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INVARIANT PRE-FOLIATIONS FOR NON-RESONANT
NON-UNIFORMLY HYPERBOLIC SYSTEMS

ERNEST FONTICH, RAFAEL DE LA LLAVE, AND PAU MARTÍN

Abstract. Given an orbit whose linearization has invariant subspaces satisfy-
ing some non-resonance conditions in the exponential rates of growth, we prove
existence of invariant manifolds tangent to these subspaces. The exponential
rates of growth can be understood either in the sense of Lyapunov exponents
or in the sense of exponential dichotomies. These manifolds can correspond to
“slow manifolds”, which characterize the asymptotic convergence.

Let {xi}i∈N be a regular orbit of a C2 dynamical system f . Let S be a
subset of its Lyapunov exponents. Assume that all the Lyapunov exponents
in S are negative and that the sums of Lyapunov exponents in S do not agree
with any Lyapunov exponent in the complement of S. Denote by ES

xi
the linear

spaces spanned by the spaces associated to the Lyapunov exponents in S. We
show that there are smooth manifolds W S

xi
such that f(W S

xi
) ⊂ W S

xi+1
and

TxiW
S
xi

= ES
xi

. We establish the same results for orbits satisfying dichotomies
and whose rates of growth satisfy similar non-resonance conditions. These
systems of invariant manifolds are not, in general, a foliation.

1. Introduction and statement of results

When studying the behavior of an orbit of a dynamical system f , it is natural
to study the behavior of its linearization and wonder whether there are non-linear
analogues for the features found in the study of the linearization.

Very often we can classify the tangent vectors along an orbit into subspaces with
different rates of exponential growth either in the future or in the past. In the
literature, there are several precise definitions of rates of growth. We will discuss
them later in Section 1.1.

Since the subspaces corresponding to a rate of growth and combinations of them
are invariant, the question of existence of invariant objects for the full system related
to these linear spaces naturally arises. In particular, we may be interested in the
spaces that converge the slowest, since these slowest convergences will dominate
the long-term behavior.

The goal of this paper is to show that, under appropriate non-resonance condi-
tions for the rates of growth, indeed one can find smooth manifolds tangent to the
spaces invariant under the linearization. We also give examples that show that the
non-resonance conditions are necessary for the existence of such invariant smooth
manifolds.
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For the case of a fixed point of a local diffeomorphism of a Banach space near a
fixed point, invariant manifolds associated to non-resonant subsets of the spectrum
have been considered in [dlL97] (see also [ElB01, CFdlL03a, CFdlL03b, dlL03]).
Particular cases of non-resonant manifolds for uniformly hyperbolic systems were
considered in [Pes73, dlLW95, JPdlL95].

As remarked in Section 8.3 of [dlL97] and in Section 2 of [CFdlL03a], the results
for fixed points imply results for more general sets using the device of lifting (see
[HP70]). Given a dynamical system f we consider the action f̃ on the Banach space
of C0 vector fields defined by

(1) [f̃v](x) = exp−1
x f(expf−1(x) v(f−1(x))).

The zero vector field is, clearly, a fixed point of f̃ . Moreover, the linearization of
f̃ at the zero field is f∗, the push forward of f acting on C0 vector fields. Hence,
under assumptions on the spectrum of f∗, we can associate invariant manifolds to
f̃ . It was shown in [Mat68] that the spectral properties of f∗ are related to the
growth rates of the linearized system.

In this paper, we develop a theory of non-resonant manifolds for orbits that
satisfy some rather weak notion of hyperbolicity. This notion is based on properties
of each individual orbit and does not require the uniformity assumptions that are
required in the lifting approach. Indeed, we introduce a very weak notion of rates
of growth (see Definition 1.2 below) which generalizes at the same time the notion
of exponential dichotomies and the notion of Lyapunov exponents of non-uniform
hyperbolic theory. Since the notion we consider also encompasses the notion of
rates of growth in Oseledec’s theorem [Ose68, Rue79], the results also apply to
random dynamical systems (see Section 1.1).

We note that the non-resonant conditions we will consider in this paper are au-
tomatically satisfied by the most contractive part of the stable spectrum. Hence,
the results here generalize the classical results on strong stable manifolds. Never-
theless, in contrast with the strong stable manifolds, the non-resonant manifolds
constructed here do not integrate to foliations (see [JPdlL95]).

For the sake of simplicity, we will formulate the results only for dynamical sys-
tems with discrete time. Analogous results are true for flows. The results for
continuous time follow by taking time one maps of the flows. Of course, it is possi-
ble to give a direct proof of the results for flows following the arguments presented
here for diffeomorphisms.

As a motivation for the study of the manifolds considered here, we will mention
that they give one possible precise meaning to the idea of slow manifold which
is used in many heuristic calculations of asymptotic behavior in dynamics; see
[Fra88, MP92] for a discussion of several possible meanings of slow manifold. From
a mathematical point of view, we point out that one can prove, following the argu-
ments in [dlLMM86], that the solutions of cohomology equations are smooth on the
manifolds considered here. The fact that the manifolds considered here do not lead
to a foliation provides an obstruction to smooth equivalence of dynamical systems
which is not related to periodic orbits and which is not captured by non-autonomous
linearization (see [dlL92, JPdlL95]).

1.1. Notions of rates of growth. There are two widely used methods to formalize
the rates of growth of vectors along an orbit.
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One possibility — considered in [SS74, Fen74, Fen77] — is to require that there
is a uniform expansion or contraction, but that there is a spread on the rates.

That is, for µ1 ≤ λ1 < µ2 ≤ λ2 < · · · < µp ≤ λp, one characterizes the bundles
Ei

x by

(2) v ∈ Ei
x ⇐⇒ |Dfn(x)v| ≤

{
C exp(λin)|v|, n ≥ 0,
C exp(µin)|v|, n ≤ 0.

We note that a consequence of (2) is that the angle between the different spaces
Ei

x is bounded from below.

Remark 1.1. It was shown in [Mat68] that if the spectrum of f∗ — the push-forward
by f — acting on C0 vector fields is contained in annuli of outer radius eλi and
inner radius eµi , then, every orbit satisfies (2).

Under condition (2), it is possible to develop a theory of invariant manifolds
and foliations based on lifting to actions of bundles as in (1). See [HP70, HPS77]
for the origins of the theory and [CFdlL03a, CFdlL03b] for results for non-resonant
invariant manifolds. In this paper, we will base our study on properties of individual
orbits rather than on assuming spectral properties of operators acting on bundles.

Another characterization of rates of growth is based on the existence of Lyapunov
exponents considered in [Ose68, Rue79]:

(3) v ∈ Ei
x ⇐⇒ lim

n→±∞

1
n

ln(|Dfn(x)v|) = λi

for some real numbers λ1, . . . , λp.
Note that definition (3) ignores polynomial terms in the rate and it can be quite

non-uniform along the orbit. As is well known, Oseledec’s theorem ensures that,
given a measure ρ invariant under the system, one has (3) ρ-almost everywhere
and, moreover, one can find sets of measure arbitrarily close to full measure where
there is some uniformity in the deterioration of the hyperbolicity properties.

One can consider that condition (2) requires that there is an exponential rate
which is uniform along the orbit, but one has to allow a spread on the rate. On
the other hand, in condition (3), there is an exponential rate, but one only requires
that the exponential rate, happens in an averaged sense and that it does not need
to be uniform along the orbit.

Neither of the characterizations of rates of growth (2) and (3) is more general
than the other. Even if a vector is in one of the subbundles in (2), it may fail to
have a Lyapunov exponent if the rates of growth keep on oscillating. Such points
are easy to construct in hyperbolic systems (e.g. horseshoes) that have a symbolic
dynamics. On the other hand, systems admitting Lyapunov exponents may have
fluctuations that destroy the possibility of uniformity.

We introduce a new definition that encompasses both of the previous definitions
(2) and (3). We allow the existence of a spread in the exponential rate as well as a
deterioration of the constants along the orbit.

Definition 1.2. Given λ = {λ1, . . . , λp} and µ = {µ1, . . . , µp} such that µ1 ≤ λ1 <
µ2 ≤ λ2 < · · · < µp ≤ λp, � > 1, ε > 0, we say that a point x has a (λ, µ, ε, �)-
regular orbit if we can find invariant decompositions Tfm(x)M =

⊕p
i=1 Ei

fm(x) such
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that:
(i) v ∈ Ei

fm(x) implies

(4) �−1 exp(µin − ε|m|)|v| ≤ |Dfn(fm(x))v| ≤ � exp(λin + ε|m|)|v|
for n ≥ 0, and

(5) �−1 exp(λin − ε|m|)|v| ≤ |Dfn(fm(x))v| ≤ � exp(µin + ε|m|)|v|
for n < 0.

(ii) angle (Ei
fm(x), E

j
fm(x)) ≥ �−1 exp(−ε|m|), i �= j.

Denote Ii = [µi, λi]. Also denote by Λλ,µ,ε,� the set of (λ, µ, ε, �)-regular orbits.
We recall that if f is a C1 system and ρ is an ergodic invariant probability

measure, Oseledec’s multiplicative ergodic theorem implies that, if the Lyapunov
exponents are γi, i = 1, . . . , p, then, for ε > 0, the sets Λγ−ε,γ+ε,ε,� can be made to
have measure as close to full as desired by choosing � big enough. That is, ρ-almost
all orbits are regular, but the constant � cannot be chosen uniformly. The sets
Λγ+ε,γ−ε,ε,� are often called Pesin sets.

