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DETERMINACY AND WEAKLY RAMSEY SETS 
IN BANACH SPACES 

JOAN BAGARIA AND JORDI LOPEZ-ABAD 

ABSTRACT. We give a sufficient condition for a set of block subspaces in an 
infinite-dimensional Banach space to be weakly Ramsey. Using this condition 
we prove that in the Levy-collapse of a Mahlo cardinal, every projective set 
is weakly Ramsey. This, together with a construction of W. H. Woodin, is 
used to show that the Axiom of Projective Determinacy implies that every 
projective set is weakly Ramsey. In the case of co we prove similar results for 
a stronger Ramsey property. And for hereditarily indecomposable spaces we 
show that the Axiom of Determinacy plus the Axiom of Dependent Choices 
imply that every set is weakly Ramsey. These results are the generalizations 
to the class of projective sets of some theorems from W. T. Gowers, and our 
paper "Weakly Ramsey sets in Banach spaces." 

INTRODUCTION 

In this paper we continue the study we started in [2] of the new Ramsey-style 
property for Banach spaces introduced by W. T. Gowers in [6], [8], the weakly 
Ramsey property (see Definition 1 below). This new combinatorial notion is ex- 
tremely powerful for the analysis of the infinite-dimensional closed subspaces of a 
given (infinite-dimensional and separable) Banach space. This is exemplified by 
Gowers' famous dichotomy for Banach spaces ([71), which is a direct consequence 
of the fact that certain simple sets (intersections of open sets) are weakly Ram- 
sey. The weakly Ramsey property is a property of sets of block subspaces, and 
the set of all block subspaces of a Banach space, with the natural topology, is a 
Polish space, which makes it suitable for a set-theoretic treatment. Indeed, in [2] 
we gave a proof, using ideas from set theory, of a theorem first announced in [6] 
(see also [8]), namely, that every analytic set is weakly Ramsey. For the proof, we 
used the Suslin decomposition of analytic sets and introduced a family of partial 
orderings, which can be thought of as sets of approximations to a particular block 
subspace. Dense subsets of these partial orderings are used to guarantee that any 
filter that meets the dense sets will produce the required block subspace. Assuming 
some reasonable combinatorial principles (e.g., a form of Martin's Axiom), we also 
showed in [23 that for a more complex class of sets of block subspaces, the class of 
all continuous images of co-analytic sets, all sets in the class are weakly Ramsey. 
For the proof we introduced again a new family of partial orderings and used the 
canonical decomposition of such sets into R, Borel sets. 
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These results parallel the situation for the classical Ramsey theory in [NIW, the 
space of all infinite subsets of integers. J. Silver [19] showed that every analytic set 
is Ramsey, and that Martin's Axiom implies that continuous images of co-analytic 
sets are Ramsey. As for more complex sets, A. R. D. Mathias [16] showed that 
in the model obtained by collapsing an inaccessible cardinal using the collapse of 
Levy, every projective subset of the space [N] is Ramsey. A similar situation also 
holds for weakly Ramsey sets: we show in Section 3 that in a certain inner model 
of the Levy-collapse of a Mahlo cardinal, every projective set of block subspaces is 
weakly Ramsey. However, due to the asymmetry of the weakly Ramsey property, 
we need an entirely different argument: we show that every projective set has a 
good decomposition (see Definition 5 below), a sufficient condition for a set to be 
weakly Ramsey, and we use the absoluteness properties of the Solovay model that 
results from the Levy-collapse. 

As one might expect by looking at the definition of weakly Ramsey (Definition 1), 
the axioms of determinacy, which assert that certain games in N are determined, 
have strong consequences in the theory of weakly Ramsey sets. We show that 
the Axiom of Projective Determinacy implies that every projective set of block 
subspaces is weakly Ramsey. This answers a question of W. T. Gowers ([8]). And 
if the space is hereditarily indecomposable, the full Axiom of Determinacy plus a 
weak form of the Axiom of Choice imply that every set is weakly Ramsey. 

A special situation holds in the space co (the space of subspaces of scalars with 
limit 0). This is the Banach space that, in a combinatorial sense, is nearest to 
the space [N]W. For this space we prove similar results as before, but for a stronger 
Ramsey property, that of being almost-Ramsey, i.e., either avoids or almost-contains 
a cube (see Section 6). 

This paper is organized as follows: in Section 1 we recall from [2] the fundamental 
notions alnd prove some basic facts that will be used in the subsequent sections. 
Section 2 is related to the new notion of having a good decomposition. In Section 
3 we prove that in the Levy-collapse of a Mahlo cardinal over L of a small set every 
projective set of block subspaces has a good decomposition, and hence is weakly 
Ramsey. We use this fact, together with a construction of Woodin ([23]) of a small 
sufficiently-correct model, to show in Section 4 that, under the Axiom of Projective 
Determinacy, every projective set of block subspaces is weakly Ramsey. We also 
consider two special cases, for which we prove stronger results. The first is when the 
Banach space is hereditarily indecomposable. We show in Section 5 that the Axiom 
of Determinacy implies that every set of block subspaces is weakly Ramsey. The 
second special case is co. We show in Section 6 that under the Axiom of Projective 
Determinacy, every projective set of block subspaces of co is almost-Ramsey. 

1. DEFINITIONS AND BASIC FACTS 

We are interested in infinite-dimensional and separable Banach spaces. So, in 
this paper, a Banach space will always be infinite-dimensional and separable. Also, 
subspaces of a given Banach space will always be assumed to be closed. 

Let X(= (X, 11 11)) be a Banach space over e E {C, RI. A sequence (x,), E Xw 
is a Schauder basis if for every x E X there exists a unique (A,), E ]K such that 
X Axn>1 . It is well known that every Banach space has a basic sequence 
(see [14]). Note that a Banach space having a Schauder basis is always separable. 
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We say that (x,), is a basic sequence iff (xn)n is a Schauder basis in the closed 
linear span of (xn)n, i.e., the closure of the subspace generated by {xn I n > 1}. 

Given a Schauder basis (en)n of X (we may assume that lienll = 1), and x C XI 
x = 00 A e the support of x is supp x: {n E n An 7 O}. Suppose that x, y 
have finite support. We write x < y if max supp x < min supp y. (Yn)n is a block 
basic sequence (with respect to (en)n) iff every Yn has finite support and for every 
n > 1, Yn < Yn+l. For conciseness, we usually refer to block basic sequences simply 
as block sequences, or block bases. A block vector is a normalized vector with finite 
support. In most cases, and without ambiguity, we will confuse X with the basic 
sequence (en)n. Let B1 = B1(X) be the set of normalized block basic sequences 
of X. For notational efficiency, we sometimes identify a block basic sequence with 
the closed subspace it generates. Thus, we use upper-case letters X, Y, Z, ... to refer 
to normalized block basic sequences as well as the corresponding subspaces. We 
reserve the lower-case letters s, t, u, .. for finite segments of normalized block basic 
sequences and the corresponding subspaces (we refer to those as finite block basic 
sequences). Also, for a finite sequence s, we will write 1s8 for the cardinality of s. 

Fix a Banach space X. For a and b finite or infinite block basic sequences, 
we define a -< b iff a C b (as subspaces). Note that -< is a transitive relation. 
Y <* Z iff there is no so that (Yn)n>no j Z, where Y = (Yn)n. For a finite 
block sequence s = (X1,..., Xk), define Y \ (Yn)n>m, where m is the least such 
that max supp Xk < min supp Yin Y[n (Yl, - ., Yn) and Y \ n = (Yk)k>n. Also, 
for a sequence l\ = (6k)k > 0, define A\ \ n = (6k)k>n. Let [Z] :{YY -< 

Z}. If s = (X1,...,Xn), then we will write [s] for {tIt j< (xi,...,Xn)} For s,A 
define [s; A] {Y E B1 I there is n such that Y[n s and Y \ s -< A}. Note that 
[s; A] = [s; (A \ s)]. 

y E a always means that y is not only a vector in a but that it is also normalized 
and has finite support. 

