ ≤ C‖h‖22,

for every function h in the Hardy spaceH2. It is well known that Carleson measures
are those positive measures µ for which there exists a constant A such that

µ(Q) ≤ A l(Q)

for every Carleson square Q defined by

Q = {reiθ ∈ D : 1− r < l(Q), |θ − θ0| < l(Q)}.
Denote by N(µ) = sup {µ(Q)/ l(Q)} the Carleson norm of µ, where the supremum
is taken over all Carleson squares Q. The operators ∂ and ∂ are defined by

∂f =
∂f

∂z
=

1
2
(∂f
∂x
− i∂f

∂y

)
, ∂f =

∂f

∂z̄
=

1
2
(∂f
∂x

+ i
∂f

∂y

)
.

By the Cauchy-Riemann equations, a function f is analytic if and only if ∂f = 0.
Recall that we can rewrite the Laplacian operator as ∆ = 4∂ ∂. We need the
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following result of T. Wolff on the existence of bounded solutions of the ∂-equation
(see, for example, [Ga] p. 322).

Lemma 1. Let G(z) be bounded and C1 on the disc D, and assume that the mea-
sures dµ(z) = |G(z)|2 log 1

|z| dx dy and dσ(z) = |∂G(z)| log 1
|z| dx dy are Carleson

measures. Then there exists a function u ∈ C(D) ∩C1(D) such that ∂u = G and

‖u‖L∞(T) ≤ C1N(µ)1/2 + C2N(σ).

We will also need an Lp-version of the Wolff criteria. The next lemma is a
refinement of the version given in [ABN].

Lemma 2. Let 1 ≤ p <∞, and let G be a C1 function in D such that:
(a) G = ϕψ, where M(ϕ) ∈ Lp(T), and |ψ(z)|2 log 1

|z| dx dy is a Carleson mea-
sure;

(b) for every function k ∈ Hq, where 1/p+ 1/q = 1, we have∫
D
|k(z)||∂G(z)| log

1
|z| dx dy ≤ B‖k‖q.

Then there exists a function u ∈ C(D) ∩ C1(D) such that ∂u = G and∫ 2π

0

|u(eiθ)|p dθ ≤ C,

where C depends only on the Lp-norm of M(ϕ), the constant B and the Carleson
norm of the measure of (a).

Proof. Let q be the conjugate exponent of p, 1 < q ≤ ∞. By duality,

inf
{
‖b‖p : ∂b = G

}
= sup

{∣∣ 1
2π

∫ 2π

0

Fk dθ
∣∣ : k ∈ Hq, k(0) = 0, ‖k‖q ≤ 1

}
where F is a priori solution, say the one given by the Cauchy kernel, which is
continuous on D. By Green’s formula,

1
2π

∫ 2π

0

Fk dθ =
1

2π

∫
D

∆(Fk) log
1
|z| dx dy

=
2
π

∫
D
k′(z)G(z) log

1
|z| dx dy +

2
π

∫
D
k(z)∂G(z) log

1
|z| dx dy = I1 + I2.

It is proved in [ABN] that if |ψ|2 log 1
|z| is a Carleson measure with Carleson

norm K, then∫
D
|k′(z)| |ϕ(z)| |ψ(z)| log

1
|z| dx dy ≤ C ‖k‖Hq‖Mϕ‖pK

where C is an absolute constant. This implies the required bound for I1, and the
boundness of I2 follows from condition (b). �

The following lemma can be found in [Ni]. For completeness we will give a proof
here.

Lemma 3. Let u ∈ C2(D) be a bounded subharmonic function. Then

dλ(z) = ∆u(z) log
1
|z| dx dy

is a Carleson measure with Carleson norm bounded by 2πe‖u‖∞.
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Proof. By considering the function b(z) = u(z) + ‖u‖∞ we can assume that our
function u is positive. Let h ∈ H2. Then, for t > 0,

∆(|h|2etu) = 4|h′|2etu + |h|2∆etu + 8 Re (∂(|h|2) ∂etu)

= 4|h′|2etu + |h|2(4t2|∂u|2 + t∆u)etu + 8tetuRe (h ∂h ∂u)

= t|h|2etu∆u + etu|2∂h+ 2th ∂u|2

≥ t|h|2etu∆u ≥ t|h|2∆u.

Thus we have∫
D
|h(z)|2∆u(z) log

1
|z| dx dy ≤ inf

t>0

1
t

∫
D

∆(|h(z)|2etu(z)) log
1
|z| dx dy,

which, by Green’s formula, is bounded by

inf
t>0

1
t

∫
∂D
|h|2etu ≤ inf

t>0

2π
t
‖etu‖∞‖h‖22 = 2πe‖u‖∞‖h‖22 .