Condition (2) clearly implies Definition 1.2 taking ε = 0 and � a suitable large
number. A fortiori, it is shown in [Mat68] that the fact that the spectrum of the
push-forward is contained in annuli of inner radii expµi and outer radii expλi is
equivalent to the fact that all orbits satisfy Definition 1.2 with ε = 0 and � chosen
uniformly for all points.

1.2. Non-resonance. Given two intervals I1, I2 ⊂ R, we denote

I1 + I2 = {t = t1 + t2 : t1 ∈ I1, t2 ∈ I2}.
Of course, when the intervals consist of one number, the above operation corre-
sponds to the sum of numbers.

Definition 1.3. Let {Ii}p
i=1 be a collection of intervals. Given S ⊂ {1, 2, . . . , p},

we say that a subset {Ii}i∈S is non-resonant if for j ∈ N, j ≥ 2, and any collection
i1, . . . , ij ∈ S of indices (perhaps repeated), we have

(6) (Ii1 + · · · + Iij
) ∩

⋃
i∈Sc

Ii = ∅.

We say that a subset {Ii}i∈S is contractive when

(7)
⋃
i∈S

Ii ⊂ R
−.

Denote IS =
⋃

i∈S Ii and ISc

=
⋃

i∈Sc Ii.
Denote ES

x =
⊕

i∈S Ei
x and ESc

x =
⊕

i∈Sc Ei
x.

We clearly have TxM = ES
x ⊕ ESc

x .
Denote ΠS

x and ΠSc

x as the projections associated to this decomposition. We use
the abbreviations dS(x) = dim ES

x and dSc(x) = dim ESc

x .
For collections of intervals {Ii} and subsets S satisfying (6) and (7), we denote

by NS the integer defined by

(8) NS =
[
min{t ∈ ISc}
max{t ∈ IS}

]
,

where [t] denotes integer part of t.
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It is clear that for collections satisfying (7), condition (6) is automatically verified
if j > max{NS , 0}.
Remark 1.4. Note that in part (i) of Definition 1.2 we have only assumed that in
the invariant space Ei

x we have the rates of growth (4), (5). In the literature, it is
often assumed that the space Ei

x is precisely characterized by (4), (5).
One interesting example of spaces where assumption (i) of Definition 1.2 applies

but which is not characterized by (4), (5) is Cartesian product systems in which
the two factors overlap. For example, if we take the Cartesian product of a system
by itself, F (x, y) = (f(x), f(y)) and Ei

x is a spectral decomposition for f , we see
that Ẽi

(x,y) = Ei
x × {0} is a space admissible for our definition. However, the only

spectral space is (Ei
x × {0})⊕ ({0} ×Ei

y). It is perfectly possible to have examples
such as those mentioned here that satisfy the non-resonance conditions in Definition
1.3. Note that there we are only assuming that (6) happens for j ≥ 2.

Remark 1.5. For collections of intervals which satisfy (7), property (6) amounts to
a finite number of conditions. It is clear that if we slightly enlarge the intervals
both conditions will remain valid.

Remark 1.6. When the intervals are points, it is instructive to compare condition
(6) with the conditions of Sternberg’s linearization theorem. The conditions of
Sternberg’s linearization theorem require that no interval contains sums of points
in other intervals. Here we only require that the numbers of the set ISc

cannot be
obtained as sums of numbers in the set IS .

Indeed, the proof presented here has some similarities with the proof of Stern-
berg’s theorem. We start by computing a polynomial approximation to the desired
object and then use a contraction argument to show that the very approximate
polynomial solution can be modified to become a true solution of the problem.

A Sternberg’s type theorem along orbits under full non-resonance conditions can
be found in [Yom88]. Similar results are crucial for [Yom87]. A related theory is
the one of the non-autonomous normal forms [GK98] developed under uniformity
conditions on the bundle. It seems clear that one could work out a similar theory
under assumptions on the behavior of individual orbits.

Remark 1.7. An important case of a non-resonant set is when S includes the Ii

contained in (−∞, l), where l < 0 and l �∈
⋃p

i=1 Ii. In such a case, the bundle ES
x is

the strongly stable bundle, and our results give the usual strongly stable invariant
manifold.

Note that the strong stable manifold admits the characterization

(9) W ss
x = {y : d(fn(x), fn(y)) ≤ Cy,xλn}

which makes it clear that y ∈ W ss
x is an equivalence relation and that, therefore,

the set of strong stable manifolds is a lamination.
More general non-resonant manifolds do not admit a characterization in terms

of rates of growth. In [JPdlL95] one can find examples where the non-resonant
manifolds of neighboring points have non-trivial intersections.

1.3. Statement of main results.

Definition 1.8. We will say that a family of maps {wn}n∈Z is uniformly Ck if
the maps are Ck and supn∈Z ‖wn‖Ck < ∞. We will also say that a family of
parameterized manifolds {Wn}n∈Z is uniformly Ck if there are parameterizations
of Wn that form a uniformly Ck family.
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The main result of this paper is:

Theorem 1.9. Let f be a Cr diffeomorphism, r ∈ N ∪ {∞}, r ≥ 2, of a compact
C∞ finite-dimensional manifold M . Let x ∈ Λλ,µ,ε,�, Ii = [µi, λi], i ∈ {1, . . . , p},
and {Ii}i∈S, S ⊂ {1, . . . , p}, be a non-resonant and contractive set. Assume that
r ≥ NS + 1 and that ε < δ/2 and δ is small enough such that if we consider the
enlarged intervals Ĩi = Ii + [−2δ, 2δ], the set {Ĩi}i∈S is still a non-resonant and
contractive set.

Then, there exist maps wn : B(0, 1) ⊂ R
dS −→ M , where B(0, 1) is the unit ball

in RdS , n ∈ Z, in such a way that
(a) wn(0) = fn(x).
(b) wn are uniformly Cr.

If we denote by Wn the range of wn, then:
(c) f(Wn) ⊂ Wn+1.
(d) Tfn(x)Wn = ES

fn(x).
Also, there exists K > 0 such that the manifolds Wn contain a disk of radius

K�−2
√

tanh δ exp(−(2ε + δ)|n|).
Moreover, if Wn, Ŵn are families of manifolds satisfying (c) and (d), then:

(e) If Wn, Ŵn are uniformly Cm for some m ≤ r, then T i
fn(x)Wn = T i

fn(x)Ŵn

for i ≤ m.
(f) If Wn, Ŵn are uniformly Ck for some k > NS , then Wn ∩ Bn = Ŵn ∩ Bn

for some balls Bn around fn(x).
In particular, if the manifolds are uniformly CNS+1, they have to agree

with the manifolds range wn and hence they are uniformly Cr.
(g) If supn∈Z ‖Wn‖CNs < ∞ and W0 is a Ck manifold for some NS < k ≤ r,

then supn∈N ‖W−n‖Ck < ∞.

The meaning of the above result is that if the set S of rates of growth is non-
resonant, we can find a collection of smooth manifolds that are non-linear analogues
of the linear subspaces invariant under the linearized map.

The final conclusions of Theorem 1.9 are uniqueness conclusions that say that
these systems of leaves are unique under some regularity properties.

Part (e) says that the m-jets of the manifolds are uniquely determined provided
they are uniformly Cm.

Roughly speaking, part (f) tells us that the manifolds are unique when they are
regular beyond a critical value. In particular, when we know that they are more
regular than this critical value, they are as regular as the map. Hence, part (f) is
a bootstrap of the regularity argument which starts working when the regularity
is higher than a critical value related to rates of contraction. Similar bootstrap
arguments appear in rigidity theory (see, for example, [dlL92]).

In Section 3, we provide an example that illustrates the role of the critical reg-
ularity in the uniqueness properties.

It is important to remark that the proof will only use constructions in a neigh-
borhood of an orbit.

Remark 1.10. We have formulated Theorem 1.9 only for maps on finite-dimensional
manifolds. Nevertheless, there are versions along the same lines for maps on infinite-
dimensional Banach spaces which have smooth cut-off functions (e.g. Hilbert
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spaces). However, we note that some of the arguments we present — notably
the construction of the Lyapunov metric — require some serious modifications (it
is somewhat easier for Hilbert spaces). We will not consider these cases in this
paper.

Remark 1.11. Even in the case that the orbit is a fixed point, the non-resonance
condition is necessary for the existence of an invariant manifold. As we will see, the
candidates for a jet satisfy functional equations which may fail to have solutions if
the non-resonance conditions are violated. Hence, in those examples where there
is no candidate for a jet, there cannot be a smooth invariant manifold. We refer to
Example 5.5 of [dlL97] for more details.

Remark 1.12. Note that, in contrast with many of the results in uniform normal
hyperbolicity which are valid for r ≥ 1, our results are only valid for r ≥ 2. It
seems to us that the proof will work for r = 1+δ with mainly notational difficulties.
Nevertheless, the proof with r = 1 does not work in general since the paper [Pug84]
contains an example of a C1 system satisfying Definition 1.2 for which there are
no C1 invariant manifolds tangent to the spaces. The paper above contains the
conjecture that in the case that the stable manifold is one dimensional, one could
get stable manifolds even for r = 1.

