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PERIODS FOR TRANSVERSAL MAPS VIA LEFSCHETZ NUMBERS
FOR PERIODIC POINTS

A. GUILLAMON, X. JARQUE, J. LLIBRE, J. ORTEGA AND J. TORREGROSA

ABSTRACT. Let f: M — M bea C! mapona C! differentiable manifold.
The map f is called transversal if for all m € N the graph of f™ intersects
transversally the diagonal of M x M at each point (x, x) such that x isa
fixed point of f . We study the set of periods of f by using the Lefschetz
numbers for periodic points. We focus our study on transversal maps defined on
compact manifolds such that their rational homology is Hy ~Q, H; Q& Q
and H, = {0} for k#0, 1.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In dynamical systems it is often the case that differentiable topological in-
formation can be used to study qualitative and quantitative properties of the
system. This paper deals with the problem of determining the periods (of the
periodic points) of a class of C! self-maps given the homology class of the
map. In order to state our main results we need some preliminary notation and
definitions.

Let f: X — X be a continuous map. A fixed point of f is a point x of
X such that f(x) = x. Denote the totality of fixed points by Fix(f). The
point x € X is periodic with period m if x € Fix(f™) but x ¢ Fix(f*) for
all k=1,...,m—1. Let Per(f) denote the set of all periods of periodic
points of f.

Let M be a compact manifold of dimension n. A continuous map f :
M — M induces endomorphisms f,; : Hy(M; Q) — H,(M; Q) (for k =
0,1, ..., n) on the rational homology groups of M . The Lefschetz number of
f is defined by

n
L(f) = Y_(-1)*trace(fix)-
k=0
By the renowned Lefschetz fixed point theorem: if L(f) # 0 then f has fixed
points (see, for instance, [B]). Of course, we can consider the Lefschetz number
of f™ but (in general) it is not true that if L(f™) # 0 then f has periodic
points of period m. As it is well-known a fixed point of f” need not have
period m, so it will be useful to have a method for detecting the difference
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between “real” and “false” periodic points of period m (i.e., points having
period some proper divisor of m ).

We will use the Lefschetz numbers for periodic points introduced in [L1] for
analysing if a given period belongs to the set of periods of a self-map. More
precisely, for every m € N we define the Lefschetz number of period m , I(f™),

as follows
I(f™) =Y u(L(f?),

rim
where E,, » denotes the sum over all positive divisors r of m, and u is the
Moebius function defined by

1 ifm=1,
u(m) = { 0 if k?|m for some k € N,
(=1 if m = p, --- p, distinct prime factors.
According to the inversion formula (see for instance [NZ])

L(f™) =3 I/

rim

The Lefschetz number of period m will become interesting after showing
that for many classes of maps we have: if /(f™) # 0 then m € Per(f). Dold
[D] showed that for any m € N if Fix(f™) is compact then m divides /(f™).
Other authors like Halpern [H] or Heath, Piccinini and You [HPY] have intro-
duced a similar definition for Nielsen numbers instead of Lefschetz numbers.

A C! map f: M — M defined on a compact C! differentiable manifold
is called transversal if f(M) c Int(M) and if for all m € N at each point
x € Fix(f™) we have det(I — df™(x)) # 0, i.e., 1 is not an eigenvalue of
df™(x). Notice that if f is transversal then for all m € N the graph of f™
intersects transversally the diagonal {(y,y) : y € M} at each point (x, x)
such that x € Fix(f™). Notice that for a tranversal map f the fixed points
of f™ are isolated. Since M is compact, the cardinal of Fix(f™) is finite for
every m € N.

Periodic points of transversal maps have been studied by several authors:
Franks [F1, F3], Matsuoka [M], Matsuoka and Shiraki [MS], Casasayas, Llibre
and Nunes [CLN1,CLN2], .... The following result was proved in [LI].

Theorem A. Let f be a transversal map. Suppose that [(f™) # 0 for some
meN.

(a) If m is odd then m € Per(f).
(b) If m is even then {m/2, m}NPer(f) # 2.

Theorem A will play a key role in this work. Since its proof is short, in
Section 2 we will present it for the sake of completeness.

The results on transversal maps on arbitrary compact manifolds given in
Theorem A are in general difficult to apply because of the computation of /(f™).
Of course, if the homological rational groups are simple then these computations
become easier. For instance, if H,(M; Q) ~Q for k=0, 1 and H(M; Q) =
{0} otherwise, the Lefschetz numbers of period m are easily computed. This
is the case for the circle, where we can compute the sets of periods for its
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transversal maps; however, the sets of periods of continuous self-maps on the
circle are already well-known, see [ALM].

A distinct problem is to know whether the set of periods of a transversal map
coincides or not with the set {m € N:/(f™) # 0}. In general, this is a difficult
question. But for a transversal map g on the circle, the results obtained from
Theorem A are optimal in the following sense: if D is the degree of g, then

7] ifD=1,

{1} if D e {-1, 0},
N\{2} ifD=-2,

N otherwise;

Lp={meN:Il(g")#0} =

and there are transversal maps on the circle such that any D € Z verifies
Per(f) = Lp, see again [ALM].

Here the Lefschetz numbers for periodic points are applied to study the set of
periods of transversal maps on a compact manifold M with rational homology

(1) HoM;Q=~Q, H(M;Q =QeQ, Hi(M; Q) ~ {0} for k #0, 1.

The transversal maps on compact manifolds with such homology are the
easiest nontrivial maps for which we can compute /(f™) and apply Theorem
A to obtain information about their sets of periods.

For instance, there are exactly five compact manifolds of dimension 2 with
the above homology: the sphere with 3 holes, the torus with 1 hole, the con-
nected sum of three real projective planes, the connected sum of two real pro-
jective planes with 1 hole, and the real projective plane with 3 holes. Of course,
there are higher dimensional compact manifolds with this homology. The eas-
iest higher examples are the products of the above surfaces with acyclic mani-
folds, but there are many other. For example, the three-dimensional compact
manifold obtained from the sphere S3 removing the connected sum of two open
solid tori, eventually knotted, see Figure 1.1, have also the homology given by
(1). For more details, see the Appendix.

Our main result on the set of periods of transversal maps follows from the
next theorems and Theorem A. Essentially, we give information on the set of
periods for a transversal map f on a compact manifold having the homology
given by (1), by using the first induced homology endomorphism by f. This
isa 2 x 2 integral matrix. The description of our results is given in terms of
the trace ¢ and the determinant d of this matrix. First, we deal with the case
where the eigenvalues of the matrix are real (Theorem B and Corollary C); later
on, we consider the non-real case (Theorem D and Corollary E).

55

FIGURE 1.1
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Theorem B. Let f: M — M be a transversal map. Suppose that the rational
homology of M satisfies (1). If we denote by t and d the trace and the determi-
nant of the first induced homology endomorphism f,, : H{(M ; Q) — H,(M ; Q)
(corresponding to some 2 x 2 integral matrix) and assume that the eigenvalues
of f.1 arereal, then the following statements hold.

. (a) Assume that m > 1 is odd. Then I(f™) =0 ifand only if (¢t,d) €
{(£1,0), (£2,1)}U{(0,d):d € Z and d < 0}.
) I(H=L(f)=0 ifandonlyift=1.
(c) Assume that m > 2 is even. Then I(f™) =0 ifand only if (t,d) €
{(£1,0), (2, 1), (0,0), (0, -1)}.
(d) I(f?) =0 ifand only if (t,d) € {(1,0), (2, 1), (0, 0)}.

Theorem B will be proved in Section 3. From Theorems A and B the follow-
ing corollary follows easily.