For a = (Xn)n and b = (Yn)n such that lal = lbl (i.e., either both a and b are 
infinite block basic sequences or they are both finite and of the same cardinality) 
and A\ = (On)n, define d(a, b) < A\ iff for every n, IXn- Yn| ? .6n 

Let \ = (6n)n > 0, and u C B1. Then we define 

-A {(xn)n d((xn)n, (Yn)n) < A\ for some (Yn)n E cJ} 

Let Y = (Yn)n and Y (Yn)n be block sequences, and let Z (Zn)n E [Y]. We 
say that Z (in)n E [Y] is defined as Z E [Y] iff for every n, 

m I m 
if Zn AkYk, then in = A E AkYk 

k=1 k=1 

where A = 11 Em AkWkH, i.e., if Z T(Z), where T: Y - Y is the isomorphism 
defined by T(Yn) = Yn 

Fact 1.1 (see [2]). Given \ = (6n)n > 0, there is 0 < F < A\/2 decreasing which 
satisfies the following: 

For every Y, Y such that d(Y, Y) < F, if Z E [Y], and Z E [Y] is defined 

as Z E [Y], then d(Z, Z) < A\. 

Given Y E B1 and a C B1, we define the game D, [Y] as follows: There are 
two players, I, and II. I always plays a block vector of Y, and II can play either 
a block vector of Y or 0, the latter denoting that II does not play any vector at 
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that moment. The game starts with I playing a block vector x(l) E Y, to which II 
responds by playing either a (block) vector Yi E [x(l)], or 0. If II plays a vector, 

x1 then the game restarts with I playing a vector x (2) E Y. However, if II plays 0, 
then I must play a vector x(l) > x(1), to which II responds by playing either a 2 

1' 
block vector Yi E [x(l),x(1)] or 0, and so on. It is also required that if yn and Ym 
are vectors played by II and n < m, then yn < Yi. Thus, the game looks like this: 

I (l) 
(I 

(1) (1) (2) x(2) (2) 

II 0 ... 0 Yi 0 ... 0 Y2 ... 

where YE [x M X (nll)], Y2 E [x(2) x(2) and yi < Y2, etc. II wins the game 
if she produces a sequence (Yn)n E u. Otherwise (i.e., if II does not produce an 
infinite sequence, or if (Yn) n > c) I wins. 

A strategy for I or II is a function from the set of finite runs of the game to block 
vectors, or 0, such that the value of the function on a finite run is a legal move. A 
strategy S for I (II) is a winning strategy if whenever I (II) plays according to S, 
then he (she) wins the game. 

Given a strategy for I in X, S, we say that a finite block sequence (Yi, ,Yn) 
is coherent with S iff (Yi, . ., Yn) is the sequence of vectors played by II in a finite 
run of the game in which I plays according to S. An infinite block sequence (Yn)n 
is coherent with S iff for every n, (Yl, ..., Yn) is. For a sequence Y coherent with S, 
let S * Y be the sequence of vectors played by I following the strategy S against Y. 
For a strategy S for II in X, the definition of being coherent with S is analogous, 
replacing I for II. 

Given s, a finite block sequence, and b, either a finite or infinite block sequence, 
s < b has the obvious meaning. For s < t and s < A, let s^t and s^A be the 
concatenation of s with t and of s with A, respectively. Finally we define, for 
s E [X]<w, the game D- [Y]: It is a game played in Y \ s, and if II produces Z, 
then she wins iff s8Z E a. 

We can consider a natural topology on B1, the N-topology: The topology inher- 
ited from XW, where X has the norm topology and X' the product topology. Note 
that X' is a Polish space. It is easy to show that B1 is an N-closed subset of X' 
(see [2]), and hence it is also a Polish space. 

A set a C B1 is large in [Y] iff for every Z -< Y there exists Z' < Z such that 
Z' E a. cr is large in [s; A] iff for every Z -< A, there exists Z' < Z such that 
s8Z' C U. 

The main notion is that of a weakly Ramsey set ([6], see also [2]). 

Definition 1. Let A\ > 0. A set cr C B1 = B1(X) is /A-weakly Ramsey iff there 
exists Y E B1 such that either [Y] n a 0, or II has a winning strategy for the 
game D,, [Y] a- is weakly Ramsey iff it is A\-weakly Ramsey for every A\ > 0. 
(Notice that without loss of generality we can always assume that A\ is decreasing 
and A\ < 1.) Note that saying that a- is A\-weakly Ramsey is equivalent to saying 
that if a is large (in X), then there is some X such that II has a winning strategy 
for the game D, [XI . 

We defined in [2] two classes of partial orderings, which will also play a key role 
in this paper. The first is the following: For Y E Bi, D = I(Y) is the partial 
ordering whose elements are pairs (s, A), where s and A are block sequences of Y, 
s finite and A infinite, and such that s < A. 
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The ordering is given by: (s,A) < (t, B) iff t is a subsequence of s, A -< B and 
s \ t C [B]. (Note that this implies t is an initial segment of s.) 

To define the second class of partial orderings we need the notion of A-cover: 
Given s and A = (6,)n > 0, we say that a set {tl, ..., tk} C [s] is a A-cover of [s] iff 
for every t C [s] there exists 1 < i < k such that supp ti = supp t and d(t, ti) < A 
(this means that if t = (Yi, Ym) and ti = (Zi, .Zm), then for every 1 < j < m, 
d(yj, zj) <6j). 

Also, for 6 > 0, a set {Yi, ,Yn } C s is a 6-cover of s iff for every y C s there 
is 1 < i < k such that supp y = supp yi and d(y, yi) < 6. Note that for our 
convenience, the notation x C s implies that x is normalized. Clearly, if 6 > 0 and 
[s] has a A = (6)n-cover, then s has a 6-cover. 

For every s = (X ,...,Xn) and A > 0, there is a A-cover of [s]. 

Example 1.1. Given s = (X1,.-.,Xn) and 6 > 0, we give an example of a 6- 
cover of s in the case of real Banach spaces (the complex case is similar): For 
1 < k K< n,let Mk be the smallest positive integer such that 1) <k Note I < k <.n, ~~~~~~~~~~~~~(1+3) Mk 

that I > 1 > 1 > > M Let 1+3 (1+3)2 (1?3)Mk 

{L, ?1 ? 0} = f ? ? 
II 

. I + 0a , and 
1+ 6' (1 +6)2''1 (l +6)Mk' 

F(6, k) ={: {1, ..., k} - L(6, k) I for some 1, f(l) -1}. 

Let V be the set of vectors kn= f(k)Xk such that f C F(6, Isupp f ). Then 
o = {c/Hl ll I x C V} is a 6-cover of s: For suppose that x C s, x = Ak=k, 

a supp x. Let f C F(6, 1a ) such that for every k C a, Ak - f(k)I < 2 . Let 

y =EnI f(k)Xk. Since f C F(6, Isupp f ), x c V and z =x/llxll C C. But 

||x -Y| = Z| E(Ak - f(k))Xk 1 S 2< a 2 
k=1 kea 

2a 

Now, it is easy to show that if v1, V2 C X are such that IIV2 11 1, and IIv1-V2 , 
then lviv - vi/ lviI I11 < 6. So, 

IIz - Yll < Ilz - xll + llx - Y11 - 2 2 

Note that our definition guarantees the following fact: Suppose that s = (X1, ..., Xn), 
t =(ci, ..., xm) and m > n. Then the 6-cover constructed above is exactly the set 
of vectors x C s that are in the 6-cover of t. 

Given A > 0 and Y = (Yn)n C B1, we define the partial order IP(A,Y) as 
follows: First, choose for every finite subset of positive integers a and every m, a 
finite 6m-cover of [(Yk)kCa] , C(a, m). We also require that for every m, if a C b then 
C(a, m) = {x e C(b, m) I supp x C a} (see the Example 1.1). 

Elements of P(A, Y) are (s, A) C P(Y) such that if s = (XI, ..., Xn), then for 
every i < n, xi C C(supp Xi, i). We call s a finite (A, Y)-block basis. 

(s, A) < (t, B) iff: 
1. t C s, 
2. A -< B, and 
3. for every Iti i ?< s8, there exists u C B such that supp u = supp xi and 

d(u, xi) < 6i. 
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Given A and A > 0, we define 

lAlA = {B E B1 I there is some B E [A] such that d(B, B) < A and 

supp B supp B}, 

where if B = (b,), and B =(b&), then supp B = supp B means that for every n 
supp b, = supp b6. We can also define lA,W and WA in the obvious way. Then, 
we can re-state condition 3 as: 

3'. s \ t E lBl(zi` t 

Subsets of Polish spaces can be classified according to their topological complex- 
ity, which yields the projective (or Lusin) hierarchy of classes (see [11]). We use the 
following (standard) notation: El is the class of analytic sets, i.e., the continuous 

images of Borel sets. H1' is the class of co-analytic sets, i.e., the complements of 

analytic sets. El+, is the class of the continuous images of TJX sets, and H1+1 is 

the class of complements of El+, sets. The projective sets are the sets that belong 
,n 

to one of the projective classes. 
Using the notions defined above, in particular, the partial orderings IP(Y), we 

gave in [2] a proof of the following (see also [8]): 

Theorem 1.1. Every analytic set of block sequences is weakly Ramsey. 