Remark 1.13. If one has hyperbolicity properties for all the orbits, then one could
hope that the results given here for individual orbits could be made coherent to
integrate the distribution ES

x to give a foliation. For the stable foliation, such a
procedure is carried out in [Fen74, Fen77]. Nevertheless, in the generality considered
here, the leaves produced in this paper do not integrate to a foliation. Even in
the very uniform case when ε = 0, one can find examples — Cω close to linear
automorphisms of the torus — where these invariant manifolds cross in arbitrarily
small neighborhoods (see [JPdlL95]).

In some particular cases — e.g. maps of the torus close to linear and when
S corresponds to intervals contained in R− — there is a way of integrating the
foliations based not on local properties but on global behavior (see [dlLW95]). The
leaves produced in [dlLW95] are not very smooth and, hence, are very different
from the ones considered here. In particular, in the proof given in [dlLW95] one
has to take into account global properties of the manifold to obtain that the leaves
integrate to a foliation.

Remark 1.14. The results of Theorem 1.9 are local. The proof consists of exam-
ining the sequence of maps fn that are coordinate representations of f from a
neighborhood of xn to a neighborhood of xn+1. Indeed, we deduce Theorem 1.9
from Theorem 2.5, which asserts the existence of invariant manifolds for sequences
of maps in such a way that the linearization is non-resonant.

Besides the situation considered in Theorem 1.9, there are other cases where
Theorem 2.5 appears naturally. Notably, if fn is a random sequence of maps,
Oseledec’s theorem [Ose68, Rue79] shows that almost all orbits admit Lyapunov
exponents. Hence, for random dynamical systems, provided that the Lyapunov
exponents satisfy the non-resonance assumptions, we obtain that the manifolds
produced in Theorem 1.9 exist with probability 1.

Studies of non-autonomous Sternberg theorems for random systems have been
undertaken in the preprint [LL04], which appeared after this paper was submitted.
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2. Proof of Theorem 1.9

The proof of Theorem 1.9 starts very similar to the proof of the invariant man-
ifold theorem in [Pes76, Pes77] and subsequent papers. We start by defining a
Lyapunov metric, which is singular with respect to the Euclidean metric but makes
the hyperbolicity properties of the problem uniform. This allows us to choose a
convenient system of coordinates in neighborhoods of each of the points in the
orbit.

In a second step, we see that by writing the manifolds in the form Wn = graph Vn

for certain functions Vn, under the non-resonance conditions, it is possible to
uniquely determine candidates V 0

n for the jet of the functions Vn. That is, if the
functions Vn were differentiable enough, we could take derivatives of the invariance
equation and obtain functional equations satisfied by the sequence of jets. We will
show that these functional equations admit unique solutions. We emphasize that at
this point we only require the non-resonance condition (6) and not the contractive
hypothesis (7).

In a third and final step, we use the computed candidates for jets to show that
we can transform the equation satisfied by Un := Vn − V 0

n into an equation that
can be treated with the contraction mapping principle in some appropriate spaces
by using assumption (7).

The motivation for this scheme is that for functions that vanish at order NS at
the origin, a contraction λ on the right contracts the norms based on derivatives of
order NS by λNS . If NS is large enough, this contraction factor can overcome the
expansion factors generated by the other directions.

Note that one of the consequences of this study will be that the Un vanish to
sufficiently high order at the origin so that the V 0

n are indeed the jets of the Vn.

2.1. The Lyapunov metric and coordinates around the orbit. The main
goal of this section is to establish Lemma 2.1 which provides us with a system of
coordinates around an orbit. The main idea — rather standard in the study of non-
uniformly hyperbolic systems — is that one can define a Lyapunov metric around
an orbit which makes the hyperbolicity uniform. Once we express all the properties
in this metric, many of the methods of the theory of uniformly hyperbolic systems
start to apply. In our case, we will reduce the problem to the study of systems with
exponential dichotomies.

We will use different norms and scalar products. The subindices E, L, R will
stand for Euclidean, Lyapunov and Riemannian norms or scalar products, respec-
tively. We also recall that, given a set D, the modulus of continuity of h|D is

ω(h, η) = sup
y,z∈D, |y−z|≤η

‖h(y) − h(z)‖.

Lemma 2.1. Let M be a compact C∞ d-dimensional manifold. Given a Cr map
f : M → M , r ∈ N∪{∞}, r ≥ 2, x ∈ Λλ,µ,ε,�, δ > 2ε, τ > 0 and a fixed (Euclidean)
orthogonal decomposition Rd =

⊕p
i=1 Ei such that dimEi = dimEi

fk(x), there
exists a sequence of C∞ maps

Φk : B(0, 1) ⊂ R
d → M, k ∈ Z,

such that
(i) Φk(0) = fk(x).
(ii) DΦk(0)Ei = Ei

fk(x).
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If we denote by fk = Φ−1
k+1 ◦ f ◦ Φk we have:

(iii) exp(µi − 2δ)‖v‖E ≤ ‖Dfk(0)v‖E ≤ exp(λi + 2δ)‖v‖E for v ∈ Ei.
(iv) range (Φk)⊃{y : dR(fk(x), y)≤(2/π)Γp−1/2�−2

√
tanh δ exp(−(2ε+δ)|k|)},

where Γ is some positive constant.

Moreover, if r < ∞,

(v) supk∈Z, |x|<1, 2≤j≤r ‖Djfk(x)‖ ≤ τ .
(vi) The modulus of continuity of Drfk is bounded independently of k by τ .

Proof. For a regular orbit we define the Lyapunov inner product in Ei
fk(x) by

〈v, w〉L =
∑
n≥0

e−2(λi+δ)n〈Dfn(fk(x))v, Dfn(fk(x))w〉R

+
∑
n<0

e−2(µi−δ)n〈Dfn(fk(x))v, Dfn(fk(x))w〉R
(10)

for v, w ∈ Ei
fk(x), and in Tfk(x)M

〈v, w〉L =
p∑

i=1

〈Πi
fk(x)v, Πi

fk(x)w〉L, v, w ∈ Tfk(x)M,

where Πi
fk(x) are the projections onto Ei

fk(x). Note that the subspaces Ei
fk(x)

are orthogonal with respect to the Lyapunov metric, and that, by Definition 1.2,
denoting by ϕk the minimum angle between the subspaces Ei

fk(x), ‖Πi
fk(x)‖ ≤

1
sin ϕk

≤ π
2ϕk

≤ π
2 � exp(ε|k|). By the previous definitions, if v ∈ Ei

fk(x),

‖v‖2
L ≤

∑
n≥0

e−2(λi+δ)n‖Dfn(fk(x))v‖2
R +

∑
n<0

e−2(µi−δ)n‖Dfn(fk(x))v‖2
R

≤
[ ∑

n≥0

e−2(λi+δ)n�2e2λine2ε|k| +
∑
n<0

e−2(µi−δ)n�2e2µine2ε|k|
]
‖v‖2

R

=
(
(�eε|k|)2/ tanh δ

)
‖v‖2

R

and if v ∈ Tfk(x)M ,

‖v‖2
L =

p∑
i=1

‖Πi
fk(x)v‖2

L ≤
( p∑

i=1

π2

4
�4e4ε|k|/ tanh δ

)
‖v‖2

R

and hence

(11) ‖v‖L ≤
(√

p(π/2)�2e2ε|k|/
√

tanh δ
)
‖v‖R.

Next, we define a family of linear maps Ck.
Given the orthogonal decomposition Rd =

⊕p
i=1 Ei we define Ck |Ei : Ei →

Ei
fk(x) as follows. We take an orthonormal basis {ei

1, . . . , e
i
di
} in each Ei with

respect to the Euclidean scalar product and an orthonormal basis {ui
1, . . . , u

i
di
} in

each Ei
fk(x) with respect to 〈·, ·〉L. We just define Ck|Ei by the relations Ckei

j =
ui

j , 1 ≤ j ≤ di, 1 ≤ i ≤ p. With this definition Ck becomes an isometry from
(Rd, ‖ · ‖E) to (Tfk(x)M, ‖ · ‖L). Indeed, ‖Ck(

∑
λjej)‖2

L = ‖
∑

λjuj‖2
L =

∑
|λj |2 =
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‖
∑

λjej‖2
E . Moreover, from (11) we have

‖C−1
k v‖E = ‖v‖L ≤

√
p(π/2)�2e2ε|k|
√

tanh δ
‖v‖R.

We also have

‖Ckv‖R ≤
p∑

i=1

‖Πi
fk(x)Ckv‖R ≤

p∑
i=1

‖Πi
fk(x)Ckv‖L

≤ √
p(

p∑
i=1

‖Πi
fk(x)Ckv‖2

L)1/2 =
√

p‖Ckv‖L =
√

p‖v‖E .(12)

Let exp be the exponential map of the Riemannian metric in M . We define

Φk(y) = expfk(x)(γkCky),

and we claim that if we choose γk in a suitable way, Φk satisfies all the conclusions
of Lemma 2.1.