Corollary C. In the assumptions of Theorem B the following statements hold.

(@) If (t,d)#(1,0), then Per(f)# 2.

() If (¢,d) ¢ {(1,0),(x2,1)}u{(0,d):d € Zandd < 0}, then
Per(f) >{3,5,7,9,...}.

(c) If t#1, then 1 € Per(f).

(d) If (¢t,d) ¢ {(£1,0), (£2,1),(0,0), (0, —1)}, then for any odd nat-
ural q at least one of each consecutive pair of the sequence q, 2q, 4q,
8q,... isa periodof f.

Y 7

-3 -2 -1 1 2 3

-1

)

FIGURE 1.2. Exceptional points appearing in the differ-
ent statements of Corollary C. For such points, some
periods may not exist.

We remark that the sequence of statement (d) of Corollary C appears in the
Sharkovskii ordering, which controls the periodic structure of a continuous self-
map of a closed interval, see [S]. Then, in some sense, statement (d) of Corollary
C reflects some periodic structure from dimension one to higher dimension.

Note that in Theorem B we have described completely the zero set of /(™)
for all m € N, when the eigenvalues of f are real. So, in Corollary C we give
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all possible information of the set of periods that can be obtained by means of
Theorem A.

When the eigenvalues of f,; are complex, the problem of studying the pairs
(z, d) for which /(f™) = 0 changes completely. The techniques that we will
use in the proof of Theorem B are not valid in that case, and the results will
not cover all the possibilities as in the real case. In fact, in the complex case,
we restrict our analysis to periods of the form p” with p prime and n € N.

We denote by P,(¢,d) the polynomial /(f™) in the variables (¢,d). In
Section 4 we will see that P,(¢, d) is a polynomial with integer coefficients.
Letalsobe T = {(t,d) € 2> : t =0}, V = {(t,d) € Z* : t = 3k,d =
3k2forallk € Z} and Z, = {(t,d) € Z? : Pn(t,d) = 0}. The following
theorem is obtained by studying the diophantine equations P, (¢, d) =0.

Theorem D. Let f: M — M be a transversal map. Suppose that the rational
homology of M satisfies (1). We denote by t and d the trace and the determi-
nant of the first induced homology endomorphism f., : Hi(M; Q) — H\(M; Q)
(corresponding to some 2 x 2 integral matrix). Then, the following statements
hold.

@ Ifm>1isodd TCZ,. Zy={(1,d):d € Z}. If m is a multiple
of 9,then VCZy,.

(b) If m is a power of two, then Z, = {(t, “51):t € Z}, Z, ={(1, 1),
(%1, 0), (0, -1), (0, 0), (£2, 1), (£2, 6)}, and Card(Zy) < oo if
n>3.

(c¢) If m is a power of three, then Z3; = T U {(¢, i3‘—‘-) : forall t e Z such
thatt=1,2 (mod 3)}, and Card(Z;- \{TUV})<oco if n>2.

(d) If m is a power of the prime p > 5, then Card(Z,- \ T) < oo for
n € N. Furthermore, Zs \ T = {(%1, 1), (%1, 0), (£2, 1), (%2, 3)},
and Zs» \T = {(x1, 1), (£1,0), (£2, D)} if n> 1.

(e) If p > 5 is a prime number, then there exists ny = no(p) such that

Zp \T ={(x1,1),(£1,0), (2, 1)} forall n>ny.

(f) For all m e N\ {2,3,6}, (1,1) € Z,,. Forall m € N\ ({1, 3},
(-1,1)eZ,.

Theorem D will be proved in Section 3. From Theorems A and D the fol-
lowing corollary follows immediately.

Corollary E. In the assumptions of Theorem D the following statements hold.

(a) If (t, d) & {(t, “5X): t € Z}, then {1, 2} NPer(f) # 2.

(b) If (t,d) & {(t, 55L) : forall t€Z suchthatt=1,2 (mod 3)}UT,
then 3 € Per(f).

(© If (1, d) ¢ {(Z1, 1), (£1,0), (0, -1), (0, 0), (£2, 1), (£2, 6)}, then
{2,4}NPer(f) # 2.

(d) If n> 3, then {27!, 2"} NPer(f) # @ except for a finite number of
pairs (t,d).

(e) If n > 2, then 3" € Per(f) forany (t,d) ¢ TUV , except for a finite
number of them.

(f) If n > 1, then 5" € Per(f) for (¢t,d) ¢ TU{(x1, 1), (1, 0), (2, 1),
(£2, 3)}. For (t,d)=(£2,3) and n>2, 5" € Per(f).
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(8 If n>1 and p > 5 is prime, then p" € Per(f), forany (t,d) ¢ T
except for a finite number of them.

(h) For any prime p > 5, there exists ny = no(p) € N such that for all
n > no(p), p" € Per(f) for (1,d) & TU{(1, 1), (x1,0), (£2, 1)}.

d=1(t-1)/2 d
d=1%3 \ ) /,
\N \ “F Yy
d=@2-1/3 \ \ ! . 4/
N 7
\ \\ \\ : l//
< ¥ ) 4
AN \ r ///
NN \ L 4
N N [l ‘4
SO C _ e .
~N B - 7
-3 -2 < _': = =T 2 3
..1:

-2

FIGURE 1.3. Exceptional points appearing in the dif-
ferent statements of Corollary E. For such points, some
periods may not exist.

Compared to Theorem B ( f,, with real eigenvalues), in Theorem D there is
not the whole information about the zeroes of the /(f™). First of all, only the
case m = p", p prime, n > 1, is dealt with. Even in this case, some of the
statements of Theorem D (and so, of Corollary E) are valid except for a finite
number of pairs (¢, d) which we do not specify. However, as it is stated in the
next conjecture, we feel that this finite set of pairs is empty.

We remark that for m > 5 and (¢,d) ¢ TUV, in Theorem D /(f™) =0 at
the same points (¢, d) of Theorem B, except for (¢, d) = (1, 1). Theorem
D and some numerical computations allows us to conjecture that for m > 6 we
have

(21, 1), (£1,0), (0, -1), (0, 0), (£2, 1)} if m is even, 9/m,

5 _ ] Tu{E1, 1), (1,0), (2, 1) if m is odd, 9m,
"= vu{l, 1), (£1,0), (0, =1), (0, 0), (£2, 1)} if m is even, 9|m,
TUVU{(l,1), (£1,0), (£2, 1)} if m is odd, 9|m.

ZG = {(il: 0): (0: _'1): (0’ 0)9 (:|:2, 1)}‘

2. PROOF OF THEOREM A

Let f: M — M be a transversal map. We are interested in studying the set
of periods of f. To this purpose it is useful to have information on the whole
sequence {L(f™)}men of the Lefschetz numbers of all the iterates of f. The
Lefschetz zeta function of f defined as

Z/(t) = exp (Z -L—('f;;f—)t"')
m=1
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is a generating function for that sequence, and it may be computed indepen-
dently through
dim M ;
Zf(t) = H det(lnk - t.f;tk)(—l)“’l >
k=0
where n, = dimH,(M;Q), I, is the n; x n; identity matrix and we take
det(l,, —tfu) =1 if n, =0, see for more details [F2].

For transversal maps the Lefschetz zeta function may be related in a simple
way with its set of periodic orbits. Given y a periodic orbit of f of period
m = p(y) and x € y, we define u;(y) = u.(x) and u_(y) = u—(x), where
u.(x) (respectively u_(x)) denotes the number of real eigenvalues of df™(x)
which are strictly greater than 1 (respectively less than —1). It is easy to
check that u.(y) and u_(y) are well-defined. With this notation, we have the
following proposition due to Franks [F1].