To prove that every El set of block sequences is weakly Ramsey, we used in [2] 

the partial orderings P(A, Y). We will call the partial orderings of the form P(A, Y) 
relevant. 

A fundamental fact from [2] is that every P(A, Y) satisfies Baumgartner's Axiom 
A. Let MA,, (7) be the Martin's Axiom for the class 7P of the partial orderings 
P(A,I Y). 

We quote the following result from [2]: 

Theorem 1.2 (MAW1 (P)). Every El subset of B1 is weakly Ramsey. 

We also showed in [2] that some additional axiom of set theory is needed to prove 
that every El subset of B1 is weakly Ramsey. 

The aim of this paper is to extend these results to all projective sets. For this, 
we give in the next section a sufficient condition for a set to be weakly Ramsey, 
namely, to have a good decomposition. 

2. GOOD DECOMPOSITIONS 

We assume the reader is familiar with the basic notions of the forcing technique 
(see, for example, [9] or [12]). 

We start with a bit of set-theoretic study of B1. 

Proposition 2.1. The relation -< over block sequences of X is a closed subset of 
B1 x B1. 

Proof. For a given X = (xn)n,Y = (Yn)n B1, X - Y iff X C Y as subspaces, 
i.e., X -< Y iff for every n, Xn E Y. Define for each n, 
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If we prove that every A, is a closed subset of B12, then we are donei since < 

nn An. So, suppose that (Xm, Ym)m is any sequence of pairs of block sequences, 
each one in An, and suppose that (Xm,Ym)m has limit (X,Y). Suppose that 
for every m, Xm = (x(m))k, Ym = (Y(m))k, X = (Xk)k, and Y = (Yk)k. By 

definition of An, for every m, x(m) E Ym and the sequence (x$m))m has limit 

xn. There are m' and I such that for every m > m', supp supp xS n and 
x(m) = A(m)Y(m) + ... A (m)y(m) for some KA(m)l < 2C, where C is the basic 

constant associated to (en)n. For j = 1, ..., 1 (and passing to a subsequence if 
necessary), the sequences (A(m))m converge. Let A1,...,Al be their limits. It is easy 
to prove that xn = AlYl + + Aly1. D 

We need to code elements of B1. So, let g: N -4 Fin be any primitive re- 
cursive coding of Fin, the set of all finite subsets of N. For every block vector 
x = L Enm=l Anen:let c(x) = (A )L1. Let C C 1KW x g be the set of sequences 
((An)nv (kn)n) such that 

1. g(kn) < g(kn+1) (i.e., g(kn) n g(kn+l ) 0, and max g(kn) < min g(kn+l )). 
2. If Mn = m= 

n 
g(km)1, then Xn+l = Lmeg(kn+1) Am+Mnem is a normalized 

block vector. Note that (xn)n E B1. 

It is not difficult to show that C is a perfect subset of 1KW x A" (i.e., closed and with- 
out isolated points), and that the map c: C -4 B1, defined by c(((An)n, (kn)n)) 
(xn)n is continuous. The map d: B1 ? IK' x g defined by 

d((Xn)n) = (c(xl)^c(X2)^ .. (g-1(supp Xn)n)) 

is the inverse of c. So, c is a homeomorphism. 
It is well-known that there is a canonical Borel isomorphism between any non- 

empty perfect subset of 1KW x g and the Baire space g (see [11]). For now, fix 
some (canonical) Borel isomophism b: X -4 N". 

We recall the following definitions from model theory and descriptive set theory 
(see, for example, [9]): 

Definition 2. Let M C N be transitive classes and let p(xl, ..., xn) be a formula 
of the language of set theory. We say that fo is absolute for M, N if for every 
al,,... Ian (E M, 

M l= Wo(a 1,..., an) iff N l= 9o(a ,..Ian) 

Definition 3. A formula is El if it is of the form: 

:JX1 CW )VX2 C UWPX3 CW -VXn C_ O(xl ...XnYl I...IYm) 

where Yi,..., Ym are variables ranging over subsets of w and all the quantifiers in + 
range over w. 

A formula is HJ1 if it is the negation of a El formula. 
A formula is projective if it is El or H1, for some n. 

Definition 4. We will say that a model of set theory V is El -absolute iff all the 
El formulas are absolute for V and V[G], for every G V-generic for a relevant 
partial ordering, i.e., of the form P(A, Y). Note that a model is El -absolute iff it 
is Hl-absolute. A model of set theory V is projective absolute if it is ZX-absolute 
for every n. 
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It is well-known that every well-founded model of set theory is El-absolute (see, 
[91). 

The following well-known fact relates projective formulas and projective subsets 
of NM: 

Fact 2.1. A subset A C A" is a El subset of A" iff there exists a El formula 

P0(Y, Yl, I,. Yk) and al1, , -ak E such that A = {r E MI | (r, al,-, ak)1- 

Proof. See, for example, [11] or [12]. DH 

Proposition 2.2. Suppose that V is a El-absolute model of set theory, and G is 
V-generic for P(A, Y). Then for every E1 set of block sequences o- E V, 

V[G] (u #4 0) iffV I= (u #4 0). 

In particular, for analytic sets o, V F u- 74 0 iff V[G] 1= #- 78 0. 

Proof. o074 0 iff 074 c(o-) C KW x N", and use Fact 2.1. C 

Proposition 2.3. Let u- be any subset of Bi, and let s be any finite block sequence. 
Define 

-- {X E B1 I s^X E C}, 

c(ou) = {X E B1 I [X] C u}, and 

1(u-) = {X E B1L I o is large in [X]}. 
Then, 

1. the operator u- H-* > does not change the complexity. 
2. If u- is H1 then c(u-) is also F1X, 1(u-) is H1+2 and A isZS 

3. If u- is ES then c(ou) is H1+l, 1(uf) is II1+l and o- is EX. 

Proof. 1 holds because the map T, B1 -? B1 defined by T, (X) = s (X \ s) is 
continuous. For 2 and 3, suppose that u- is a HX subset of B1. Fix any E1l subset 

B C B1 x A" such that o- = {X I for every a A", (X, a) E B}. Then define 

B' = I (Wi I W2, ce) E BiL2 x J (Wi, ae) (E B}1, and 

A = (Ba2\ n dJ. 

B' is a El subset of B12 x J\, and A is an open subset of B12 x NM. It is easy to n 

prove that a {X E B1 I V(Y, a) B1 x , (Y, X, o) (A u B')}, which is a H] 

set, because A U B' is En-1 

Similarly for the case El.n 

The following definition provides a sufficient condition for a set to be weakly 
Ramsey. We will use it to prove the main results of this paper. 

Definition 5. a = Uiuj oi is a good decomposition iff for every A > 0 the following 
hold: 

1. For every (s,A), if u- is large in [s;A], then there is some i E J and (t,B) < 
(s, A) such that (oi)A is large in [t; B], and 

2. For every i E J, s and X, ((oi)A)s is weakly Ramsey in B1(X). 

The interest in good decompositions is due to the following: 
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Theorem 2.1. Every subset of B1 with a good decomposition is weakly Ramsey. 

We need some lemmas. 

Lemma 2.1. There is Y such that for every (s, A) E P(Y), if II has a winning 
strategy for the game D(,,)s [A], then also for the game D((,U)s), [Y]. 

Proof. Consider the following subsets of IP(X): 

Dm {(s,A) E P(X) I IsI > m and for every t E [s] if for some B A-<A II has a 

winning strategy for D(U)t [B] then II has a winning strategy for 

D ((oA)t)A [A]}. 
Every Dm is a dense subset of IP(X): Fix any (s, A), and we can suppose that 

Isl > m. Let {tl, ...,tk} be any iA-cover of s. Define A = Ao - - Ak as follows: 
Suppose Ai-1 is defined. If there is some B -< Ai-, such that II has a winning 
strategy for the game D((,U)ti)A/2 [B], then put Ai = B; otherwise Ai = Ai-,. 
Then (s,Ak) < (s,A), and (s,Ak) E Dm: Suppose that B - Ak is such that II 
has a winning strategy for the game D(,U)t [B], for some t E [s]. Let i be such that 
d(t,ti) < A/2. Then II also has a winning strategy for the game D((,A)ti),/2 [B], 
and by definition of Ai, II has also a winning strategy for the game D((,Y)ti)A/2 [Ai], 
and hence, also for D((UA)t), [Ai]. 