Indeed, conclusions (i) and (ii) are immediately satisfied. Since DΦk(0) = γkCk,
DΦk(0) transforms the Euclidean metric into γk times the Lyapunov metric.

We have

Dfk(0) = DΦ−1
k+1(f

k+1(x))Df(fk(x))DΦk(0)

=
1

γk+1
C−1

k+1Df(fk(x))γkCk

and if v ∈ Ei

‖Dfk(0)v‖E =
γk

γk+1
‖Df(fk(x))Ckv‖L.

Furthermore, if v ∈ Ei

‖Df(fk(x))Ckv‖2
L

=
∑
n≥0

e−2(λi+δ)n‖Dfn(fk+1(x))Df(fk(x))Ckv‖2
R

+
∑
n<0

e−2(µi−δ)n‖Dfn(fk+1(x))Df(fk(x))Ckv‖2
R

=
∑
n≥0

e−2(λi+δ)n‖Dfn+1(fk(x))Ckv‖2
R

+
∑
n<0

e−2(µi−δ)n‖Dfn+1(fk(x))Ckv‖2
R

= e2(λi+δ)
[ ∑

n≥0

e−2(λi+δ)n‖Dfn(fk(x))Ckv‖2
R − ‖Ckv‖2

R

]

+e2(µi−δ)
[ ∑

n<0

e−2(µi−δ)n‖Dfn(fk(x))Ckv‖2
R + ‖Ckv‖2

R

]

≤ e2(λi+δ)‖Ckv‖2
L.

Then
‖Dfk(0)v‖E ≤ γk

γk+1
e(λi+δ)‖Ckv‖L.

Recall that ‖Ckv‖L = ‖v‖E . This proves the upper bound claimed in (iii).
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The proof of the lower bound is completely analogous. Following the previous
computations we have

‖Df(fk(x))Ckv‖L ≥ eµi−δ‖Ckv‖L

and hence

exp(µi − δ)
γk

γk+1
‖v‖E ≤ ‖Dfk(0)v‖E ≤ exp(λi + δ)

γk

γk+1
‖v‖E .

We take γk = Γe−δ|k| with 0 < Γ ≤ 1 to be determined later on. Then, if k ≥ 0,
γk

γk+1
= eδ and, if k < 0, γk

γk+1
= e−δ.

To prove (iv), we observe that γkCk sends the unit ball of R
d to γk times the

unit ball of Tfk(x)M with respect to the Lyapunov metric. From (11) the unit
Lyapunov ball contains the Riemannian ball of radius γk

2√
pπ �−2e−2ε|k|√tanh δ and

finally expfk(x) sends this ball to M .
For (v) we evaluate the derivative Drfk = Dr(Φ−1

k+1 ◦ f ◦Φk). Recall the Faa di
Bruno formulas

(13) Drfk =
r∑

j=1

∑
l1+···+lj=r

1≤l1,...,lj≤r

cr,j
l1,...,lj

DjΦ−1
k+1 ◦ (f ◦ Φk)Dl1(f ◦ Φk) · · ·Dlj (f ◦ Φk)

and

(14) Dl(f ◦ Φk) =
l∑

j=1

∑
m1+···+mj=l

1≤m1,...,mj≤l

cl,j
m1,...,mj

Djf ◦ Φk Dm1Φk · · ·Dmj Φk,

where the c’s are combinatorial coefficients which depend on the indices.
In our case, we were mainly interested in

Φk = expfk(x) ◦(γkCk)

and
Φ−1

k+1 =
1

γk+1
C−1

k+1 exp−1
fk+1(x)

.

From now on K will stand for a constant which only depends on the manifold
M and the properties of the exponential map.

We observe that
‖DmΦk‖ ≤ K(γk‖Ck‖)m.

Similarly,

‖DjΦ−1
k+1‖ ≤ K

1
γk+1

‖C−1
k+1‖.

By (12) the norm of Ck considered as a linear map from (Rd, ‖·‖E) to (Tfk+1(x)M,
‖ · ‖R) is smaller than

√
p.

We deduce that

‖Drfk‖ ≤ K�2
γr

k

γk+1

e2ε|k|
√

tanh δ
‖f‖Cr

=
K�2Γr−1

√
tanh δ

e(2ε−(r−1)δ)|k|‖f‖Cr .

Therefore if we take Γ small enough we can assume without loss of generality
that the derivatives of fk of order r ≥ 2 are as small as desired.
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Finally we prove (vi). Since M is compact, all derivatives of f are uniformly
continuous. Let Bz be the ball of center 0 and radius

√
pΓ in TzM (the radius√

pΓ is motivated by (12)). Since M is C∞ and compact

sup
0≤m≤r+1

sup
z∈M

sup
x∈Bz

‖Dm expz(x)‖ < ∞.

For m ≤ r and ‖y‖E , ‖z‖E ≤ 1 we have

‖DmΦk(y)‖R = ‖Dm expfk(x)(γkCky)(γkCk)⊗m‖ ≤ KΓme−δ|k|m

and

‖DmΦk(y) − DmΦk(z)‖ ≤ ‖Dm+1 expfk+1(x) ‖ ‖γkCk‖m+1‖y − z‖
≤ KΓm+1e−δ|k|(m+1)‖y − z‖.

Then by (14) and the fact that Djf , 0 ≤ j ≤ r, are bounded and uniformly
continuous, we get that

‖Dl(f ◦ Φk)‖ ≤ KΓle−δ|k|l‖f‖Cl

and

ω(Dl(f ◦ Φk), η) =
l∑

j=1

KΓle−δ|k|lω(Djf, KΓη) + KΓl+1e−δ|k|(l+1)‖f‖Clη

= KΓle−δ|k|lo(1) + KΓl+1e−δ|k|(l+1)η.

Next we consider the modulus of continuity of DjΦ−1
k+1 ◦ (f ◦Φk). For simplicity,

we just bound the modulus of continuity using the mean value theorem assuming
that Dj+1f is uniformly bounded. We get

ω(DjΦ−1
k+1 ◦ (f ◦ Φk), η) ≤ K�2

eδ

√
tanh δ

e2ε|k+1|‖f‖C1η.

Finally by (13)

ω(Drfk, η)

≤ K�2
eδ

√
tanh δ

e2ε|k+1|Γre−δ|k|r‖f‖C1‖f‖Crη

+ K
r∑

j=1

∑
lj

Γ−1eδ|k+1|�2
e2ε|k+1|
√

tanh δ
Γr−lje−δ|k|(r−lj)

×
[
Γlj e−δ|k|lj ω(Dlj f, KΓη) + Γlj+1e−δ|k|(lj+1)‖f‖Clj η

]
≤ K�2Γr−1 e(r+1)δ

√
tanh δ

(
e[2ε−(r−1)δ]|k+1|ω(Drf, KΓη) + Γe[2ε−rδ]|k+1|‖f‖Crη

)
.

Then, if δ > 2ε/(r − 1), ω(Drfk, η) is bounded independently of k, and, if r ≥ 2,
can be made small by taking Γ small. �



PRE-FOLIATIONS FOR NON-RESONANT SYSTEMS 1329

Definition 2.2. Let B2 be the ball around the origin in Rd of radius 2. Given a
sequence F = {fn}n∈Z, fn ∈ Cr(B2, R

d) satisfying fn(0) = 0, we denote

An = Dfn(0),

f̃n = fn − An,

F̃ = {f̃n}n∈Z,

‖F‖Cr(B2) = sup
n∈Z

‖fn‖Cr(B2).

Remark 2.3. Given a family of Cr maps, F = {fn}n∈Z with fn(0) = 0, we will
consider the family Fλ = {fn,λ}n∈Z, with λ > 0 and

fn,λ(x) = λ−1fn(λx).

Note that if r ≥ 2 and ‖F‖Cr(B2) < ∞, then ‖F̃λ‖Cr(B2) can be assumed to be
arbitrarily small by taking λ small enough. Indeed, if F = {fn}n∈Z, it is clear that

|f̃n,λ(x)| = λ−1|fn(λx) − Dfn(0)λx|
≤ λ‖D2fn ◦ λ‖C0(B2) ≤ λ‖F‖Cr(B2),

and that
|Df̃n,λ(x)| = |Dfn(λx) − Dfn(0)|

≤ λ‖D2fn ◦ λ‖C0(B2) ≤ λ‖F‖Cr(B2).

For 2 ≤ i ≤ r, one has

|Dif̃n,λ(x)| = λi−1|Difn(λx)| ≤ λi−1‖F‖Cr(B2).

Moreover if {graph Vn} is a sequence of manifolds such that Vn(0) = 0 and
fn(graph (Vn)) ⊂ graph (Vn+1), then, defining Vn,λ(x) := λ−1Vn(λx), we have
that graph Vn,λ is a sequence of manifolds such that fn,λ(graph (Vn,λ)) ⊂
graph (Vn+1,λ).