Proposition 2.1. Let f: M — M be a transversal map. Then

(_1)"+(7)+u_ (2)+1

zn=T] (1 - (_1)u-(~/)tp(y)) ,
7

where y goes over all the periodic orbits of f .

From the definitions of /(f™) and Z(t) we get the following well-known
formal relation

+00 s
2) Zi( =T[5,
m=1
for more details see, for instance [BB].

From Proposition 2.1, the Lefschetz zeta function has a factor (1 % t™)*!
from every periodic orbit of period m . Substituting the factors (1 + %) by
(1 —#2)/(1 — t*) one obtains that in Z/(¢), (1 — ™) can appear either from
(1 —t™) or from (1 +1t%) if m is even. So, by using (2) /(f™) # 0 implies
m € Per(f) if m is odd, and {m/2, m} NPer(f) # @ if m is even. Hence
Theorem A is proved.

3. PROOF OF THEOREM B

Let f: M — M be a transversal map and suppose that the rational homology
of M satisfies
Hy(M;Q~Q, Hi(M;Q)~QeQ, H(M;Q) ~ {0} for k #0, 1.
Let A; and A, be the two eigenvalues of the first induced homology endomor-
phism f,,: Hi(M; Q) — H\(M; Q). Since Hy(M;Q)~Q, M is connected,
and consequently f,o is the identity. Then L(f™) = 1—(A["+4%") for all m € N.
Notice that

Eu(r):l—(z 1)+( > 1)—...+(—1)"

rim 1<i<n 1<i<j<n

3) =1_(rll)+(’2')_...+(—l)”(z)

=(1-1)"=0
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where m = p{*---p;y» > 1 with p;, ..., p, distinct primes. Therefore, if
m > 1 the Lefschetz number of period m will be

1™ = =S wr@F +47).

rim

For each m € N we define the polynomial
Om(x) = 3 u(r)x®.

rim
Then, if m > 1 we can write

(4) =1(f™) = Qm(41) + Om(42).

Hence we will study when /(f™) is zero or not by analysing the polynomials
Om(x) and evaluating them at 4; and 4.

We start with a technical lemma and, later on, we will focus on two different
cases: in Lemma 3.2 we will study the behaviour of these polynomials when
|x|] < 1, and in Lemmas 3.3, 3.4, 3.5 and 3.6 we will consider the polynomials
when |x| >1.

Figure 3.1 displays how the polynomials behave, depending on the parity of
their degree m = p{'...px".

Lemma 3.1. Let meN.

(@) If m = p{'---py" with py, ..., p. distinct primes, then Qn(x) =
Opy---pa (X777,

(b) If m =p,---p, with p;, ... , pn distinct primes, then Qm(x) = Q# (xPx)
——Q#(x) forany ke {l,...,n}.

(c) If m is odd, then Q,, is an odd function, i.e., Qm(x) = —Qm(—X).
(@) If 4|m, then Q,, is an even function, i.e., Qm(X) = Qm(—x).

n bl 1
1
i
|
1
1
1
~1 1 !
-1 1 1.6
_on -2"
(@)modd (b)ymeven,m>2,4rm

FicuURE 3.1. The qualitative graph of the polynomial
Om(x)
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(&) If 2lm and 4}m, then Qm(x) = Qq(x?) — Qg (x).
(f) Om(0)=0.

(&) If m>1, then Qn(1)=0.

(h) If m> 2, then Qn(—1)=0.

Proof. Suppose that m = p{' ---py" with p,, ..., p, distinct primes. From
the definition of @),...,,(x) we have that

.er 2 bn EL_Pn
Qprop, () = 2777 = 30 X7 4 3T X~ (1),
1<i<n 1<i<j<n
Then
m l . ol
Qp,...p, (xPPn) = x" — z: xb + Z X — 4 (=1)"xFr,
1<ign 1<i<j<n

Hence, since the unique divisors r of m such that u(r) #0 are 1, {p:}i<i<n>»
{pip;}i<icjgns -++ » {P1--*Pn} , it follows (a).
Now assume m = p;---p, with p;, ..., p, distinct primes. Then

P
Om(x)=x"~ 3 x4+ 3 xPU — . (=1)"xn
1<i<n 1<i<j<n
i#k i, j#k

—|xw = Y x4 - (=1 Y P (-1)x

1<i<n lsifn
i#k i#
=R = 3 ()R 4 YD (eP)EE — L (—1)
1<i<n 1<i<j<n
ik i,j#k

2 - L
— | x#% - 2 X 4 Z XPoF — 4 (=1)""1x
1<i<n 1<i<j<n
i#k i, j#k

=Qu (x*) — Qu (x).

Therefore, we have proved (b).

If m is odd, then all the degrees of all monomials of the polynomial Q,,(x)
are odd. Therefore Q,,(x) is an odd function, and (c) is shown.

If 4/m, then all the degrees of all monomials of the polynomial Qn(x) are
even. Therefore Qn,(x) is an even function and we obtain (d).

If 2|m and 4/m then, we can write m = 2py?---py" Wwith py, ..., pa
distinct primes. From statements (a) and (b) of Lemma 3.1, we obtain

Om(x) = szz...pn(x!#qﬁ)
=COp-p (X775 ) = Qpyevpy (x T )
= Qy(x?) - Qg (x).

So (e) is proved.
From the definition of the polynomial Q,,(x) it follows immediately (f), and
from (3) we get (g).
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If m is odd then, from (c) and (g), Qm(—1) = —Qm(1) = 0. If 4|m then,
from (d) and (g), Qm(—1) = Qm(1) = 0. Assume that m = 2p5?---p;" with
with p,, ..., p, distinct primes. Then, from (a) and (e), we get Qn(—1) =
Q2py-p, (1) = Qpyeeip, (= 1)?) = @py-.p, (—1) = 0. Hence (h) is proved. O

As the next theorem states,the values of Q,,(x) remain bounded for |x| < 1.

Lemma 3.2. If m =p}'---py" with p,, ... , pn distinct primes, then |Qm(x)| <
2" if |x| < 1.

Proof. From the definition of Q,,(x), (3) and since |x| < 1, we get

3wt | < 3l [x%| < X ) = Z (,’;) - o

rim rim rim

|Om(x)| =

While in Lemma 3.1 we have studied the values of the polynomials Q,,(x)
at +1, in the next lemma we will do the same for all their derivatives. We
denote by Qﬁ,’,) (x) the i-th derivative of the polynomial Q,,(x) with respect to
the variable x.

In the following four results, the behaviour of Q,,(x) for |x| > 1 is studied.

Lemma 3.3. Forall i € N we have Q%)(1) > 0.

Proof. First we will show that if p,, ..., p, are distinct prime numbers, then
,(,’;)...p,, (1) >0 forall i € N. We will prove this by using induction with respect
ton.

If n =1 then Q) (x) = x» — x. Consequently, Q, (x) = p;x”~! -1,
QY (x) = py\xP=i/(p, — i)! if 1<i<p; (of course O! = 1), and 0¥ (x) =
if i >p,. Hence Qf(1) >0 forall i € N. So the lemma is true for n=1.

Assume that the lemma is true for n— 1. Now we will prove it for n. From

Lemma 3.1(b) it follows that Q,,...,,(x) = Qp,...p,(X?') — Qp,.-.p,(X) . Then it is
easy to show that

(5) 0.5 (x) = QW) (xP)(prxP ) — QW (x) + P(x),
where
(6) P(x)= 3 4;(x)QY.,,(x),

1<j<i

and A4;(x) is a polynomial in x with positive coefficients. Then, from (5), (6)
and since the lemma is true for n — 1, it follows that

(7) . p(1) > 0.