(The last identity is obtained by computation of the minimum of t−1‖etu‖∞, which
is attained at the point t0 = 1/‖u‖∞.) Hence the measure λ is a Carleson measure
with Carleson norm bounded by 2πe‖u‖∞. �

Given functions f1, . . . , fn ∈ H∞, we write |f |2 =
∑n

i=1 |fi|2, and |f ′|2 =∑n
i=1 |f ′i |2. The next result is the key for the proof of Theorems 1 and 2.

Lemma 4. Let k : (0, 1) → [0,∞) be a bounded continuous function such that∫ 1

0
k(x)
x | log x | dx <∞. Let f1, . . . , fn ∈ H∞ with 0 < |f |2 < 1. Then the measures

(a)
|∂(|f |2)|2
|f |4 k(|f |2) log

1
|z| dx dy,

(b)
|f |2|f ′|2 − |∂(|f |2)|2

|f |4
( ∫ |f |2

0

k(s)
s

ds
)

log
1
|z| dx dy

are Carleson measures with Carleson norm bounded by C
∫ 1

0
k(s)
s | log s| ds.

We note that when n = 1, part (b) is vacuous and part (a) is a known result
that is also true for bounded analytic functions vanishing in D (see [ABN]).

Proof. Consider the function

U(z) = log |f(z)|
∫ |f(z)|2

0

k(s)
s

ds+
∫ |f(z)|2

0

k(s)
s
| log s| ds.

It clearly satisfies

0 ≤ U(z) ≤ 2
∫ |f(z)|2

0

k(s)
s
| log s| ds,

and a computation gives
1
4

∆U(z) = S(z),

where

S =
|∂(|f |2)|2
|f |4 k(|f |2) +

|f |2|f ′|2 − |∂(|f |2)|2
|f |4 (

∫ |f |2
0

k(s)
s

ds).

Now, applying Lemma 3, we obtain the desired conclusion. �
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2. Proof of Theorem 1

The proof follows standard arguments with the use of Lemma 4 as a new ingre-
dient. By a standard normal families argument, we can assume that the functions
f1, . . . , fn are analytic in a neighborhood of the closed unit disc. For j = 1, . . . , n
we define

ϕj(z) =
fj(z)
|f(z)|2 .

We see that the functions ϕj belong to C∞(D) and satisfy the equation
∑n

j=1 fjϕj =
1. For j, k = 1, . . . , n, let

Gjk = ϕj∂ϕk.

Assume that for j, k = 1, . . . , n we can solve the ∂-equations

(5) ∂ujk = g Gjk,

with ‖ujk‖L∞(T) ≤M . Then, for j = 1, . . . , n, the functions

gj = gϕj +
n∑
k=1

(ujk − ukj)fk

are bounded, satisfy ∂gj = 0 and so are analytic, and satisfy the equation

g =
n∑
j=1

fjgj.

It only remains to show that (5) has bounded solutions. To see this, we will use
Lemma 1. Fix j, k, and denote Gjk by G. A computation gives

(6) Gjk =
f̄j
|f |6

∑
l 6=k

fl (flf ′k − fkf ′l )

and

(7)
n∑

j,k=1

|f ′kfj − fkf ′j|2 = |f |2 |f ′|2 − |∂(|f |2)|2 .

By (6) and (7),

(8) |G| ≤ 2
(|f |2|f ′|2 − |∂(|f |2)|2)1/2

|f |4 .

Using (8) and our condition on the size of |g| we see that

|gG|2 ≤ (|f |2|f ′|2 − |∂(|f |2)|2)
|f |4 (

∫ |f |2
0

k(s)
s

ds) k(|f |2),

and because k is bounded,

|g(z)G(z)|2 log
1
|z| dx dy

is a Carleson measure by Lemma 4.
We have ∂(gG) = g′G + g∂G, and since |g| ≤ |f |2H(|f |2), we have that the

measure |g(z)∂G(z)| log 1
|z| dx dy is a Carleson measure by the following result.

Lemma 5. The measure |f(z)|2H(|f(z)|2) |∂G(z)| log 1
|z| dx dy is a Carleson mea-

sure.
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To prove this, we note that k(|f |2) ≤
∫ |f |2

0
k(s)
s ds, since the function k(x)/x is

nonincreasing. Also, a computation gives

(9) |∂G| ≤ 2|G| |∂(|f |2)|
|f |2 +

|f |2|f ′|2 − |∂(|f |2)|2
|f |6 .