Remark 2.4. If r = 1 + α, 0 < α < 1, and Dfn are uniformly Hölder, that is, there
exists K > 0 independent of n such that |Dfn(x) − Dfn(y)| ≤ K|x − y|α, then
‖F̃‖C1+α(B2) can also be assumed to be small taking λ small. This can be easily
checked since

|f̃n,λ(x)| =
∣∣∣∣
∫ 1

0

(Dfn(tλx) − Dfn(0))x dt

∣∣∣∣ ≤ Kλα/(α + 1),

|Df̃n,λ(x)| ≤ Kλα,

and
|Df̃n,λ(x) − Df̃n,λ(y)| = |Dfn(λx) − Dfn(λy)| ≤ Kλα|x − y|α.

However, if r = 1, it may not be possible to make ‖F̃λ‖C1(B2) small. As an
example, consider the family {fn}n≥1, where

fn(x) =
sin(nx)

n
.

It is clear that supn ‖fn‖C1 = 1. But, for all λ > 0,

f̃n,λ(x) = λ−1

(
sin(λnx)

n
− λx

)
→ −x when n → ∞,

which implies that ‖F̃λ‖C1 ≥ 1, for all λ > 0.
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As a consequence of Lemma 2.1, Theorem 1.9 will be immediately implied by
the following theorem.

Theorem 2.5. Let F = {fn}n∈Z be a family of Cr maps in R
q, r ∈ N ∪ {∞, ω},

r ≥ 2. Assume that there is a decomposition Rq = E1⊕· · ·⊕Ep invariant under An,
that is, AnEi = Ei and a set of real numbers µ̃1 ≤ λ̃1 < µ̃2 ≤ · · · ≤ λ̃p−1 < µ̃p ≤ λ̃p,
such that

(15) v ∈ Ei ⇒ eµ̃i |v| ≤ |Anv| ≤ eλ̃i |v| for all n ∈ Z.

Denote Ii = [µ̃i, λ̃i]. Let S ⊂ {1, . . . , p} be such that {Ii : i ∈ S} satisfies (6)
and (7). Denote ES =

⊕
i∈S Ei, ESc

=
⊕

i∈Sc Ei. Assume that ‖F̃‖CNS+1(B2)

is sufficiently small, the modulus of continuity of Dr f̃n is uniformly bounded with
respect to n and r ≥ NS + 1. Let B1 be the unit ball in ES. Then, there exist Cr

maps Vn : B1 ⊂ ES → ESc

in such a way that

(a) supn∈Z ‖Vn‖Cr(B1) < ∞.
(b) Vn(0) = 0 and fn

(
graph(Vn)

)
⊂ graph(Vn+1).

(c) DVn(0) = 0.

Moreover, if Vn and V̂n are families of maps satisfying (b), we have that

(d) If

sup
n∈Z

‖Vn‖Cm(B1) < ∞, sup
n∈Z

‖V̂n‖Cm(B1) < ∞

for some m ≤ r, then DiVn(0) = DiV̂n(0) for all i ≤ m.
(e) If supn∈Z ‖Vn‖CNS+1(B1) ≤ 1 and supn∈Z ‖V̂n‖CNS+1(B1) ≤ 1, then Vn =

V̂n. In particular, if V̂n satisfies (b) and supn∈Z ‖V̂n‖CNS+1(B1) ≤ 1, V̂n

has to agree with the Vn produced by this theorem and hence V̂ is Cr and
supn∈Z ‖V̂n‖Cr(B1) < ∞.

(f) If supn∈Z ‖Vn‖CNS (B1) < ∞ and V0 ∈ Ck(B1) for some NS < k ≤ r, then
supn∈N ‖V−n‖Ck(B1) < ∞.

Remark 2.6. If we assume that supn∈Z ‖Vn‖CNS+1(B1) and supn∈Z ‖V̂n‖CNS+1(B1)

are just bounded in (e), scaling the maps we get the suprema to be smaller than 1.
This scaling implies working in a smaller domain and hence we obtain uniqueness
in this smaller domain.

To apply Theorem 2.5 in proving Theorem 1.9, we take λ̃i = λi+2δ, µ̃i = µi−2δ,
where δ is the small number we had to use in the estimates (iii) in Lemma 2.1. Recall
that it is enough to take δ > 2ε.

Note that if a set of intervals is non-resonant and contractive, and if we enlarge
them by a sufficiently small quantity, then the enlarged intervals also satisfy the
same properties. Hence, when applying Lemma 2.1 to the original situation, we
have to pay attention to ensuring that δ is small enough — and thus ε small enough
— so that the non-resonance conditions and contractivity are still satisfied by the
enlarged intervals. Then, taking wn(y) = Φn(y, Vn(y)), all the conclusions follow.

The rest of the section is devoted to the proof of Theorem 2.5.
We denote by AS

n and ASc

n the restrictions of An to ES and ESc

, respectively,
and by ΠS and ΠSc

the projections onto ES and ESc

, respectively. Note that in this
setting they are independent of n. The invariance conclusion in (b) of Theorem 2.5



PRE-FOLIATIONS FOR NON-RESONANT SYSTEMS 1331

can be expressed more explicitly as

(16) Vn+1

(
AS

nx + ΠS f̃n(x, Vn(x))
)

= ASc

n Vn(x) + ΠSc

f̃n(x, Vn(x)).

2.2. Obtaining a polynomial approximation. To show that such a sequence of
maps Vn satisfying (16) exists and verifies the uniqueness statements, we will start
by determining candidates for their derivatives at zero.

If a sequence of differentiable functions {Vn}n∈Z satisfies (16), we will show that
the derivatives at the origin have to verify a certain functional equation (see (17)
below). By studying this functional equation, we will show that, under the non-
resonance conditions, there is one and only one bounded solution. Hence, if there
is a sequence of differentiable maps, there is only one possibility for their jets at
the origin. We will denote the solution of (17) (which is the only possibility for
derivatives of the solutions of (16)) by V 0

n .
Incidentally, the analysis of (17) shows that if the non-resonance conditions are

not met, it is possible that the equations for the jet do not have any solution. Hence,
a fortiori, that there are no smooth invariant manifolds satisfying the conclusions
of Theorem 1.9.

In Section 2.3 we will use V 0
n to transform (16) into another equation (see (24)

below) which has better contraction properties. This equation will be shown to
have solutions using a contraction mapping argument. By re-examining the whole
process, we will show that, indeed, the solution is a solution of the original problem
and that, indeed, its jet is V 0

n .
We now proceed with the first step of deriving an equation for the jets at the

origin. Taking formally i derivatives of (16) at zero we obtain that, if the derivatives
exist, they must satisfy

(17) DiVn+1(0)(AS
n)

⊗i
= ASc

n DiVn(0) + Rn,i, n ∈ Z,

where Rn,i is an expression that involves only derivatives of Vn up to order i − 1
and derivatives of fn up to order i. In order to solve (17), we recall that DiVn(0)
is a linear map from (ES)⊗i to ESc

.
We claim that the hierarchy of equations (17) can be solved recursively and that

the solution is unique.

Lemma 2.7. Let F = {fn}n∈Z be a family of maps, fn : B2 ⊂ R
d → R

d, where
B2 is the ball centered at zero of radius 2. Assume that ‖F‖Ck(B2) < ∞ and that
Dfn(0) = An satisfies the hypotheses of Theorem 2.5. Then, for all 1 ≤ i ≤ k, the
family of equations (17) has a unique solution in the Banach space

{T i = (T i
n) : T i

n ∈ L((ES)⊗i, ESc

), ‖T i‖ = sup
n∈Z

‖T i
n‖ < ∞}.

Moreover, the norm of the solution can be made as small as we want by taking
‖F̃‖Ck(B2) small.

For i = 1 the only bounded solution is DVn(0) = 0.

This result proves parts (c) and (d) of Theorem 2.5.

Proof of the lemma. We will solve equations (17) in the components corresponding
to the decomposition Rd =

⊕p
i=1 Ei. Note that the decomposition

(ES)⊗i =
⊕

j1,...,ji∈S

Ej1 ⊗ · · · ⊗ Eji
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is preserved by the linear map

(AS
n)⊗i =

⊕
j1,...,ji∈S

Aj1
n ⊗ · · · ⊗ Aji

n : (ES)⊗i → (ES)⊗i,

where
Aj1

n ⊗ · · · ⊗ Aji
n : Ej1 ⊗ · · · ⊗ Eji → Ej1 ⊗ · · · ⊗ Eji

and ‖Aj1
n ⊗ · · · ⊗ Aji

n ‖ = ‖Aj1
n ‖ · · · ‖Aji

n ‖.
If T i

n ∈ L((ES)⊗i, ESc

), we can use the decomposition of (ES)⊗i and ESc

=⊕
i∈Sc Ei to write

T i
n =

⊕
l∈Sc, j1,...,ji∈S

τ l
n,j1,...,ji

,

where
τ l
n,j1,...,ji

: Ej1 ⊗ · · · ⊗ Eji → El

is linear. The same decomposition is made to the terms Rn,i of (17), which also
belong to L((ES)⊗i, ESc

), to obtain Rn,i =
⊕

l∈Sc, j1,...,ji∈S Rl
n,j1,...,ji

.
Then, equations (17) are equivalent to the set of equations

(18) τ l
n+1,j1,...,ji

Aj1
n ⊗ · · · ⊗ Aji

n = Al
nτ l

n,j1,...,ji
+ Rl

n,j1,...,ji
,

with n ∈ Z, j1, . . . , ji ∈ S and l ∈ Sc.
Equations (18) can be rewritten in either the form

(19) τ l
n,j1,...,ji

= (Al
n)−1τ l

n+1,j1,...,ji
Aj1

n ⊗ · · · ⊗ Aji
n − (Al

n)−1Rl
n,j1,...,ji

or the form

(20) τ l
n+1,j1,...,ji

= Al
nτ l

n,j1,...,ji
(Aj1

n ⊗ · · · ⊗Aji
n )−1 + Rl

n,j1,...,ji
(Aj1

n ⊗ · · · ⊗Aji
n )−1.