Now suppose that m = p{"---py" with p;, ..., p, distinct primes. By
Lemma 3.1(a) we have Q,,(x) = Qp,...,,(x?? ). Then

i
Q(‘)( )_ ( ) Qp: p"(xpl “Pn ).
Clearly the right-hand side of the last equality can be written as

Z B.I(x) p,.(x”‘ ””)

1<j<i
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where the Bj(x) are polynomials in x with positive coefficients. Hence, from
(7) it follows that @{(1)>0. 0

Proposition 3.4. The following statements hold.
(a) Forall m € N the function Qm(x) is positive and increasing in (1, o).
(b) For all odd m € N the function Q,,(x) is negative and increasing in

(—o0, —-1).
(c) For all even m € N the function Q. (x) is positive and decreasing in
(=00, ~1).

Proof. From the expression of Q,,(x) in Taylor series at x = 1 and Lemma
3.3 it follows (a).

From (a) and Lemma 3.1(c) we get (b).

If 4|m then from (a) and Lemma 3.1(d), we obtain (c) when 4|m. Now
we consider 2|m and 4/m . From Lemma 3.1(¢e), we get On(x) = Qg (x?) —

Qg (x). So, by Lemma 3.1(c), Qm(-x) = Qg (x?) + Qg(x). Consequently,
from (a) we get that Qp(x) is positive and decreasing in (—oc0, —1). O

Lemma 3.5. For all x € [1, oo) the following statements hold.
() For all m e N we have |Qm(x)| < |Qm(—x)|.
(b) For all m € N such that 2|m and 4fm we have Qn(x) < Om(—x).
(¢) If m=p{' ---pg" > 1 with py, ... , pn distinct primes, then Qy,...,,(x)
< Om(x).
Proof. If m is odd, from Lemma 3.1(c), Qm(x) = —Qm(—x). So (a) is shown
when m is odd. If 4|m, from Lemma 3.1(d), Qn(x) = Qm(—x). Therefore
(a) is also proved when 4|m. Assume 2|m and 4fm . From Lemma 3.1(e),
Om(x) = Qg (x*)~ Qg(x) . So, by Lemma 3.1(c), Um(—x) = Qg (x*)+Qg(x).
By subtracting the previous two equalities we get O (x)—0Om(—x) = —2Q4g(x).
Therefore, if x € [1, co) from Proposition 3.4(a) it follows that Qm(x) <
Om(—x). Hence, we have proved (a) and (b).
From Lemma 3.1(a), Proposition 3.4(a) and since x € [1, c0), it follows
immediately (¢). O

Lemma 3.6. Assume that p,, ... , p, are distinct primes.

@ Qp..p, () =TI, (i = 1).

(b) Qp..p, (1) =TI, 07 = 1) =TT (i = 1).

(c) If m=p} ---ps" >2 then Qm(1.6) > 2".
Proof. Assume that m = p;---p,. We will prove (a) and (b) by induction
with respect to n. If n =1 then @, (x) = x” — x. Consequently Q,',, (x) =
plxpl_] —1 and Q;I‘ (x) =P1(Pl - l)xpl_z . Then QII,I(I) =PDi -1 and Q;,(l) =
pi(pr—1)=(p}-1)—(p; —1). So (a) and (b) are true for n=1.

Assume that (a) and (b) are true up to n — 1. By Lemma 3.1(b), Qm(x) =

0z (x7) - Qa(x). Then Qp(x) = Qp (x*)pux”~! — Oz (x). So, by the
induction hypotheses,

Qm(1) = (Bn = 1)Qx (1) = (B — 1) H(p, -1 —H(p, - 1).
i=1
Hence (a) is proved.
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From @, (x) = Qm(xp")(pnx”"")2+Q w (XP")Pn(Pn = 1%~ -Q;%(x), the
induction hypothes1s, and (a) we get

Qm(1) = (2 = Q. (1) + Pa(Pn = 1)Qa (1)
n—1 n—1

=@i-0 |[IeF-D-@i-1)
i=1 i=1

n-1
+0.(pn - 1) [T2i - 1)
o=l

=@} -1 -TJw: - .
i=1 i=1

Hence (b) is proved.

Now assume that m = p{'---ppy" > 2. By Lemma 3.1(a) and Proposition
3.4(a), we have Qn(1.6) = Qp,..p, (16577 ) > Qp,..,(1.6). So, in order to
prove (c) it suffices to show Qp,...,,(1.6) > 2".

From the Taylor series of Qp,..,,(x) at x = 1, Lemma 3.1(g), and since

() ,,(1) >0 forall i >1 (see Lemma 3.3 or 3.6(a)), for x > 1 we have
Qpl Pn(x) 2 Qpl p,,(l)(x - l) + 7QP1 p,,(l)(x - 1)2 By USIDg (a) and (b)’ for
x €1, 3] we get

Opors(0)2 3 [(H(m - 1)) (x-1)(3-x)+ (H(p% - 1)) (x- 1)2}
i=1 i=1
>1 (ﬁ(p% - 1)) (e =17
i=1

Therefore, if n > 2 we have Q,,...,,(1.6) > (9/50) T[T\, (p? — 1) > (9/50) -3 -
(23)n—1 > 23n—4 > m,

Assume n = 1. If p; > 3 then @, (1.6) > (9/50)(p? - 1)>2.If p; =3
then Q3(1.6) = 1.6> — 1.6 > 2. Hence (c) is proved. O

Now we use all these results in order to prove the statements of Theorem B,
that is, we characterize the zeroes of /(f™) for all natural m in case that the
eigenvalues are real.

Proof of statement (a) of Theorem B. Let A, and i, be the two real eigenvalues
of f.;. Without loss of generality we can assume that |4;| > |4,|. From (4)
we have —I(f™) = Qm(41) + Qm(42) . Since m is 0dd, Qm(=41) + Om(~42) =
—[Qm(A1)+Qm(42)]. So, in order to study when /(f™) # 0 it suffices to consider
A1 > 0. Therefore we can restrict the analys1s to the values of (4;, 4;) which
belong to the set

R={(A,4)€R?:4;20and -4 <4 <4}
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We divide R into five subsets (see Figure 3.2):

Ry={(lh,4)€R:A >1and i, > 1},
R;={(A4,A4)€R:A4 >1.6and — 1<, <1},
Ry={(A4,A)€R:A >1and -4 <A< -1},
Rs={(A1,42) € R: 2y = —13},

5
R =R\|JR.
i=2

If (A1, 42) € R, then, from Proposition 3.4(a) we get —I(f™) = Qm(41) +
Om(42) > 0. :

If (A1, 42) € R; then, from Lemmas 3.2 and 3.6(c), and Proposition 3.4(a),
we get Qm(41) > 2" and |Qm(42)] <2". Hence —-I(f™)>0.

If (A1, 42) € R4 then, from Lemma 3.1(c) and Proposition 3.4(b), we obtain
Qm('ll) = _Qm(_ll) # —Qm(AZ) . So I(fm) #0.

If (A1, 42) € Rs then, from Lemma 3.1(c), Om(41)+Qm(42) = 0. Therefore
I(fm)=0.