Then let G be a {Dm}m-generic filter (it always exists because the set of dense 
subsets is countable), and Y = YG satisfies what we wanted: Let (t, B) E P(Y) 
and suppose that II has a winning strategy for the game D(,U)t[B]. Let m be 
large enough so that t E [s], for some (s, A) E G n Dm. Choose any k such that 
B* = B \ k -< A, and II has a winning strategy for the game D(,U)t [B*], and, by 
definition of Dm, also for the game D((,U)t), [A]. But Y -<* A and hence II also 
has a winning strategy for the game D((oA)t)A [Y]. Cl 

Lemma 2.2. Let u- = Uij vi be a good decomposition. If u- is large in Y, then 
there is Z -< Y such that II has a winning strategy, in Z, for producing a sequence 
t for which there is some i E J such that (vi)< is large in [t; A], for some A -< Y. 

Proof. Consider 

&(AI Y) {(Ym)m -< Y there exist i E J& k > 1 and A -< Y such that 

(ci)A is large in [s^ (Y1, ...Yk); A]}. 

Note that &(A, Y) is open below Y (i.e., is an open subset of [Y]). And also 
large: For suppose that Z -< Y. Since u- is large in [Z] and Uij oi is a good 
decomposition of u, there is some i and (s, A) E P(Z) such that (ui)A/8 is large in 
[s;A]. But then s^A E &(A\,Y) n [Z], and we are done. 

By Theorem 1.1 (working with X = Y), there is some Z -< Y such that II 
has a winning strategy for the game D(&(A/2,y))A/2 [Z], hence also for the game 

D&(A,Y) [Z]. 
In other words, there is Z -< Y such that II has a winning strategy in Z for 

producing a sequence s -< Z such that for some i and some A -< Y, (oi) A is large 
in [s; A]. D 

Proof of Theorem 2.1. Let Y satisfy Lemma 2.1 and let Z -< Y satisfy Lemma 2.2. 
We give a winning strategy for II in the game DUA, [Z]: First, II plays in Z for 
producing a sequence s such that for some i E J, (ui)A/3 is large in [s; A], for some 
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A i- Y (i.e., ((ui)A/3)s is large in [A]). Ui2j oi is a good decomposition of u, and 
hence, ((ui)A/3)s is weakly Ramsey in A. Choose any B -< A such that II has a 
winning strategy for D(((i)A/3)s)A/3 [B]. But 

WO_i ) A )s) A C ((O- A )s) A C ((O- A ) A ) C_ (0-2^ A 

hence II also has a winning strategy for the game D(a2A/3)s [B]. By our assumption 
over Y (Lemma 2.1 for B -< A -< Y), II also has a winning strategy for the game 
D((a2A/3)s)A/3 [Y]. But Z -< Y, and hence II has a winning strategy for the game 
D (oA)s [Z]. 

We check that this is a winning strategy in Z for II. For suppose that X is a 
coherent sequence with this strategy. Then, let s be an initial segment of X such 
that ((ui)A/3)s is large in A -< Z for some i E J. Then, X \ s is played so that 
X \ s E (o-A)s, i.e., X = s^(X \ s) E oA, and we are done. D 

We will now prove that in a El-absolute model every E1 set is weakly Ramsey. 

Lemma 2.3. Suppose that for every t there is some C -< A such that [s^t; C] n 
O-, = 0. Then, for every (t, B), there is some C -< B such that for every u E 
[t], [s^ u; t \ u^C] n JA/2 0. 

Proof. 

Claim 2.3.1. For every (t, B) there is B -< B such that for every u E [t], [s^u; B]i 
0_A/2 = 0- 

Proof of Claim. Fix (t,B), and let {t1, ...,tk} be a A/2-cover of t. Then, find 
B = Ao >-A1 A - >- Ak so that [s"ti; Ai] n oA =0. Take B Ak, and we are 
done. E 

Find B = Co - Cl - >- Ck - so that for every k: 

1. Ck+1 -< Ck \ Ck, where Ck is the first element of the block sequence Ck. 

2. For every u [t] and every w E [(t\U)^ (CO, * ., Ck)], [S^U^W; Ck+1]0 nA/2 0- 

We check that this is possible: For suppose we have defined Ck. By Claim 2.3.1, 
there is C - Ck \ Ck such that for every v E [t^(co ..., Ck)], [s^v; C] n YA/2 = 0 

But if u E [t] and w E [(t \ u)^(co, ..., Ck)], then u^w E [t^(Co, ..., Ck)]. So take 
Ck+l = C 

Let C (Ck)k>O. We check that (t,C) satisfies what we want: Let u E [t], 
and let Z (Zm)m j (t \ u)^C. There is mo and ko such that (Z, ..., zmo) E 

[(t\u)^(cl, Cko)] and (zm)m>mo < (ck)k>ko. By construction, [s-ua(zj, ..., zmo); 
Cko+l] n cTA/2 = 0. But (Zm)m>mo Cko+1 and then s-ua(zj, ..., zmo)>(Zm)m>mo 

V cTA/2, and so we are done. D 

Lemma 2.4. Suppose that G is P(A, Y)-generic over V, and let 

Y =YG U S. 
(s,A) EG 

Then, in V[G], for every (s,A) G C, there is some k > IsI such that Y \ k E 

lAlA\k D 

Theorem 2.2. If V is El-absolute for P, then every El set has a good decomposi- 
tion. 
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Proof. Using the Shoenfield tree for El sets (see [9]), we can show that every 2 

set of block sequences is the union of w1 Borel sets, o- = Ua<w1 vo. We check that 
this is a good decomposition: By Proposition 2.3, every ((QA)Z)s is analytic, and 
also for every X, ((uo-)A)s n [x] is analytic. Hence, ((uo)A)s is weakly Ramsey in 
X . 

Now suppose that o- is large in X. We need to check that there is some ae < w 
and some (t, B) such that (o>)jA is large in [t; B]. Otherwise, for every a < w1, 
and every (t,B), there is C -< B, such that (uo)A n [t;C] = 0. By Lemma 2.3, 
for every a < w1, and every (t, B), there is C -< B, such that for every u E [t], 
(0-o) A/ 2n [u; (t \u)^C] 0. For every P-name for an ordinal <w, ol, and for every 
m, let 

D6&,m= {(t, B) e IP(, X) t, >t m&Vu E [t], (t, B) F1" [u; t \uB] n 
( 2~~ 

Claim 2.2.1. Every D&3,m is dense. 

Proof of Claim. IP does not collapse w1, so, we can suppose that c e, where 
ae < 1l. Fix (t, B). We may assume that |t| > m. Let C be such that for every 
u E [t], (Co?)A/2 n [u; (t \ u)^C] = 0, i.e., (t \ u)^C E c((BiL \ (0o)0A/2)U). By 
Proposition 2.3, c((BiL \ (voA)/2)U) is a HIl set, and by Proposition 2.2, 

(t, C) IF" (5,) A n [u; (t \ u)^C] = 0". 
2~ ~ ~ ~~~~ 

Let D {D=Dam, I <1 mwi N} 

Claim 2.2.2. Suppose that G is a filter generic over V. In V[G], there is some Y 
such that for every ce < 1, uo, n [Y] = 0. 

Proof of Claim. Fix G. Let Y = YG, and work in V[G]. Fix ae < w1, and let u^C - 

Y. Let (t, B) E Da,mnG be such that u E [t]. Then (t, B) VF" [u; t\u-B]0n(o&)A/2 = 

0", and hence, in V[G], [u; t \ u^B] n (Jo,)A/2 0. But Y j et \ u-B?zA/2\u, and 
we are done. D 

Let G be a filter generic over V. By the previous Claim, in V[G] there is some 
Y such that for every ae < 1, Io, n [Y] = 0. The decomposition o- = U,,, uo, 
remains true in V[G] (the decomposition is absolute). So, in V[G], there is some 
Y such that o- n [Y] = 0. We know that in V, o- is large, i.e., X E 1(u), and by 
Proposition 2.3, 1(u-) is a HI1 set. Hence (by our assumption on V), in V[G] uf is 

also large in X. A contradiction. D 

Corollary 2.2.1. Suppose that V is E3-absolute for P. Then, every El set is 

weakly Ramsey. El 

Let us remark that this is a stronger result than Theorem 1.2. Indeed, in [13 it 
is shown that for any class of partial orderings 'P, MA(P) implies El-absoluteness 
for partial orderings in 7), but not the converse. 
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3. A MODEL OF SET THEORY WHERE EVERY PROJECTIVE SET 
IS WEAKLY RAMSEY 

An inner model is a transitive class that contains all ordinals and is a model of (a 
fragment of) Zermelo-Fraenkel (ZF) set theory. For a given set A, the constructive 
closure of A, L(A), is the smallest inner model M such that A E M. So, L(R) is 
the smallest inner model M such that ER E M. The constructive closure relative to 
A, L[A], is the smallest inner model M such that for every x E M, x n A E M. 

n is a Mahlo cardinal if the set {la < r, I a is an inaccessible cardinal} is station- 
ary in i. A Mahlo cardinal is always an inaccessible cardinal. 