Equations (19) and (20) can be considered as fixed point equations, and the
right-hand side of both of them defines continuous affine maps on the Banach space

{τ l
j1,...,ji

= (τ l
n,j1,...,ji

)n∈Z : τ l
n,j1,...,ji

∈ L(Ej1 ⊗ · · · ⊗ Eji , El),

‖τ l
j1,...,ji

‖ = sup
n∈Z

‖τ l
n,j1,...,ji

‖ < ∞}.

The map associated to (19) has a Lipschitz constant which is bounded from
above by

(21) exp(λ̃j1 + · · · + λ̃ji
− µ̃l)

while the one associated to (20) has a Lipschitz constant which is bounded from
above by

(22) exp(λ̃l − µ̃j1 − · · · − µ̃ji
).

Since the intervals {Ii}i∈S are non-resonant, one of the two numbers (21) or (22)
is smaller than 1. Then, one of the two equations (19) or (20) has a right-hand
side which defines a contraction. Hence, one of (19) or (20) can be solved by the
contraction mapping principle. Since both equations (19) and (20) are equivalent
to (18), we have proved that the equations (18) have a unique solution.

All terms Rn,i have a factor Dj f̃(0, 0), 2 ≤ j ≤ i, which is small if ‖F̃‖Ck(B2) is
small. Therefore, Rn,j1,...,ji

are also small and hence the non-homogeneous parts of
(19) and (20) are small. From that we deduce that the unique solutions of equations
(18) are small.
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Note that the equations for the first derivative are homogeneous. It follows, then,
that DVn(0) = 0 is the unique bounded solution of equations (17) for i = 1. This
establishes Lemma 2.7. �

2.3. The high order part of the manifolds. We now rewrite the invariance
equations in such a way that we can take advantage of the fact that we already
know the low order terms of the expansion of its solution.

We will write the sequence of maps V = {Vn}n∈Z in (16) in the form V = V0 +U
with V0 = {V 0

n }n∈Z, U = {Un}n∈Z and

(23) Vn = V 0
n + Un,

where V 0
n is the unique polynomial of degree NS whose derivatives at 0 satisfy

equations (17) and DiUn(0) = 0, for 0 ≤ i ≤ NS . Note that ‖V0‖Cr can be made
as small as we need.

Next we reformulate our original problem in terms of the Un. As it turns out, this
will be very convenient since we will have that the Un are maps that vanish to high
order. For such maps, composing with contractions on the right leads to a rather
strong contraction factor. If we substitute (23) in the invariance equation (16) we
obtain a fixed point equation U = σ(U), for a sequence of maps U = {Un}n∈Z,
where the operator σ is defined by

σ(U)n(x) = (ASc

n )−1
[
(V 0

n+1 + Un+1) ◦ ψ(U)n(x)

− ΠSc

f̃n(x, V 0
n (x) + Un(x))

]
− V 0

n (x)
(24)

with

(25) ψ(U)n(x) = AS
nx + ΠS f̃n(x, V 0

n (x) + Un(x)).

A simple algebraic manipulation shows that, at least formally, ignoring questions
of whether the compositions can be defined is equivalent to saying that U is a fixed
point of (24) rather than saying that V0 + U is a solution of (16). The plan will
be to produce fixed points of (24) in a space of well-behaved functions for which
the algebraic manipulations involved in transforming (16) into (24) can be justified.
For the moment, we will consider only the case that r ∈ N. Later we will see how
this result can be extended to the cases r = ω,∞.

More precisely, we consider σ acting on the following spaces:

Xk = {U = {Un}n∈Z : Un ∈ Ck(B1), DiUn(0) = 0, 0 ≤ i ≤ NS ,

‖U‖Xk
:= sup

n∈Z

max
NS<i≤k

‖DiUn‖C0 < ∞}, for k > NS ,(26)

and

X 0 = {U = {Un}n∈Z : Un ∈ CNS (B1), DiUn(0) = 0, 0 ≤ i ≤ NS ,

‖U‖X0 := sup
n∈Z

sup
x∈B1\{0}

|x|−1|DNS Un(x)| < ∞}.(27)

By the mean value theorem, if k > NS , Xk ⊂ X 0. Moreover, if U ∈ Xk, ‖U‖X0 ≤
‖U‖Xk

.
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Let BNS+1 = {U ∈ XNS+1 : ‖U‖XNS+1 ≤ 1} and B(ρNS+2, . . . , ρk) be the set of
families U = {Un}n∈Z ∈ Xk such that

sup
n∈Z

‖DNS+1Un‖C0 ≤ 1,

sup
n∈Z

‖DjUn‖C0 ≤ ρj , NS + 1 < j ≤ k.

Note that the last condition is void if k = NS + 1. Clearly B(ρNS+2, . . . , ρk) ⊂
BNS+1. We remark that if U ∈ Xk, we can reconstruct Un from DNS+1Un and
‖DiUn(x)‖/|x|NS+1−i ≤ (1/(NS +1−i)!)‖Un‖CNS+1 , for 0 ≤ i ≤ NS +1. Therefore
we get that if ‖DNS+1(σU)n‖C0 ≤ 1, we also have that ‖Di(σU)n‖C0 ≤ 1, for
0 ≤ i ≤ NS .

Lemma 2.8. Let σ be defined as in (24). Under appropriate smallness conditions
on ‖F̃‖CNS+1(B2):

(i) σ(BNS+1) ⊂ BNS+1.
(ii) σ restricted to BNS+1 is a contraction in the X 0-norm.

Moreover, under the same smallness conditions on ‖F̃‖CNS+1(B2) needed for (i)
and (ii) there exist numbers ρNS+2, . . . , ρk > 0 such that

(iii) σ(B(ρNS+2, . . . , ρk)) ⊂ B(ρNS+2, . . . , ρk) for NS + 2 ≤ k ≤ r.

For future reference, it will be important to note that the smallness conditions
assumed in Lemma 2.8 are only smallness assumptions on ‖F̃‖CNS+1(B2) and do
not change as we increase r.

Before proving the lemma we first establish some bounds for ψ. Given U , Û ∈
BNS+1 we have

‖Dψ(U)n‖ ≤ ‖AS
n‖ + K‖F̃‖C1 ,(28)

|x|−1‖ψ(U)n(x)‖ ≤ ‖AS
n‖ + K‖F̃‖C1 ,(29)

|x|−1‖(ψ(U)n − ψ(Û)n)(x)‖ ≤ K‖F̃‖C1‖U − Û‖X0 ,(30)

|x|−1‖D(ψ(U)n − ψ(Û)n)(x)‖ ≤ K‖F̃‖C2‖U − Û‖X0 ,(31)

where K is a constant independent of n. Formula (28) is straightforward from
the definition of ψ in (25), while (29)–(31) follow from the fact that f̃n(0) = 0,
Df̃n(0) = 0, V 0

n (0) = 0 and the derivatives of V 0
n and Un are uniformly bounded.

Proof of Lemma 2.8. It is clear that, by the choice of the polynomials V 0
n ,

Diσ(U)n(0) = 0, 0 ≤ i ≤ NS .

We observe that, for k ≥ 2, by the Faa-di Bruno formula,

(32) Dkσ(U)n = (ASc

n )−1DkUn+1 ◦ ψ(U)nDψ(U)⊗k
n + Bn(U)DkUn + Rn,k(U),

where

Bn(U) = (ASc

n )−1D(V 0
n+1 + Un+1) ◦ ψ(U)nΠSD2f̃n ◦ η(U)n

−(ASc

n )−1ΠSc

D2f̃n ◦ η(U)n(33)

is linear,

(34) η(U)n = (Id , V 0
n + Un)
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and since k ≥ NS + 1,

Rn,k(U) = (ASc

n )−1
( NS∑

l=2

∑
∗

ck,l
j1,...,jl

DlV 0
n+1 ◦ ψ(U)nDj1ψ(U)n ⊗ · · · ⊗ Djlψ(U)n

+
k−1∑
l=2

∑
∗

ck,l
j1,...,jl

DlUn+1 ◦ ψ(U)nDj1ψ(U)n ⊗ · · · ⊗ Djlψ(U)n

+ D(V 0
n+1 + Un+1) ◦ ψ(U)n

× ΠS
k∑

l=2

∑
∗

ck,l
j1,...,jl

Dlf̃n ◦ η(U)nDj1η(U)n ⊗ · · · ⊗ Djlη(U)n

− ΠSc
k∑

l=2

∑
∗

ck,l
j1,...,jl

Dlf̃n ◦ η(U)nDj1η(U)n ⊗ · · · ⊗ Djlη(U)n

)
,

(35)

where
∑

∗ stands for the sum over the indices ji such that 1 ≤ j1, . . . , jl ≤ k and
j1 + · · · + jl = k and the coefficients ck,l

j1,...,jl
are combinatorial numbers.