Now we will study /(f™) on the set R;. Let ¢ and d be the trace and
the determinant of f,; respectively. We consider the set R; in the variables
(t = Ay +42,d = M4;). The straight lines 4; = 1.6, 1, =1, 4, = -1,
AM+4=0and 4, -4, =0 become d =1.6(t-1.6),d=t—-1,d=-t-1,
t =0 and d = ?/4 respectively. In Figure 3.3 we show the set R; in the
variables (¢, d). So the unique points (¢, d) in R; with integer coordinates
are (1,0) and (2, 1); or equivalently in coordinates (4;, 4;) are (1, 0) and
(1,1). In both points, from statements (f) and (g) of Lemma 3.1, we get
I(fm=0.

In short, if m is odd then /(f™) = 0 ifand only t = 0 and d < O,
(t,d) e {(£1,0), (£2, 1)} (use the symmetry (4;, 42) — (—4;, —42) ). Hence
Theorem B(a) is proved. O

FIGURE 3.2. The partition of R into ], R;.
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0,0

©,-1)

FiGURE 3.3. The set R, in the variables (¢, d).

Proof of statement (b) of Theorem B. From the definition of /(f) it follows that
INH=L(NH=1-t. O

Proof of statement (c) of Theorem B. As above we denote by A; and A, the
two real eigenvalues of f,;. We can assume that |4;| > |42|, and —I(f™) =
Qm(ll) + Qm(lZ) .

First we assume that 4|m. By Lemma 3.1(d) Qn(x) is an even function.
Then the value of /(f™) is the same in the four points (+4;, +4;). Conse-
quently we can restrict the analysis to the values (4;, 4;) which belong to the
set

R={(4,4)€R?*:4;>0and —4,; <4, <0}.

We divide R into three subsets (see Figure 3.4):

R2={().1,).2)6R:).1>1and,12<—1},
={(A1,42)€R:4 >1.6and — 1< 4, <0},

3
=R\ |JR.
i=2

If (A41,42) € R, then, from Lemma 3.1(d) and Proposition 3.4(a), we get
=I(f™) = Qm(A1) + Om(42) > 0.

If (A1, 42) € R; then, from Lemmas 3.2 and 3.6(c), and Proposition 3 4(a),
we get Qm(41) > 2" and |Qm(42)| < 2". Hence —I(f™)>0.

From the last two paragraphs it follows that /(f™) only will be able to be
zero in the set R;. We will consider the set R, in the variables (¢, d). The
straight lines 4, = 0, 4; = 1.6, 4, = -1 and A4; +4; = 0 become 4 =0,
d=1.6(t-1.6), d =—t—1 and t =0 respectively. In Figure 3.5 we show the
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A

b

1
1
1
1
1
R
' 1 Ry
]
]
1

-1

-

]
!
!
! ~
]
1
!

FIGURE 3.4. The partition of R into Uf=1 R;.

set R; in the variables (¢, d). So the unique points (¢, d) in R; with integer
coordinates are (0, 0), (0, —1) and (1,0); or equivalently in coordinates
(A1, A2) are (0,0), (1,—1) and (1, 0). In these three points /(™) =0 due
to statements (f), (g) and (h) of Lemma 3.1.

In short, taking into account the four symmetries, (+A4,, £4;), if 4/m then
I(fm) =0 if and only if (¢, d) € {(0, 0), (0, —1), (1, 0), (£2, 1)}.

Now we assume that 2|m, 4/m and m # 2. We must analyse the values of
I(f™) in the points of the set

R={(A1, A2) €R*: |A] > |A2]}.
We divide R into three subsets (see Figure 3.6):
Ry ={(A1,42) € R:|A1| > 1and |12 > 1},
Ri={(A1,4)€R:|Ay|>16and - 1<, <1},

3
R =R\ |JR:
i=2
If (4, A2) € R, then, from Proposition 3.4(a), we get —I(f™) = Qm(41) +
Qm(42) > 0.
df d=t-1
| « /
(0, 0) . >

d=16(:-1.6)

d=-1-1

FIGURE 3.5. The set R; in the variables (¢, d).
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A,
|
R, | Ry
-
|
|
|
|
R, | Y R, A
................................... F .
-1.6
R, R,

FIGURE 3.6. The partition of R into |J}_, R;.

If (41, A2) € R3 then, from Proposition 3.4(a) and Lemmas 3.2, 3.5(b) and
3.6(c), we get Om(4;) > 2" and |Qm(42)| < 2". Hence we obtain —I(f™) > 0.

Then /(f™) only will be able to be zero in the set R; . Again we will consider
the set R, in the variables (¢, d). The straight lines 4, — 4, =0, A, =1,
A =16,4=-1,4+4,=0and 4, =—1.6 become d=¢%/4, d=t—-1,
d=1.6(t—-16),d=—-t—-1, t=0 and d = —1.6(¢ + 1.6) respectively. In
Figure 3.7 we show the set R; in the variables (¢, d). Then, as in the above
case for 2lm, 4fm and m # 2 we obtain that /(f™) = 0 if and only if
(t,d) e {(0,0), (0, -1), (£1,0), (£2, 1)} . Hence we have proved Theorem
B(c). O

d=t-1

d=-1.6(1+1.6) d=1.6(1-1.6)

d==-t-1

e G

FIGURE 3.7. The set R, in the variables (¢, d).
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Proof of statement (d) of Theorem B. Since Q;(x) = x2 — x, the minimum

A

4
rd
] s —
Ay L7 M=k,
| €
1+ P
1 ’
1 e
| rd
[} ,/’ B’ C
: /,
s o 1
T
8 B !
%)

|
1
|
|
|

FIGURE 3.8. The set R in the variables (4;, 4,).

value of Q»(x) in R is Q»(1/2) =—1/4. Let u; and p, be such that u; <0,
wr > 1 and Qy(u1) = Q2(u2) = 1/4. Since we can consider 4; > 4, —I(f?) =
Q2(41) + Q2(A2) only can be zero in the set

R={(A1,42) €R*:0< A <land u; <4, <0}
U{(Ad1,42) ER*:1 <A <pand0< A, < 1},

see Figure 3.8. The straight lines A, =0, 4, =1, Ay =puy, 4, =0, 4, =1
and A4, = u; become d =0, d=t-1,d=pu(t—u),d=0,d=t-1
and d = u,(t—u;) respectively. Then if we consider the set R in the variables
(¢, d) we get Figure 3.9. Now an easy computation shows that /(f2?) = 0 if
and only if (¢,d) € {(0,0), (1,0), (2, 1)}. Consequently we get Theorem
B(d). O

FIGURE 3.9. The set R in the variables (z, d).
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4. PROOF OF THEOREM D

In this section, the eigenvalues A4;, A, of f,; can be complex. First, we want
to show that this case is essentially different from the real case studied in Section
3. While in the real case we can enclose all the zeroes of /(f™) in a bounded
region in the plane (z, d), this is not possible in the non-real case, where the
expression of /(™) is given by —I(f™) = Qm(A) + Om(A) = 2Re(Qm(A)) where
A1 = A, and as usual 4 denotes the conjugate of A and Re(u) denotes the real
part of the complex u. Recall that, if P is a polynomial map of degree m,
the map ¢ — P(re') surrounds exactly m times the origin of coordinates for
r sufficiently large. It means that Re(Qn,(4)) = 0, A = re’, has exactly 2m
zeroes for each r > ry for a ry large enough. Therefore, we cannot enclose all
the solutions of /(f™) =0 in a bounded region.

Since in general the variable A of Re(Q,,(4)) is not real, the techniques used
in Section 3 do not work. Hence the problem is to know if the algebraic curve
I(f™) = 0 in the (¢, d)-plane has points with integer coordinates. In fact, as
the following lemma shows, /(f™) is a polynomial in the variables (z, d) with
integer coefficients. Then we have a diophantine problem to solve.