For n an inaccessible cardinal, the Levy-collapse, Coll(w, < t), is the following 
partial ordering: Elements are maps p: S -? ;, where S is a finite subset of n x w, 
and for every (a, m) (E S with a 78 O, p (a, m) < a. p < q iff q C p. Coll(w, < ) 
collapses s; to w1. 

For ae < tz, let Coll(w, < c) be the sub-partial ordering of Coll(w, < ,) consisting 
of all p: S - oa, where S is a finite subset of ae x w. 

M is a Solovay model over V iff M = L (R)W where W is a model obtained by 
Levy-collapsing an inaccessible cardinal i, in V. 

For two models M C N, M - N (do not confuse with i<) means that M is 
an elementary submodel of N, i.e., given any sentence fo with parameters in M, Wo 

holds in M if it holds in N. M n N means that for every Z' formula fo with 
parameters reals and ordinals in M, Wo holds in M if it holds in N. 

We shall prove the following: 

Theorem 3.1. Suppose r, is a Mahlo cardinal, and A E V,<. Then in L[A]Col1(w,<t,), 
for every infinite-dimensional separable Banach space X, every projective set of 
normalized block bases of X is weakly Ramsey. 

We recall some well-known properties of the Levy-collapse: 

Proposition 3.1. 
1. Coll(w, < s) is r-cc. 
2. -V[G] = K. 

3. For every x R X, s; is innacessible in V[x]. 
4. For every x R X, there is some ca < n such that x E V[Gc], where Gc, - 

Coll(, < ca) n G. 
5. (Factor Lemma) For every countable set of ordinals X of V[G] there is a 

V[X]-generic filter H of Coll(w, < ,) such that V[X][H] = V[G]. 
6. The Levy-collapse is homogeneous (see [9]). Hence, every formula with pa- 

rameters in the ground model has Boolean value 0 or 1. 

Proof. See [9]. C 

First, we give a characterization of Solovay models due to Woodin (see [3]): 

Lemma 3.1 (Woodin). L (ER) is a Solovay model over V if 

1. w, is inaccessible to reals, i.e, for every x E R, wi is an inaccessible cardinal 
in V [x]. 

2. For every x E R, V [x] is a generic extension of V by some countable partial 
ordering. 

Proof. (=>) Clear, by Proposition 3.1. 
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(=) We shall force over L (R) to create a generic filter G over V for the Levy- 
collapse Coll(w, < wl) with the property that R = R n v [G]. This will be enough, 
since then L (R) = L (R)V[G]. We define the forcing G as follows: 

* g E G iff there exists ae < w1 such that g C Coll (w, < ca) is a generic filter 
over V. 

* g < h iff h C g. 
By (1), for every g E G, w1 is an inaccessible cardinal in V [g] and, hence, for 
every ae < w, there are only countably-many antichains of Coll (w, < ca) in V [g]. 
Therefore, for every ae < w, D, = {g E G : g n coil p(,< a) is generic over V} is 
a dense subset of G. Since every g E G is a countable set in L (ER), given any real 
x E ER, we can code x and g into a single real y. By (2), V [y] is a generic extension 
by some countable partial ordering in V (by Proposition 3.1). Hence, we can find 
ae < 1 and a generic filter h C Coll (w, < ca) such that y E V [h]. But then, h < g 
and x E V [h]. Therefore, for every real x, E,, {g E G: x E V [g]} is a dense 
subset of G. Let H be a G-generic filter over V and let G = U H. Then, by density 
of D, (ae < w), G C Coll(w, < wl) is a generic filter over V. By density of E, (for 
x E R), R C V [H]. E 

The following lemma gives the property of the Levy-collapse of a Mahlo cardinal 
that we will need: 

Lemma 3.2. If i, is a Mahlo cardinal, then there exists a stationary set S C n of 
inaccessible cardinals such that for every ae E S, 

VColl(W,<a) = L VColl(W,<r') 

(i.e., if G is Coll(w, < K) -generic over V and in V[G], g is Coll(w, < a) -generic 
over V, then V[g] - V[G], that is, for every n E w and every El formula fO with 
parameters in V[g], V[g] t= Wo iff V[G] k= p). 

Proof. Let I denote the stationary set of inaccessible cardinals below K. First we 
prove that for every El formula (x1, ...,Xk), and all Coll(w, < ,K)-terms bi, ...,bk 
for reals, if 

cOtl(U<K) W(bl,..bk), 

then there exists a club C C n such that for every A E C n I, 
vColl(w,<>) F (bl I .... bk). 

The proof is by induction on the complexity of the formula: 
For restricted formulas this is clear, since every real in VCoII(w,<K-) belongs to 

some VC?tl(w <a), ae < ,z, and restricted formulas are absolute for transitive models. 
For notational convenience, let us denote the restricted formulas by E', and also 

0~~~~~~~~~~~~~~~~~~~~~~~~ 
Suppose p(x1, ..., xk) is El, n > O. Then it follows by inductive hypothesis. 
So, let Vy(Xx1,...,xk,y) be a l1, n > O, formula, and let b1, ..., bk be simple 

Coll(w, < iz)-terms for reals (i.e., each bi is essentially an w-sequence of maximal 
antichains) such that VyO(b1, ..., bk, y) holds in VColl(w, <6). 

Fix an enumeration (c,: a < K,) of all simple Coll(w, < n)-terms for reals so 
that for every A G I, (rc,: ae < A) enumerates all simple Coll(w, < A)-terms for 
reals. 
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Thus, for every ae < ,, 0(b1,..., bbk, i,) holds in VColl(w,<t). By inductive hy- 
pothesis, let Cc, C r, be a club such that for every A E Cc, n I, 

VC011(w'<') t (1..bk Ir). 

Let C = Ac,<rCc,. Then, for every A CC n I, 

VColl(w,<A) #Vy(bl, ... I bk Yy). 

To prove the lemma, let A = (ac, a < ,) be an enumeration of all the pairs 
(p(xl,...,xk), bl,...,bk), where ~O(x1,...,xk) is a El formula, some n E w, and 
bl...I bk is a sequence from (rc,: a < ,z). We may require that if A < i, is inac- 
cessible, then (ac,: a < A) enumerates all pairs (0(xi,...,xk),bl, ..., bk) such that 

bl,...,bk are from (rc, a < A). For each ae < ,, let Cc, be a club such that if 

ac, (o(xl, ..., Xk), b,...,bk) and 

VColl( <'i) t0(bl .. 
) 

0 

then 

VColl(w'<') t0(bl . k) 

for every inaccessible A E Cc,. 
Let 

C= Ac,<r,Cc,. 

Then, S := InCis as required. D 

Recall that a partial ordering P is proper ([18]) if for some large-enough regular 
cardinal A (e.g., A > 221P1 ), for every countable elementary substructure N of H(A) 
with P E N, and for every p E P n N, there is q < p, (N, P)-generic, i.e., whenever 
A C P is a maximal antichain, A E N, then {a E A I a is compatible with q} C N. 

P = (P, <p) is absolute iff the relations p E P, p <p q and p I p q (the incompat- 
ibility relation) are absolute for transitive models of ZF. 

Lemma 3.3. If P is a proper, definable and absolute partial ordering whose ele- 
ments are reals, then every P-extension of a Solovay model over V is a Solovay 
model over V. 

Proof. Fix M = L(IR)V[G] a Solovay model over V, where G is Coll(w, < K)-generic 
over V, some i inaccessible in V. 

We need to show that in V[G]P: 
1. wi is inaccessible to reals. 
2. Every real is generic over V for a countable partial ordering. 