So, by (9) and then (8),

|f |2H(|f |2) |∂G| ≤ 2H(|f |2) |G| |∂(|f |2)|+ (|f |2|f ′|2 − |∂(|f |2)|2)
|f |4

∫ |f |2
0

k(s)
s

ds

≤ 2
|∂(|f |2)|2
|f |4 k(|f |2) + 2

|f |2|f ′|2 − |∂(|f |2)|2
|f |4 (

∫ |f |2
0

k(s)
s

ds),

and the result follows by Lemma 4.
It remains to check that

|g′(z)G(z)| log
1
|z| dx dy

is a Carleson measure. Let h ∈ H2. Then∫
D
|h(z)|2|(g′G)(z)| log

1
|z| dx dy =

∫
A

+
∫
D\A

= I1 + I2,

where A = {z : |g(z) ≤ |f(z)|5}. For z ∈ A we have

|(g′G)(z)| ≤ |g
′(z)|2
|g(z)| +

|f ′(z)|2
|f(z)| .

Since for F ∈ H∞, the measure |F
′(z)|2
|F (z)| log 1

|z| dx dy is Carleson (see [Ga], p. 327, or
apply Lemma 4 with k(x) = x1/2), we see that I1 ≤ C1‖h‖2H2 , by (4). To estimate
I2, let

B(|f |2) =
(|f |2|f ′|2 − |∂(|f |2)|2)

|f |4
( ∫ |f |2

0

k(s)
s

ds
)
.

Since k is nondecreasing, we see that

|g′G| ≤ |g′|2 |g|−2k(|f |2) +B(|f |2)
≤ |g′|2 |g|−2s(|g|2) +B(|f |2)

in D \ A, where s(x) = k(x1/5). One easily verifies that s satisfies the condition∫ 1

0
s(x)
x | log x| dx < ∞. Then I2 ≤ C2 ‖h‖2H2 by Lemma 4 and (4). Hence the

measure
|(g′G)(z)| log

1
|z| dx dy

is a Carleson measure. By Lemma 1, the proof is complete.

3. Proof of Theorem 2

For j, k = 1, . . . , n, let Gjk = ϕj∂ϕk, where ϕj = f̄j |f |−2. As in the proof of
Theorem 1, it is sufficient to solve the ∂-equations ∂ujk = g Gjk, with ‖ujk‖Lp(T) ≤
M . For this, we will make use of Lemma 2. Fix j, k, and for ease of notation, denote
Gjk by G. We can write gG in the form gG = φψ1, where φ = g |f |−2(H(|f |2))−1

and ψ1 = |f |2H(|f |2)G. By hypothesis, M(φ) ∈ Lp(T), and the proof of Theorem
1 shows that

|ψ1(z)|2 log
1
|z| dx dy
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is a Carleson measure. So condition (a) of Lemma 2 is satisfied. To check condition
(b), let k ∈ Hq, where 1/p + 1/q = 1. We have ∂(gG) = g′G + g∂G, and we can
write |g∂G| as |φ|ψ2, where ψ2 = |f |2H(|f |2) |∂G|. By Lemma 5, the measure

dµ(z) = ψ2(z) log
1
|z| dx dy

is a Carleson measure. Then∫
D
|k(z)| |(g∂G)(z)| log

1
|z| dx dy ≤

( ∫
D
|φ|p dµ

)1/p( ∫
D
|k|q dµ

)1/q
≤ C‖M(φ)‖Lp(T) ‖k‖Hq ,

since, if µ is a Carleson measure and Mψ ∈ Lp(T), then
∫
D |ψ|p dµ ≤ ‖Mψ‖pLp(T)

(see [Ga], p. 32). An argument similar to that in the proof of Theorem 1 shows
that ∫

D
|k(z)| |(g′G)(z)| log

1
|z| dx dy ≤ C ‖k‖Hq ,

and condition (b) of Lemma 2 is satisfied. This completes the proof.
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terra, Spain

E-mail address: jpau@mat.uab.es

http://www.ams.org/mathscinet-getitem?mr=97g:30036
http://www.ams.org/mathscinet-getitem?mr=91h:30059
http://www.ams.org/mathscinet-getitem?mr=95k:30069
http://www.ams.org/mathscinet-getitem?mr=83g:30037
http://www.ams.org/mathscinet-getitem?mr=94j:30033
http://www.ams.org/mathscinet-getitem?mr=87i:47042
http://www.ams.org/mathscinet-getitem?mr=35:1795
http://www.ams.org/mathscinet-getitem?mr=2003k:30077

	Introduction
	1. Carleson measures and the -equation
	2. Proof of Theorem ??
	3. Proof of Theorem ??
	References