Lemma 4.1. The following statements hold.

(@) I1(f™)ezt,d].
(b) tI(f™) if and only if m is odd.

Proof. In Section 3 we saw that

my _ __ ﬂ r r

(8) 1) = %"( D) + ).
We will prove by induction that 7, := A] + A} is a polynomial with integer
coeflicients in the variables ¢, d, for all r € N. It is easy to see that 7o = 2
and, from the relation 4; = (t + (1) = 4d) /2, that 7; =¢. On the other
hand,

AL+ 5) (A + A2) = AT + 5P + 444 + 457D,
and so,
(9) tr+[ - ttr - dtr_l.

This recurrence allows to end the inductive proof. Therefore, 7, € Z[¢, d] for
allr € N and, from the expression (8) of /(f™) and the fact that u(n) €
{-1, 0, 1}, (a) is proved.

Expression (9) shows that if #|t,_;, then ¢|t,,;. Since 7; = ¢, it follows
that ¢|t; for all k£ odd. Then, if m is odd, since /(f™) is the sum of factors
7, with k odd, ¢ divides /(f™).

If m is even, evaluating /(f™) in ¢t = 0, and using that 7, = —d1,-; if
r > 2 is even, we get

™m0 ==Y 2;;(%)(_‘1)#2,

rim
r even

This polynomial cannot be identically zero and so, (b) is proved. O

Recall that P,(t, d) is the polynomial /(f™) in the variables (¢,d), T =
{(t,d)eZ*:t=0}, V={(t,d)€Z?:t=3k,d =3k forall k € Z} and
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Zm = {(t,d) € Z* : Py(t,d) = 0}. We study essentially two cases. First of
all, in Proposition 4.2, we describe the set Z,, for m = p, where p is prime.
Later on, the statements 4.3-4.8 extend this result to the case m = p”, where
p is prime, and n a natural number.

Proposition 4.2. The following statements hold.

(8) Zp={(t, 571z},

(b) Zzs={(t, Z5L): forall teZ suchthatt=1,2 (mod 3)}UT.

(c) Card(Z,\ T ) is finite if p > 5 is a prime number Moreover, Zs =
{(:L'l: 1): (:tl ’ 0): (iz, 1)1 (:':2, 3)}UT‘

Proof. (a) Py(t, d) = 2d +t—12. Clearly, its integer solutions satisfy d = {51
with t € Z.

(b) Pi(t,d) = t(1 +3d —1?). So, the points (0,d) for all d € Z, and
(¢, i;—‘) for all ¢ such that =1, 2 (mod 3) are its integer zeroes.

(c) Substituting (4;, 42) by (¢, d) in (8) and using the Newton’s binomial
formula, we get

r
A+ A = il—kzo (,’c) £k ((-1)'-’<(z2 —4d) T+ (2 - 4d)"z‘") .

The factor between parentheses either will vanish if szﬁ ¢ Z or will be

2(f* — 4d)F* if 5k € Z. Then, changing s = 5%, P,(t, d) can be writ-
ten as

o 18]
Pu(t,d) = — ‘;(r_ ) Z ( ) 11=25(12 — 4d).

rlm

When m =p > 3 is a prime number, thls expression becomes

B(t,d) = LS (2 Yoo gy
—P,(t, )_—t+§;,-§ PP LGRS

Since p is odd, the last expression can be factorized by ¢, obtaining

_Pp(tt, d) =—1+ ____ Z (p 23) tp—2s—l(t2 4d)s

u['n'_n

2p11 (p 2s)(t2)zr—sz( )(tz)kds_k(—“)s—k

l p 3 S §— =L (s— S —
et

s=0 k=0

=1+

4;7.'

We remark that

H(t,d):= 252( 4y -k (p 2s) (i)(;z)ﬂi—'-u—k)ds—k

5s=0 k=0

is a homogeneous polynomial of degree 25! in the variables > and 4. In
order to apply a theorem on diophantine equations, we will need this polynomial
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If m is odd then, from (c) and (g), Qm(—1) = —Qm(1) = 0. If 4|m then,
from (d) and (g), @m(—1) = Qm(1) = 0. Assume that m = 2p5*---p;" with
with p,, ..., p, distinct primes. Then, from (a) and (e), we get Qn(—1) =
Q2p,-p(—1) = Qp,..p, ((—1)?) = @py.p, (—1) = 0. Hence (h) is proved. O

As the next theorem states,the values of Q,,(x) remain bounded for |x| < 1.

Lemma 3.2. If m=p{'---py" with py, ... , p, distinct primes, then |Qn(x)| <
2" if |x] < 1.

Proof. From the definition of Q,(x), (3) and since |x| <1, we get

Y urxt <Zlu(r)llx'|<ZI#U)I-Z(Z>=2"- o

rim rim rim

1Qm(x)| =

While in Lemma 3.1 we have studied the values of the polynomials Q,,(x)
at +1, in the next lemma we will do the same for all their derivatives. We
denote by Qf,’,) (x) the i-th derivative of the polynomial Q,,(x) with respect to
the variable x.

In the following four results, the behaviour of Q,,(x) for |x| > 1 is studied.

Lemma 3.3. Forall i € N we have Q)(1) >0.

Proof. First we will show that if p;, ... , p, are distinct prime numbers, then
) 5.(1) >0 forall i e N. We will prove this by using induction with respect
to n.
If n =1 then Qp(x) = x» — x. Consequently, Q, (x) = p;x”»~' -1,
0)(x) =pi!xP~/(p; — i) if 1 <i<p; (of course 0!=1), and oY (x) =
if i >p,. Hence Q}’(1) >0 forall i € N. So the lemma is true for n=1.
Assume that the lemma is true for n— 1. Now we will prove it for n. From

Lemma 3.1(b) it follows that Q,,...,,(X) = Qp,-..p, (XP') = Qp,...p,(x) . Then it is
easy to show that

(5) brpa(X) = @, (P (121 = Q) () + P(x),
where
(6) P(x)= 3" 4;(x)Q%..p,(x),

1<j<i

and A4;(x) is a polynomial in x with positive coefficients. Then, from (5), (6)
and since the lemma is true for n — 1, it follows that

(7) (0 (1) > 0.

Now suppose that m = p{'..-p;" with p;,..., p, distinct primes. By
Lemma 3.1(a) we have Qp(x) = Qp,...,,(x7 7). Then

i
04(0) = (7)) Govem (677
Clearly the right-hand side of the last equality can be written as
Y. Bi(x)Qfp (x7H),

1<<i
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where 7, = u{'"_l and n, = ug"" .Set x=1m +n and y = . It is clear

that P,(x,y) = 0. Taking into account the relation p; = ZH=UYZ=4w g4

i=1, 2, the first part of statement (a) follows.

We note that expression (9) can be adapted to this case. If we consider
T, = puj + uj, relation (9) writes as:

Tre1 = 27, — WTr—y,

with 790 =2 and 7; = z. On the other hand, we remark that x = 7,.-1 . Asin
Lemma 4.1(a), we can conclude that x = F(z, w), where F is a polynomial
with integer coefficients. We have also y = w?"™'. Then, if z and w are
integers, so x and y are, and the second part of (a) is proved.

Conversely, if P,(x, y) vanishes and #; = "—*L'l—)'-zl’?——:——“—y for i=1, 2, then

Op(m) + Qp(m2) = Qpr (1) + Cpr(p2) =0,

where 7, = u”" for i=1,2. Denoting by z =y, + 4 and w = 5, we
have that P,.(z, w) = 0. From the above relations, z and w can be written

as:
n—’ /x2 = n—’ —/x2 -
z=p '_x__-i-__%c___‘_’:_J)_+p l.x____';—4y.; and w = p"'\'/)—)_

Then, statement (b) is proved. O

We note that the formula given in Lemma 4.3(b) shows that (x, y) € Z?
does not imply (z, w) € Z*. Furthermore, the p"—!-roots that appear in the
expression of z may not take the same determination as complex numbers.