Working in V[G], suppose r is a simple P-term, and suppose p E P forces that 
w -4 w. Assume, towards a contradiction, that p also forces that w V 

Wi. 
Let N - H(A), where A is a big-enough regular cardinal, N countable, and 

rpP E N. Since P is proper, we can find q < p, (N, P)-generic. Let s = n N. 
Then, 

1. TC(s) is countable, 
2. q Vfp p r. 
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Let ae < r, be such that s is a 1P-term in V[G,], where G, = Coll(w, < a) n G 
and P, = pV[G-] = P n V[G,] (here we are using that P is absolute.) We may also 
require that p and q are in V[G,] 1 

Let (Dn n < w) be an enumeration, in V[G], of all D E V[G,] such that 

V[G,] t D is a maximal antichain below q. 

Let N' - H(A), A a large-enough regular cardinal, N' countable, with q, s, P, 
(Dn n < w) E N'. Let q' < q be (N', P)-generic. Then, for every P-generic F over 
V[G] with q' E F, F, = F n V[G,] is Pc,-generic over V[G,] and, further, 

V[G] [F] t r[G * F] =[Gc, * Fc,] 
So, 

V [G] [F] t 1[[] 1 

And thus, 

V[Gc,] [Fc,]t [[] =1 

which is impossible, since , is still inaccessible in V[G,][Fl]. 
This shows 1 But it also shows 2, since we have found, given any real r in V[G], 

a partial ordering in V, namely Coll(w, < a) * P., which is countable in V[G], such 
that 

V[G] r VC#l(w <a)* a. 
D 

Lemma 3.4. If L (R), L (R*) are Solovay models over V with IR C R*, and 
L(IR) =L(IR*) W () w ,then there is an elementary embedding j L (R) - L (R*) that is 

the identity on the reals and ordinals. 

Proof. Since w1 (R) = w (R*), Coll(w, < w1 (R)) = Coll(w, < wL (IR)). Let G, G* C 

Coll(w, < wfL(R)) be generic filters over V such that L (R) = L (R)V[G] and L (R*) 
L (R)V[G ]. In order to prove that the identity map on reals and ordinals yields 
an elementary embedding of L(R) into L(R*), we only need to show that for every 
formula (p (y, z), every ordinal ae, and every real a C R, 

V [G] t- (p (a, a) iff V [G*] t- fp (a, a) 

By the Factor Lemma for the Levy-collapse (see Proposition 3.1), we may assume 
that a belongs to the ground model. But by homogeneity of the Levy-collapse, we 
have 

V[G] 1= 9o(a, a)L(R) iff I-0 1Cl < (R)) 9 (6'6)L(R) if V[G*] p (a, a)L(R*). 

We are ready now to prove Theorem 3.1. 

Proof of Theorem 3. 1. Fix A C V,<. To simplify the argument, let us suppose G is 
Coll(w, < n)-generic over L[A], and work in L[A] [G]. Note that in L[A][G], A has 
countable transitive closure. 

Let ur be a El subset of B1, and suppose that T = b(cu) is defined by a Zl for- 

mula p(x, a1, ..., am) where a1, ..., am are reals and b is the fixed Borel isomorphism 
between B1 and J. For simplicity of notation, suppose that m = 1 and write a 
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for a1. Let a be a real that codes both A and a. So, by the Factor Lemma, let H 
be Coll(w, < n)-generic over L[da] such that L[a][H] = L[A][G]. , is Mahlo in L[da]. 
So, by Lemma 3.2, let S C wi be the stationary set of inaccessible cardinals in L[da] 
such that for every a Ce S, 

L[-a]C?tl(w,<a) deD, L[-a]C11(w,<K). 

Note that S is definable in the parameters a and i. 
For each ae E S define a set of reals A., as follows: 

x C Aa, iff there exists g such that g is Coll(w, < ae)-generic over L[a] and 

x E L[a] [g] and L[da][g] [9 tp (x, a). 

Thus, A., is definable with ae and a- as parameters. 
If g is Coll(w, < a)-generic (ac e S) over L[a], then wL[] a -c. So, we have 

x C Aa iff 3g(L [-a][g] t (g is Coll(w, < at)-generic over L[-a]) and 

x c Lc,[m][g] and Lc,[a][g] t Wp(x,a)). 

Notice that for a real g and a countable ordinal ae, the map (g, a, a) F-* La [a] [g] is 
arithmetical in the codes. Hence, A., is El in the codes for ae and a. 

We claim that 

f = {x IE R I Q(x, a)}= U Aa. 
Cis 

For suppose that x C T. Let ae E S be such that x,a C L[-a][H.], where H.= 
H n Coll(w, < a)). Then, since ae C S, L[a][H.] t x C -r. Hence, x E Aa,. 

Conversely, suppose that x E A., for some ae E S. Fix g a Coll(w, < at)-generic 
over L[a] with x E L[-a] [g] and L[-a] [g] t x C T. Then, since a C S, L[Ta] [H] t x C T. 

We will show that r = UsES uc, is a good decomposition, where u, = b-l(Ac). 
Let P be one of the relevant partial orderings. We claim that if F is P-generic over 
L[-a] [H], then in L [a-] [H] [F] also 

T = U Ac 
as 

But this follows from Lemmas 3.3 and 3.4, for since P preserves wl, we have 

L( L [ad] [H] L() L [-a] [H] [F], 

and S is definable in the parameters a and i. 

Every (uc,)A is an analytic subset of B1, hence is weakly Ramsey. Now, proceed 
as in the proof of Theorem 2.2 to show that cr is weakly Ramsey in L [a-] [H], hence 
in L[A] [G] LI 

4. PROJECTIVE DETERMINACY 

We will show that the Axiom of Projective Determinacy implies that every pro- 
jective set is weakly Ramsey. 

We recall the notion of integer game: Fix A C NW. GN(A) denotes the following 
game: There are two players, I and II. I initially chooses an ae(1) C N; then II 
chooses some ae(2) C N; then I again chooses an ae(3) C N, to which II replies with 
a(4) C N, and so on. II wins the game if ae = (ae(n)), is in A. Otherwise, I wins. 
A is determined if GN(A) is, i.e., either I or II has a winning strategy. 
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Definition 6. The Axiom of Determinacy (AD) is the assertion that every set 
A C NW is determined. The Axiom of Projective Determinacy (PD) asserts that 
every projective subset of NW is determined. 

Let us explain how to convert the property of being weakly Ramsey in B1 into 
a property on KV. Let V be the set of normalized block vectors. There is a natural 
inclusion map V c - coo (coo is the subspace of co consisting of the sequences that 
are eventually 0). Let Q be the subset of V consisting of the block vectors with 
rational coordinates. V is the closed closure of Q in coo (the reason being that for 
every finite set of integers a, the projection Pa is continuous). 

Now, fix any enumeration Q {q, j n > 1}. Let B1 C K be the set of infinite 
sequences of integers ae = (c,), such that q In 

< q xn+1 (i.e., maxsupp qan < 
min supp q,n+1). B1 is a closed subset of AK. Define fx: B1 -* B1 by fx(ce) = 

(qlxn)n fx is injective and continuous. 
Next, we define the relation -g and the game in B1. 

Definition 7. For X, Y E B1, u C B1 and /\ > 0, define the relations X QAg Y iff 
fx (X) - fx (Y), and d(X, Y) ? A iff d(fx (X), fx (Y)) < A. 

Let ND, [X] be the integer game associated to Df, (,) [fx (X)], when both players 
always choose elements of Q. 

Then, we have the natural notions of being large in X and being weakly Ramsey. 
Let us remark that these notions are absolute between transitive models of set 
theory. 

Remark 4.1. For uf C K, and /\ > 0, the sentence u is A-weakly Ramsey is 
projective in u. In fact, it is a 3(, d, /\) sentence: 

uf is A-weakly Ramsey iff 3aVQ(Q E a =X at zAg 3) or 

la(ac codes a strategy S f or II 

and V/3]'y E a (d(S * /3, y) <L \ ) ) 

Hence, if or is a El (ll') subset of B1, then the sentence a is weakly Ramsey 

is Eln (11+3) in the parameters of a. 

Proposition 4.1. Suppose that X = (xn)n E fx(Bi) C B1 (i.e., for every n, xn 
has rational coefficients over (en)n) 

1. If I has a winning strategy for the game D,, [X] (resp. Nf-1(C) v[fX1(X)1), 
for some A > 0, then I has a winning strategy for the game NDf -1 (a) [f (X)] 

(resp. D, [X]). 
2. If II has a winning strategy for the game Da,[X] (resp. NDf-1(jff) 1(X)1), 

then for every A > 0, II has a winning strategy for NDf -1() [fa1(X)] (resp. 

rD)c. [X]). 