Note that a first derivative of f̃n appears as a factor in each term in Bn(U). Also
note that Rn,k(U) consists of a finite sum of terms. Some of them have explicitly a
derivative of f̃n as a factor. The other terms have a factor of the form

(36) Dj1ψ(U)n ⊗ · · · ⊗ Djlψ(U)n,

where

(37) j1 + · · · + jl = k and l ≤ k − 1.

Because of (37), there is some i such that ji ≥ 2 and therefore, among the factors
in (36), there is a factor of the form

Djiψ(U)n = Dji(f̃n ◦ ηn(U)).

Now we consider the case k = NS +1. The previous factors can be made arbitrarily
small by assuming that ‖F̃‖CNS+1 is sufficiently small. As a consequence, for any
given ν > 0, if ‖F̃‖CNS+1 is small enough, we have that

‖Bn(U)‖ < ν and ‖Rn,NS+1(U)‖C0 < ν.

Since supn ‖(ASc

n )−1‖ ‖AS
n‖NS+1 < 1, there exists ν > 0 such that

γ := ‖(ASc

n )−1‖ (‖AS
n‖ + ν)NS+1 + 2ν < 1

and hence

‖DNS+1σ(U)n‖C0 ≤ sup
n∈Z

(
‖(ASc

n )−1‖ (‖AS
n‖ + ν)NS+1 + ν

)
‖DNS+1U‖C0 + ν ≤ γ,

for all U in BNS+1. This proves (i).
If NS + 1 < k ≤ r, from (32) we have that

‖Dkσ(U)n‖ ≤ γ sup
n∈Z

‖DkUn‖ + Q(ρNS+2, . . . , ρk−1),

where Q is a polynomial. Therefore, since γ < 1, there exists ρk > 0 such that
ρk = γρk + Q(ρNS+2, . . . , ρk−1) and σ(B(ρNS+2, . . . , ρk)) ⊂ B(ρNS+2, . . . , ρk).
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To prove (ii) we take derivatives, and we obtain

|x|−1‖DNS (σ(U)n − σ(Û)n)(x)‖
≤ |x|−1‖(ASc

n )−1DNS (Un+1 − Ûn+1) ◦ ψ(U)n(x)Dψ(U)n(x)⊗NS‖(38)

+|x|−1‖(ASc

n )−1(DNS Ûn+1 ◦ ψ(U)n(x)(39)

− DNS Ûn+1 ◦ ψ(Û)n)(x)Dψ(U)n(x)⊗NS‖
+|x|−1‖(ASc

n )−1DNS Ûn+1 ◦ ψ(Û)n(x)(40)

× (Dψ(U)n(x)⊗NS − Dψ(Û)n(x)⊗NS )‖
+|x|−1‖Bn(U)(x)DNS (Un − Ûn)(x)‖(41)

+|x|−1‖(Bn(U) − Bn(Û))(x)DNS Ûn(x)‖(42)

+|x|−1‖(Rn,NS
(U) − Rn,NS

(Û))(x)‖.(43)

Taking into account inequalities (28) and (29), we bound (38) as follows:

|x|−1‖(ASc

n )−1DNS (Un+1 − Ûn+1) ◦ ψ(U)n(x)Dψ(U)n(x)⊗NS‖
≤ |x|−1|ψ(U)n(x)| ‖(ASc

n )−1‖ ‖Dψ(U)n‖NS‖Un+1 − Ûn+1‖X0

≤ ‖(ASc

n )−1‖
(
‖AS

n‖ + K‖F̃‖C1

)NS+1‖Un+1 − Ûn+1‖X0 .

To bound (39), we use inequality (30) and the fact that U , Û ∈ BNS+1. In this way,

|x|−1‖(ASc

n )−1(DNS Ûn+1 ◦ ψ(U)n(x) − DNS Ûn+1 ◦ ψ(Û)n(x))Dψ(U)n(x)⊗NS‖
≤ ‖(ASc

n )−1‖ ‖Dψ(U)n‖NS‖Û‖CNS+1 |x|−1‖(ψ(U)n − ψ(Û)n)(x)‖
≤ K‖(ASc

n )−1‖
(
‖AS

n‖ + K‖F̃‖C1

)NS‖Û‖CNS+1‖F̃‖C1‖U − Û‖X0 .

Term (40) can be bounded in the following way, using inequalities (31) and (28):

|x|−1‖(ASc

n )−1DNS Ûn+1 ◦ ψ(Û)n(x)(Dψ(U)n(x)⊗NS − Dψ(Û)n(x)⊗NS )‖
≤ ‖(ASc

n )−1‖
(
‖AS

n‖ + K‖F̃‖C1

)
‖Ûn+1‖CNS

|x|−1‖Dψ(U)n(x)⊗NS − Dψ(Û)n(x)⊗NS‖
≤ NSK‖(ASc

n )−1‖
(
‖AS

n‖ + K‖F̃‖C1

)NS‖Ûn+1‖CNS ‖F̃‖C2‖U − Û‖X0 ,

where we have bounded

|x|−1‖Dψ(U)n(x)⊗NS − Dψ(Û)n(x)⊗NS‖

≤
NS∑
j=1

|x|−1‖Dψ(U)n(x) − Dψ(Û)n(x)‖ ‖Dψ(U)n‖NS−j‖Dψ(Û)n‖j−1

≤ NSK
(
‖AS

n‖ + K‖F̃‖C1

)NS−1‖F̃‖C2‖U − Û‖X0 .

Term (41) can be easily bounded taking into account that

‖Bn(U)‖ ≤ K̃‖F̃‖C1

for some K̃ > 0.
To obtain a bound for (42) we proceed in the following way:

‖Bn(U) − Bn(Û)‖ ≤‖(ASc

n )−1‖ ‖D(V 0
n+1 + Un+1) ◦ ψ(U)nΠSD2f̃n ◦ η(U)n

− D(V 0
n+1 + Ûn+1) ◦ ψ(Û)nΠSD2f̃n ◦ η(Û)n‖

+‖ΠSc

D2f̃n ◦ η(U)n − ΠSc

D2f̃n ◦ η(Û)n‖.
(44)
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Since ‖η(U)n(x) − η(Û)n(x)‖ = ‖Un(x) − Ûn(x)‖, the last term of (44) can be
bounded immediately by

‖F̃‖C2‖U − Û‖X0 .

The first term in (44) can be split into the three following terms that can be
easily bounded:

‖D(Un+1 − Ûn+1) ◦ ψ(U)nΠSD2f̃n ◦ η(U)n‖,
‖
(
D(V 0

n+1 + Ûn+1) ◦ ψ(U)n − D(V 0
n+1 + Ûn+1) ◦ ψ(Û)n

)
ΠSD2f̃n ◦ η(U)n‖,

‖D(V 0
n+1 + Ûn+1) ◦ ψ(Û)n

(
ΠSD2f̃n ◦ η(Û)n − ΠSD2f̃n ◦ η(U)n

)
‖.

Finally, to bound (43), we recall that Rn,NS
(U) is a finite sum of terms having

expressions of the following forms:
(1) Terms of the form

DlV 0
n+1 ◦ ψ(U)nDj1ψ(U)n ⊗ · · · ⊗ Djlψ(U)n, 2 ≤ l ≤ NS , j1 + · · · + jl = k.

The norm of their difference is easily bounded by

|x|−1‖
(
DlV 0

n+1 ◦ ψ(U)n − DlV 0
n+1 ◦ ψ(Û)n

)
Dj1ψ(U)n ⊗ · · · ⊗ Djlψ(U)n‖

+|x|−1‖DlV 0
n+1 ◦ ψ(Û)n

(
Dj1ψ(U)n ⊗ · · · ⊗ Djlψ(U)n

− Dj1ψ(Û)n ⊗ · · · ⊗ Djlψ(Û)n

)
‖.

Both differences can be bounded by some constant times

‖F̃‖C2‖U − Û‖X0 .

(2) Terms of the form

DlUn+1 ◦ ψ(U)nDj1ψ(U)n ⊗ · · · ⊗ Djlψ(U)n, 2 ≤ l ≤ NS − 1, j1 + · · · + jl = k.

Since U ∈ BNS+1, their difference can be bounded as in the previous case.
(3) Terms of the form

Dlf̃n ◦ η(U)nDj1η(U)n ⊗ · · · ⊗ Djlη(U)n, 1 ≤ l ≤ NS , j1 + · · · + jl = k,

which can be treated as before, since f̃n is CNS+1.
(4) Terms of the form

D(V 0
n+1 + Un+1) ◦ ψ(U)nΠSDlf̃n ◦ η(U)nDj1η(U)n ⊗ · · · ⊗ Djlη(U)n,

where 2 ≤ l ≤ NS , j1 + · · ·+jl = k, that can be bounded like the preceding
ones.