On the other hand, Lemma 4.3(a) induces a map g, from the integer zeroes
of P, to the integer zeroes of P,.

Corollary 4.4. Let (¢, d) be an integer zero of P, and g,» be the map defined
above. Then, Card({g,.'(t, d)}) is finite.

Proof. We have that P,(t,d) = 0 and {g,.'(t,d)} c S ={(T,D): D =
"Vd }. By Theorem B, there is a finite number of elements (T, D) of S
such that T2 — 4D > 0. So, we only have to prove the finiteness in the case

T2 —4D < 0. We note that for each d the number of D = ”V/d is finite and,
also, for each D the number of T such that 72 — 4D < 0 is finite. So, the
corollary is proved. O

However, in the statement of Proposition 4.2 we can see that, for p a
prime number, some Z, contain the infinite sets T, V', {(, ﬁ’—;—'l) 1t eZ}
and {(z, 523;‘) : forall t€Z suchthat £ =1, 2 (mod 3)}. The three follow-
ing results are devoted to analyse how these sets generate integer solutions of
Pn(t,d)=0 when m = p", by means of the action of g.'.

Lemma 4.5. Assume that p > 3 is a prime number and n € N. Suppose that d
is an integer number.

(@) If p=3 and n>2, then {g,"(T)}nZ* =V UT.

(b) If p>3 and n>2, then {g;'(T)}NZ*=T.

() VCZy, forall n.
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Proof. We take an integer solution (0,d) € T of P,. From Lemma 4.3(b),
this solution gives a finite number of solutions of P,». We are interested in
knowing which of them are integer. The solution (0, d) can be written in
(A1, A2) coordinates as (v/—d, —v—d). Assume that d > 0. Otherwise, the
proof is similar. If we call (i%,43) = (" Vv—d, " v/—v—d) by Lemma
3.1(a), we have that Pp(A}, A3) = P,(vV—d, —v/—=d) = 0. Recall that the
different p"—!-roots do not need to have the same determination.

We remark that we are looking for A}, A3 satisfying A7 +4; € Z and AjA5 €
Z . Using polar coordinates,

(A1, 43) = (\/ (Vd)g124n» ""“{/(J?i)%m)
N (( V) e ( va u_z_)

Setting o) = 2%% and o = Frdknsdln pen

pn— [ pn—

n—1
A +23=""yVd((cosay + cosaz) + i(sina; + sinaz)).
In order to have A} + 435 € R, we need that sina; +sina; = 0. So,

_ n+2n
Cosa; + CoOSay = £ COos —21’71-

Hence, (A} +43) in (¢, d) coordinates writes as
. n+2r\ -/ =1
(ﬂ:chS (—i;;-r?—_l—) ’ \/J, 7 d) ,

where | € Z. We want these two coordinates be integer. Let s = "VdeT.
We wonder when 2./5 cos (’5;,,21’,‘) € Z . Using the basic relation 2cos?a—1 =
cos 2a, this last condition can be thought as

cos (lp—_:_—zl—l-n) € Q.

For d < 0, one gets the same condition.
By [N, p.41], the only rational values of cos(rz) with r € Q are as follows:

0, &}, +1. These values can only be achieved if 12 € {1, 3, 3§, 3, i,3,0,

1} Since 142/ isodd and p # 2 isa prime number, we can remove 2 R 3 R § R
4 and 0. There remain three values to analyse: §, 3 and 1. The first and the
second ones are only possible when p = 3 and the last one, for all prime number
p>2.
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TABLE 1
L2 | (¢, d) = (+2c0s (£28) "VVd, "Vd) | valid for
3 (V3s, 5) p=3
% (—\/3_5: S) p= 3
1 0, s) p#2

From Table 1, if p = 3, the integer zeroes of P;» coming from (0, d) can
be {(39,39%) :q €Z} or {(0, g) : g € Z} (that is to say, belongingto TU V).

In the case p > 3, there only can appear integer zeroes in T .

We know from Lemma 4.1(b) that P,.(0,¢) =0 forall g€ Z, p>2 and
neN.

We only need to show that P3. (3¢, 3¢g?) =0 forall g€ Z and n € N. The
pair (3¢, 3¢?) becomes in polar coordinates as 4, = (V3g)z, 4, = (V3q)-z.
We observe that

(10) W3 = (3 + (V39)Y_y; =0,

forall jeN.

Since /(f*") = (A} +43") = (A¥""" +23"7"), by (10) Py (3¢, 3¢%) =0 for all
g € Z. So, statement (a) and (b) are proved.

In addition, we remark that /(") can be written as the sum of factors of
type lfj + A;j with j € Z. So (c) follows. O

We also need to control the other infinite sets that appear in Z,, when m
is a prime number (see Proposition 4.2). Before stating the next result, we give
the following lemma:

Lemma 4.6 (see [Mo, p. 265]). If a, B, y and & are integers, and ad # 0,
B? —4ay #0, s > 3, then the equation at®+ Bt +y = 6D, has only a finite
number of integer solutions (t, D).

Proposition 4.7. The following statements hold.
(@) If p=2 and n >3, then Card({g,.'(t, 45Y): t € Z} N Z*) < 0.
(b) If p =3 and n > 2, then Card({g;;'(t, “5) : 1€ Z,t=0,1
(mod 3)} NZ%) < 0.

Proof. By Lemma 4.3(a) we know that an integer zero (7', D) of P, gives one
integer zero (¢, D*') of P,. Since we look for g (t, 421y | by Proposition
4.2(a), the equality #(t — 1) = 2D?"~" must be satisfied.

Using Lemma 4.6 with a =1, 8 =-1, y=0, J =2, this equation has a
finite number of integer solutions if 2”~! > 3. Then, (a) is proved.

By similar arguments, from Proposition 4.2(b) and Lemma 4.3(a), if (T, D)
is an integer zero of Ps., it gives an integer zero (¢, D3"") of P;. If this zero
belongs to {(z, %‘—'—) :t€Z,t=1,2 (mod 3)}, then 2—1=3D>". Using
again Lemma 4.6 with a=1, 8 =0, y=-1, d =3, we finish the proof. O
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In the previous result, the power m = 2% is not covered. We give the study
of this particular case in the next proposition.

Proposition 4.8. Z, = {(£1, 1), (x1, 0), (0, 1), (0, 0), (£2, 1), (£2, 6)}.
Proof. 1t can be seen that —Py(z, d) = 2d?+(2—41?*)d+t*—¢>. So we are finding
pairs (¢,d) suchthat t€Z and d = (212 -1 £/(22)2+ (2 -1)2)/2€Z. A
necessary condition is that (£2)2 + (2 — 1)2 = s2, with s € Z. If ¢ = 0 then
d=0,-1.If *-1=0 then d =0, 1. Otherwise, when (X, Y) =1 the
solutions of the equation X? + Y? = Z? can be written as (see [Mo, p. 13])
X =2uv, Y =u?-v? and Z = u?+v?, where (u,v) = 1. Since in our case,
X and Y are consecutive, we have u? —v? = 2uv + 1.

By the change % = u—v, T = u+v, this equation becomes %> — 2v? = +1.
Since X or Y must be equal to #?, we distinguish the two following cases.