Proof. Use that every block vector can be approximated by rational block vectors 
to pass from one game to the other. D 

Proposition 4.2. Fix u C B1, A1, A2, /3 > 0 
1. If orAl is L\2-weakly Ramsey, then f'1(u) C Bi is (A\1 + A2 + L\3)-weakly 

Ramsey. 
2. If f'1(orA1) C Bi is L\2-weakly Ramsey, then cu C B1 is (A1 + LA2 + /\3)- 

weakly Ramsey. 
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Proof. Fix A1, A2, A3 > 0. For 1: Suppose that fx- (u) is large in B1. Then aA1 
is large in B1: For suppose that (xn)n E B1, and choose a rational block sequence 
(Yn)n close enough to (Xn)n (for example, let F be as in Fact 1.1 for A1, and choose 
(Yn)n such that d((Xn)n, (Yn)n) < F), and let at E B1 be such that fx(a) = (Yn)n 
Let (j3n)n ig (an) n (3n) n ( fj( .). Define Z - X as f((/3)n) q Y. Then, 
d(Z,f(/3n)n) < A1, and hence, Z E [X] nUA1. 

As aA1 is large and A2-weakly Ramsey, there is some X such that II has a 
winning strategy for the game D, +A2 [X]. Let Y E fx(Bi) be close enough to X. 
This implies that II also has a winning strategy for the game D, +A2+A /2 [Y]. By 
Proposition 4.1, we are done. 

For 2: Suppose that X is large. Then it can be shown that T = fV1(U1) is 
large in B1. Let al E B1 be such that II has a winning strategy for the game 
ND)T, 2 [o]. But TA2 C f (7Al+?A2), and therefore II also has a winning strategy 
for the game NDf)1(, + [oa]. By Proposition 4.1, II has a winning strategy for 
the game D,l+A2+A3 [f(a)] 

Definition 8. Let M C N be transitive models of (a fragment) of ZF. We say that 
M is El -correct in N if for any El formula y9(xl, ..., Xk) and reals al, ..., ak E M, 

M F p(al,...,ak) iff N -p (al,...,ak). 

We say M is El-correct if M is El-correct in V. 
Given a partial ordering IP, we say that M is El -absolute for IP if M is El-correct 

in MP. We say that M is El-absolute if M is El-absolute for every (set) partial 
ordering IP. 

Woodin [23] shows that under certain assumptions, which hold under PD, one 
can build for every n > 1 a countable transitive model of ZF such that all its (set) 
forcing extensions are El+,-correct. 

We present Woodin's construction under the following assumptions: 

1. Every H11 set (i.e., a HI set which is definable'without parameters) can be 

uniformized by a IF -function, where IF is some projective pointclass. 
2. V is Sk -absolute for Cohen forcing, where k = maxfn, m}. 

Consistency-wise 1 is a rather weak assumption, since it holds in L, and, in fact, 
in any model with a projective well-ordering of the reals. However, for 1 and 2 to 
hold simultaneously large cardinals are needed, and they both hold under PD (see 
[17]). 

Choose a I1 set U C AJ x AJ that is universal for H1X subsets of JV. Let o* (x, y) 
be the formula that defines U. Let f be a IF -function that uniformizes U. 

Given any H 1 formula y9(x, xl, ..., xi), f effectively indices a Skolem function f,p 
for p, i.e., for all reals a1,...,ai, f4,(al,...,ai) = b iff p(f(b),aa,...,ai). So, for all 
al, ... , ai, 

3xCO(x, al,,. , ai) 3- (p(f~o(a, .., ai), al .., ai). 

Given A E HC, we can code A by a real x (for example, x can code the count- 
able structure (TC(A), E)). So, Suppose Q is a (atomless and separative) partial 
ordering, Q E HC. Let Tl,..., Ti be Q-terms for reals. Then, we may assume both 
Q and Tl,...,Ti are coded by reals so that, for every q E Q, and every El (HW) 
formula p, n > 2, the formula q I-Q p(T1,..., Ti) is also El (HW). 
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Now suppose y9(x, xI, ..., xi) is a HI formula. Let g be Q-generic and suppose 
V[g] = ]xp(x,Tl[g],...,Ti[g]). Since Q is countable, V[g] = V[c] for some real c 
Cohen-generic. By El-absoluteness for Cohen, 

V [g] 1= i? (40 (Ti[g]: Ti [g]), Ti [g], Ti tIC 

Let T be the canonical term for f~,(Tl[g], ...,Ti[g]). Define F,o(Q,Tl, ...,I) = T, i.e., 

Fw,((Q,T1, ...,Ti) = {(q,s): q E Q,,s E w< and q I[ f~,(T1[g],..., Ti[g]) extends s}. 

If r does not exist we view F,, as undefined. So, F,, is a partial function from HCi+l 
into HC. We can reinterpret F,, as a function from HC into HC. Let F = F,*, 
where ,o* is the HI formula that defines the universal set U that f uniformizes. 

Proposition 4.3. If M C HC is any transitive model of a sufficiently large frag- 
ment of set theory, M closed under F, and Q is a class-partial ordering in M, 
Q E HC, then for every G E V, if G is Q-generic over M, then M[G] is n1+ 
correct. 

Proof. Suppose y9(x, xl, ...,xi) is H1, Ti, ...,Ti E M? are terms for reals and V' = 
]x(x,r , TO,ri). Then, V' = (F(Q, r( , -, r)T, ri, ..., ri). But since M is closed 
under F, M? I= W(F(Q<7i,T,...4O ii, I ...ITi). 

This shows M? is correct in VQ, but since V is absolute for Cohen, M? is correct 
in V. D 

We can now prove the following. 

Theorem 4.1. If PD holds, then all projective sets are weakly Ramsey. 

Proof. Let a be projective (say El), and fix A > 0. T =fjl(UA/3) is a projective 

set of B1 (in fact, also El). By Remark 4.1, the sentence T is A/3-weakly Ramsey 

is El+2. Let M be the transitive collapse of some countable elementary substructure 
N of H(A), some A inaccessible, with F, B1, a, A E N. Notice that since reals 
collapse always to themselves, M is closed under F and contains the parameters of 
B1 and a. 

We may assume that F is actually a function from P(w) to 1P(w). In M, let RF 

be the following relation: 

(X, n) E RF iff x E dom F and n E F(x). 

Let a = sup(ORD n M), and let a be a real that codes A and the parameters of 
B1 and a. Then, L, [a, RF] is the least inner model of M closed under F which 
contains a. Hence, by Proposition 4.3, every generic extension of L, [a, RF], by a 
partial ordering which is countable in V, is l +2-correct in V. 

Since large cardinals exist in V (a consequence of assumptions 1 and 2, see 
[23]), they also exist in L, [a, RF]. Let , be a Mahlo cardinal in L, [a, RF]. Since 
Lc, [a, RF] is countable, there exists G which is Coll (w, < t,)-generic over Lc, [a, RF]. 
FRom Theorem 3.1, in L, [a, RF] [G] all projective sets are weakly Ramsey. In par- 
ticular, in L, [a, RF], (UA/3)A/9 is A/9-weakly Ramsey. By Proposition 4.2, 

Lc [a, RF][G] P fx1(UA/3) is A/3-weakly Ramsey. 

By correctness of Lc, [a, RF] [G], 

V l= fjX(UA/3) is /\/3-weakly Ramsey. 

And again, by Proposition 4.2, in V a is A-weakly Ramsey. O 
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It can be observed that the countable axiom of choice is enough to define the 
partial orderings IP(L\, X). Further, PD (in fact, determinacy for analytic sets) plus 
the Axiom of dependent choices is enough to show E3-absoluteness for IP(A, X). 
Therefore, by Theorem 2.2, if all El sets are determined and the Axiom of Depen- 

dent Choices holds, then every El set of block sequences has a good decomposition, 

and hence it is weakly Ramsey. 

5. HEREDITARILY INDECOMPOSABLE SPACES AND DETERMINACY 

Assume that X is a hereditarily indecomposable space. We will give a proof that 
the Axiom of Determinacy plus the Principle of Dependent Choices implies that 
every subset of B1 = B1 (X) is weakly Ramsey. 

Definition 9. The Axiom of Dependent Choices (DC) (P. Bernays, see [10]): 
For every set X and every relation R C X x X, if for every x E X there is some 

y E X such that (x, y) E R, then there is a map f : N -* X such that for every 
n E N, (f (n), f (n + 1)) EE R. 