Case (i). X =t*. Then, since (u, v) = 1, either
u=2a} and v=>b}, or u=a3} and v =252,

for some integer numbers a;, b;, i =1, 2. These cases are respectively equiv-
alent to the following two systems:

(11%) ' {72—2”? = xl,
u+b? =2a?
72 _epd

(12%) {u 8b3 =<1,
u+202 =ai.

Case (ii). Y =¢*. Then, % = a} and U = b} with a3 and b3 integer numbers.
As in the previous case, this situation can be expressed in terms of a system:

3 -202 =zl
(13%) {a; v 2,
as+2v = bj.

Hence the problem has been divided into three particular diophantine equa-
tions. In fact, due to the term +1, we have six different systems to solve. Each
one of them is studied using known results that only refer to that concrete case.

By [Mo, p. 269] and taking into account that (u, v) =1, system (11*) has
no integer solutions.

By [Mo, p. 271], %* —2b% = —1 has two integer solutions (%, b;): (1, 1)
and (239, 13). But only the first one satisfies %+ b? = 2a?. In the coordinates
(X, Y) it corresponds to the point (4, 3), which implies (¢, d) = (2, 1) and
(t,d)=(x2,6).

By [Mo, p. 270], the first equation of system ( 12* ) has at most two solutions,
which must satisfy that % + 2b2v2 € {e, €2, €4}, where € = 1+ v2. In fact,
only (%, b)) = (3, 1) arises. But, it does not satisfy the second equation of
(12%).

System ( 12~ ) has no solutions because % % —1 (mod 8).

By [C2], system ( 13*) has no integer solutions.

By [L], system ( 13~ ) has only one integer solution, whichis (%, b;) = (1, 1).
As in (117), it implies (X, Y) = (4, 3) and so, it does not provide new
solutions.
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After this analysis, we have proved that only the pairs (%1, 0), (%1, 1),
(0,0), (0,-1), (£2,1) and (£2, 6) can vanish the polynomial P4(¢, d). It
is easy to check that they actually vanish it. So, the proposition follows. 0O

Proof of statement (a) of Theorem D. Both claims follow immediately from
Lemmas 4.1(b) and 4.5(c), respectively. O

Proof of statement (b) of Theorem D. It follows easily from Propositions 4.2(a),
4.8 and 4.7(a), respectively. O

Proof of statement (c) of Theorem D. By Proposition 4.2(b), Z3 = {(t, ’—23‘—‘) :
forall t€Z suchthatt = 1, 2 (mod 3)} UT and, by Lemma 4.5(a) we get
that V C Zs.. Finally, if m = 3” and »n > 2, from Proposition 4.2(b), Lemma
4.5(a) and Proposition 4.7(b), we obtain that Card(Z,,\ {TUV}) <. O

Proof of statement (d) of Theorem D. By Proposition 4. 2(c) if p > 5 then
Card(Z,\T) is finite. So, by Corollary 4.4, Card(Z,-\T) is also finite. Propo-
sition 4.2(c) gives also the description of Zs \ 7. We only have to see that
ZS"\T= {(il’ l)a (-tl, O), (iz, 1)}'

We have obtained Zs = {(%1, 1), (%1, 0), (£2, 1), (£2,3)}uT. From
Lemma 4.5(b), "(T) T. By Lemma 4.3(b), g,.'(£2,3) ¢ Z? for all
n > 2. Putting (:i:l 1), (£1,0), (£2, 1) in polar coordinates we can see
that g'({(£1, 1), (1, 0), (2, D)}) = {(&1, 1), (1, 0), (22, 1)}. So (d)
is proved. 0O

Proof of statement (e) of Theorem D. If p > 5, from Lemma 4.5(b), gp'nl ()=
T . In (d) we state that Z, \ T is finite. As in the above case,

g ({(£1, 1), (£1,0), (£2, D} = {(F1, 1), (£1, 0), (£2, 1)}.

If there exist other points of Z, \ T, it is sure that d > 1. Let dy =
max{|d| : (¢,d) € (Z,\ T)}. For each p, there exists a ng(p) such that
the complex modulus of *"y/d; € (1, 2). By Lemma 4.3(b), the elements of
{g;'(t, d)}, with (¢t,d) € (Z, \ {TU{(£1, 1), (£1,0), (£2, 1)}}) cannot
have integer coordinates. So (e) follows. O

Proof of statement (f) of Theorem D. Recall that 1, = 4] +45 . We observe from
(8) and the definition of 7, that /(™) = — E w2, .

If (¢,d) = (-1,1) we can check eas1ly from (9) that 7, = 2ifr =0
(mod 3), and 1, = -—1 if r=1, 2 (mod 3). We distinguish the three following
cases.

Case (i). If 3fm, r neverisa multiple of 3. So 7, = -1 and I(f™) =3 u(%).
rlm
Therefore, /(f™)=1if m=1,and I(f")=0if m#1.

Case (ii). If 3?|m, r is always a multiple of 3. So 7, = and ™ =
-2 u(2). Therefore, /(f")=-2if m=1,and I(f")=0if m#1.

rim
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Case (iii). If 3|m and 3%fm , we take 7 = m/3 (obviously, 3} 7). Applying
similar arguments to those of Lemma 3.1(b) we can write

1) ==Y uEyey + u(D,

rim rlm
=2 w) -S>
rim rim

So I(f™) =0 except for the case when 7 = 1. Then, m =3 and /(f™)=3.
If (¢,d) =(1,1), we get other values of 7, according to the congruences
of r with respect to 3 and we have to deal with more cases. However, the

ideas and the scheme of the proof are the same that we have used in the case
(t,dy=(-1,1). O

APPENDIX. ONE 3-DIMENSIONAL COMPACT MANIFOLD
WITH HOMOLOGY GIVEN BY (1)

Let X be the three-dimensional compact manifold S*\ ¥ where V is the
connected sum of two open solid tori, one of them knotted, see Figure 1.1. The
space X can be retracted to Y where Y is S3\ W and W is homeomorphic
to S' v S! with one of the S' knotted, see Figure A.1.

The spaces X and Y have the same homologic groups. Since W and S*
are compact we can apply Alexander’s duality theorem [G, Theorem 27.5] which
under our assumptions states that

HY(W) ~ H;_o(S?,8*\W), ¢=0,...,3,

where H49(W) is the Alexander-Cech cohomology of W and H;_,(S?, S\ W)
are the relative homology groups. Since the homology sequence
o= Hy(S3\ W) = Hy(S3) — Hy(S3, S\ W) » Hy((S*\ W) - -

is exact (see [G, Theorem 14.1]) we can compute H,(S3 \ W) if we know
H,(S?, §3\ W) which is isomorphic to HI(W) as we have already seen. But
this cohomologic group is intrinsic to W, so if instead of W we consider
W* =S'v S!, see Figure A.2, we see that HI(W) ~ HI(W*) because W is
homeomorphic to W*.

FIGURE A.1. The space W .

FIGURE A.2. The space W*.
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Now if we consider the homology sequence
= Hy(SP\ W*) > Hy(S%) = Hy(S3, S\ W*) = H_ (S \ W*) — -+,

since H,(S3, S\ W) ~ H,(S?, S3\ W*) it follows that S3\ W has the same
homology groups as S>3\ W*, i.e., the homology does not “see” the knot. As
S3\ W* is homeomorphic to R3\ {r;Ur,}, r;, r, being two straight lines that
do not cross, one concludes that

Hy(X) =~ Hy(S*\ W*) =Q,
H\(X)~H (S*\W*)=QeQ,
Hy(X) >~ H,(S3\W*) =0, ¢>2.
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