Recall the notion of hereditarily indecomposable space: 

Definition 10. X is hereditarily indecomposable (HI) iff for every A > 0 and every 

pair X, Y of normalized block sequences of X, there are X E [X] and Y E [Y] such 

that d(X, Y) < L\. 

Proposition 5.1. Suppose that for some X, II has a winning strategy for the 
game D, [X]. Then, for every A, I has no winning strategy for the game D,, [X]. 

Proof. Fix S a winning strategy for II in the game D, [X]. Let r be for A as 
in Fact 1.1. Towards a contradiction, let S' be any strategy for I in the game 

D.,,,[X]. Let Y1 = S' * (0,0,...), and let Z1 - Y1 and X1 = (x(l))k , X be 
such that d(Z1, Xi) < r (this is possible since X is HI). Let v1 be the first non- 

zero move of II following S, if I plays x(l) ,...,Xk) in the game D),[X], and let 
nr be the corresponding k. Then, in the game D,, [X], II plays 0 until she can 
play w1 E Z1, defined as vi E X1. Restart the game, and let Y2 be such that 

=S'* (O,...,0,w,0,0, ...) . Let Z2 Y2 and X2 (X(2) )k i X \ n1 
be such that d(Z2,X2) < r \ ni. Let v2 > v, be the second non-zero move of 

II following S, if I plays x(1) ...,x(1n)lx(2) ...xk) in the game D, [X], and n2 its 

corresponding k. Again, in the game D, [X] II plays 0 until she can play w2 E Z2 
defined as v2 E X2. And so on. 

At the end of the game, d(Zl[nr?Z2[nr , Xl[ni X2[nr ) < r and (Wk) < 

[Zl[nr Z2r[n' ] is defined as (vk) < [Xi[n' X2[n' ]. By Fact 1.1, we have 
that d((Wk)k, (Vk)k) < Z, and since (Vk)k E u, (Wk)k E UA. So, S' is not a winning 
strategy for I in the game D, [X]. 

As a consequence, we have 

Proposition 5.2 (Reflection Principle). Assume AD and suppose that a C B1. 
If II has a winning strategy for the game D&,[X], for some X, then she also has a 
winning strategy for the game D,, [X], for every A > 0. 

Proof. Suppose that II has a winning strategy for the game D, [X]. By Proposition 
5.1, I does not have a winning strategy for the game D.A3 [X]. By Proposition 4.1, 
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I does not have a winning strategy for the integer game 
NDf-1(2Z, )[f13 (X)]. AD 

implies that II has a winning strategy for the game NDf-1 (02A/3) [fj (X)], and 
therefore, again by Proposition 4.1, also for the game D,, [X]. D 

Theorem 5.1. AD plus DC implies that every subset of B1 is weakly Ramsey. 

Proof. Suppose that a C B1 is large and fix A > 0. Suppose that II does not have 
a winning strategy for the game D,, [X]. Let w= fJX1(UA/2) C B1. Then II has 
no winning strategy for the integer game ND, [fJ1l(X)]. By AD, I has a winning 
strategy for the game ND,[fJ1l(X)]. Let us call it S. Let A be the set of integer 
sequences corresponding to non-trivial runs of II against S, and letTl = fx (A). A 
is closed, and hence Ti is analytic. Note that Ti C (UA/2)c (it is easy to show that 
a n (T1)A/2 = 0 iff A/2 nT0 = 0, and this is true because S is a winning strategy 
for I in the game ND,[fx(X)]). Then a C ((Tl)A/2)c (as before, n 0 (T1)A/2 = 0 

iff A/2 n Ti = 0). (T1)A/2 is analytic, and hence T = ((Tl)A/2)c is co-analytic and 
large, since it contains (. So, using that AD+DC implies E3-absoluteness (see the 
remarks at the end of section 4), every El set is weakly Ramsey, and hence II 

has a winning strategy for the game DTA/4 [X], for some X. Using the reflection 
principle, we can find some winning strategy for the game DTA/3 [X]. Let S' be 
the corresponding winning strategy for the integer game ND-(TA/2)[f;1(X)]. If 
I plays according to S and II according to S', II produces an integer sequence 
a such that fx(a) E TA/2, and I forces that fx(a) E T1. And this is impossible 
because TA/2 n T 0 (this is equivalent to Tn (Tl)A/2= 0, and this is true because 
T = ((Ti)A/2)c)- 

6. GENERALIZATIONS IN CO 

It is shown in [8] and [15] that if ar is a large analytic subset of B1 (co), then for 
every A, cTA contains a cube. For this section, assume that X = co. 

We recall from [8] and [15] that a set a C B1 is almost-Ramsey iff either there is 
some X such that [X] n a = 0 or for every /\, there is some X such that [X] C (A. 
We will use very good decompositions (see definition below) to prove that large 
cardinals and determinacy hypotheses imply that many sets are almost-Ramsey, 
for which we need a bit more than good decompositions. 

Definition 11. a = UiEI ai is a very good decomposition iff for every A > 0 the 
following holds: 

1. For every (s,A), if a is large in [s;A], then there is some i E I and (t,B) < 
(s, A) such that (ui) A is large in [t; B], and 

2. for every i E I, s and X, ((ji)A)' is almost-Ramsey in X. 

Theorem 6.1. Every set with a very good decomposition is almost-Ramsey. 

As in the proof of Theorem 2.1 we need some lemmas. 
First, the analogue of Lemma 2.1: 

Lemma 6.1. There is Y such that for every (s, A) EE P(Y), if [s; A] C 
(A12, 

then 
also [s; Y] C CA. 
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Proof. Consider the following subsets of IP(co): 

Dm {(s, A) E TP(X) I Isl > m and for every t E [s] if for some B < Al 
[s; B] C UA/2, then also [s; A] C (A}. 

Note that if (s, A) E Di, then for every t E [s], (t, A) E Di. Repeating the 
proof of Lemma 2.1, we can prove that each Dm is dense. Choose (SnI An) E DmIn 
such that Isn= n, and so that (sniAn) < (sn-l,Anl). Let Y = UnSn, that 
satisfies what we want: For suppose that (s, A) E TP(Y) is such that [s; A] C cA1/2. 
Choose m minimum such that s E [Sm]. Note that this implies that A - Am. Then 
[s; A] C (J, but [s; Y] C [s; A], and we are done. D 

The analogue of Lemma 2.2: 

Lemma 6.2. Let a = UiEI vi be a very good decomposition. If a is large in [s; X], 
then there is some Y < X such that [Y] C a(A/4, s, Y), where 

&(A, s, Z) { (ym)m zi Z i there exist i I, k > 1 and A < Z such that 

(ui)A is large in [s' (Yl, ... ,Yk); A]}. 

Proof. Use that (X, s, X) is an open set of [X], and large because UiEI ui is a very 
good decomposition. But every open set is almost-Ramsey, and we are done. D 

Proof of Theorem 6.1. Suppose that a is large. Let Y satisfy Lemma 6.1 and let 
Z -< Y satisfy Lemma 6.2. We check that [Z] C (J: For suppose that W < Z. 
Fix i E I and k such that (Ui)A/4 is large in [W[k;A], for some A -< Z < Y, 
i.e., (ui)"'kj is large in [A]. We have a very good decomposition and, therefore, 

(aifk4 is almost-Ramsey. Choose any B j A such that [B] C ((Ui)x4)A/4. Then, 

[B] C ((Ai)\/2)j"k, i.e., [W[k;B] C (Ui)A/2 C- A/2. (W[k;B) E P(Y), and so 
[W[k; Y] C (A, and this implies that W E (J. 

Theorem 6.2. Suppose that V is E3-absolute for P. Then, every El subset of 

Bi(co) has a very good decomposition. 

Proof. The decomposition of every Z] of B1 (co) in the proof of Theorem 2.2 is, in 2 

the case of Bi(co), a very good decomposition (every piece is analytic, and hence, 
almost-Ramsey). D 

Corollary 6.2.1. Suppose that V is E3-absolute for P. Then, every El subset of 

Bl(co) is almost-Ramsey. C] 

Theorem 6.3. Suppose that r, is a Mahlo cardinal, and let A E V,<. Then in 
L[A]C?11(c,<'), every projective subset of B1(co) is almost-Ramsey. 

Proof. The good decomposition given in the proof of Theorem 3.1 is indeed very 
good. - 

Theorem 6.4. If PD holds, then all projective subsets of Bi(co) are almost- 
Ramsey. C] 
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