Putting together the estimates for terms of the form (1)–(4), it follows that the
Lipschitz constant of σ is less than

‖(ASc

n )−1‖
(
‖AS

n‖ + ν
)NS+1 + ν,

where ν is as small as we need taking ‖F̃‖CNs+1 small enough. Then σ is a con-
traction on X 0. �

Now we proceed to argue that the fixed point thus produced satisfies the claimed
properties.

By (i) and (ii) it is clear that there is a fixed point of σ in X 0, hence, a solution of
(16). Moreover, because of (i), this fixed point of σ also belongs to the X 0-closure
of B(ρNS+2, . . . , ρk), NS + 1 ≤ k ≤ r.
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By Lemma 2.8 and Proposition A2 in [LI73], we get the existence of a Cr−1+lip

solution of the invariance equation. Furthermore, given any U ∈ B(ρNS+2, . . . , ρk),
the sequence σj(U) tends in the Cr−1-norm to the fixed point of σ.

Now, to check that this solution is in fact Cr, we note first that

‖Rn,r(U) − Rn,r(Û)‖C0 → 0,

when ‖U − Û‖Cr−1 → 0 and U , Û ∈ B(ρNS+2, . . . , ρk). This fact is trivial for all the
terms involving derivatives up to order r− 1 of F̃ , U and Û , since these derivatives
are in fact Lipschitz. The only terms involving r derivatives are

D(V 0
n+1 + Un+1) ◦ ψ(U)nΠSDrf̃n ◦ η(U)nDη(U)⊗r

n

and
ΠSc

Drf̃n ◦ η(U)nDη(U)⊗r
n

which are continuous in U since Dr f̃n and η are continuous with modulus of con-
tinuity independent of n.

Next we consider the sequence of maps U l = {U l
n}n∈Z defined by

U0
n = 0, n ∈ Z, U l+1 = σ(U l).

The preceding arguments show that the sequence U l ∈ B(ρNS+2, . . . , ρk) converges
in the Cr−1-norm to some U∞ = {U∞

n }n∈Z. The sequence of r-derivatives satisfies
the recurrence relation

DrU l+1
n = (ASc

n )−1DrU l
n+1 ◦ ψ(U l)nDψ(U l)⊗r

n + Bn(U l)DrU l
n + Rn,r(U l).

That is, denoting DrU l
n by T l

n, T l = {T l
n}n∈Z, we have that

(45) T l+1 = A(U l)T l + R(U l),

with

(A(U l)T l)n = (ASc

n )−1T l
n+1 ◦ ψ(U l)nDψ(U l)⊗r

n + Bn(U l)T l
n,

R(U l)n = Rn,r(U l).

We have that A(U l) is a linear map from

Ξ = {T = {Tn}n∈Z : Tn ∈ C0(B(0, 1), Lr(Rd; Rd)),
ω(Tn, η) uniformly bounded in n}

to itself. Note that the terms of the sequence T l belong to Ξ. Moreover both
A(U) and R(U) are continuous in the C0-norm when U is Cr−1 with modulus of
continuity of the r − 1 derivative bounded.

We claim that the sequence T l converges in the C0-norm to a continuous map.
Indeed, this limit will be the only bounded solution, T ∞, of the equation

(46) T = A(U∞)T + R(U∞).

This equation has a unique solution since

‖A(U∞)‖ ≤ sup
n∈Z

‖(ASc

n )−1‖
(
‖AS

n‖ + ν
)r + ν < γ < 1,

and, hence, the right-hand side of (46) is a contraction. We can also assume that
‖A(U l)‖ ≤ γ. To prove the claim we check that T l → T ∞ in the C0-norm when
l → ∞,

‖T l − T ∞‖ ≤ ‖A(U l−1)T l−1 −A(U∞)T ∞‖ + ‖R(U l−1) −R(U∞)‖
≤ γ‖T l−1 − T ∞‖ + dl,
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where
dl = ‖(A(U l−1) −A(U∞))T ∞‖ + ‖R(U l−1) −R(U∞)‖.

Note that by the continuity of A and R, dl → 0 when l → ∞. Then it is clear that

‖T l − T ∞‖ ≤ γl−1‖T 1 − T ∞‖ +
l−1∑
j=0

γjdl−j ,

which tends to 0 when l → ∞ since γ < 1 and dl → 0.
This proves that DrU l

n tends in the C0-norm to T∞
n . To check that this map is

the r derivative of U∞ we simply note that for all n

Dr−1U l
n(y) − Dr−1U l

n(x) =
∫ 1

0

DrU l
n(x + s(y − x))(y − x) ds.

Since the integrand in the right-hand side converges uniformly to the continuous
map T∞

n , we have

Dr−1U∞
n (y) − Dr−1U∞

n (x) = T∞
n (x)(y − x)

+
∫ 1

0

[T∞
n (x + s(y − x)) − T∞

n (x)](y − x) ds

and hence DrU∞
n (x) = T∞

n (x).
To prove the case when r = ∞, we note that when fn ∈ C∞, we can find

a sequence of positive numbers ρNS+2, . . . , ρk such that σ(B(ρNS+2, . . . , ρk)) ⊂
B(ρNS+2, . . . , ρk), for all k ≥ NS + 2. According to the preceding arguments the
fixed point of σ is Cr−1+lip for all k, and hence C∞.

The case r = ω is much easier. It just suffices to observe that the previous
arguments work exactly in the same way in a complex ball. We consider the Banach
space of functions, analytic in the open ball, continuous on the closed ball, and
vanishing to order NS at the origin topologized with the supremum of the NS + 1
derivative.

We have established the existence claim of Theorem 2.5, (a) and (b). To prove
the uniqueness statement (e) consider V = {Vn}n∈Z, V̂ = {V̂n}n∈Z. From (b),
V = σ(V) and V̂ = σ(V̂). Then

‖V − V̂‖X0 = ‖σ(V) − σ(V̂)‖X0 ≤ Lip σ|BNS+1‖V − V̂‖X0

and Lipσ|BNS+1 < 1 in the X 0-norm. This shows that V = V̂ .
To prove statement (f), we observe that (16) shows that if V̂n is Ck, k ≤ r, for

some n, then it is Ck for all n. Then, we just have to obtain uniform estimates for
the derivatives, assuming they exist. We shall consider the case k = NS + 1. The
other cases follow by induction.

If we take NS + 1 derivatives of (16), we obtain in a similar way as for (32)

DNS+1V̂n(x) = (ASc

n )−1DNS+1V̂n+1

(
AS

nx + ΠS f̃n(x, V̂n(x))
)
(AS

n)⊗(NS+1)

+ Qn,NS+1(V̂),(47)

where Qn,NS+1(V̂) contains terms with derivatives up to order NS + 1 of V̂n and
V̂n+1, but all of them multiplied by factors which involve derivatives of f̃n up to
order NS + 1.
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From this observation, we conclude that

‖DNS+1V̂n‖C0 ≤ ‖(ASc

n )−1‖ ‖AS
n‖NS+1‖DNS+1V̂n+1‖C0

+ ν(‖V̂n‖CNS+1 + ‖V̂n+1‖CNS+1),(48)

where ν can be made as small as we need by assuming that ‖F̃‖Cr is sufficiently
small.

We observe that

‖V̂n‖CNS+1 ≤ sup(‖V̂n‖CNS , ‖DNS+1V̂n‖C0)

≤ ‖V̂‖CNS + ‖DNS+1V̂n‖C0 .(49)

Substituting (49) into (48) and using the fact that ‖(ASc

n )−1‖ ‖AS
n‖NS+1 < 1, we

obtain that
‖DNS+1V̂n‖C0 ≤ γ‖DNS+1V̂n+1‖C0 + D,

where γ < 1 and D is some constant independent of n. Statement (f) now follows
easily. �

3. An example

The following example illustrates some of the subtle phenomena involved in slow
manifolds showing that uniqueness may or may not hold depending very much on
the details of the conditions. In particular, it shows that some of the limitations in
Theorem 2.5 do belong.

This example is first presented as a family of maps, as in the setting of Theo-
rem 2.5 and then, at the end of this section, we will show that this family can be
lifted to a smooth map from a four-dimensional compact manifold to itself. The
construction of such a lift is explicit and is quite similar to the construction in
[Pug84].

Example 3.1. Consider the sequence of maps fn : R
2 → R

2, n ∈ Z, defined by

fn(x1, x2) = (
1
3
x1,

1
20

x2), n �= 0,

f0(x1, x2) = (
1
3
x1,

1
20

x2 + ϕ(x1, x2)),
(50)

where ϕ is a C∞ real-valued function with compact support — which we will think
of as very small — not including (0, 0) and

(51) sup
(x1,x2)∈R2

∣∣∣ ∂ϕ

∂x2
(x1, x2)

∣∣∣ <
1
20

.

Clearly, we have

Dfn(0, 0) =
(

1
3 0
0 1

20

)
, n ∈ Z.

Moreover, condition (51) ensures that each fn, n ∈ Z, is a bijective map. Indeed,
this assertion is trivial for n �= 0. For n = 0, we remark that, given (z1, z2) ∈ R2,
the equation

f0(x1, x2) = (z1, z2)

is equivalent to
x1 = 3z1, x2 = 20z2 − 20ϕ(3z1, x2).
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The second condition has a unique solution, since its right-hand side defines a
contraction on R. Hence, since detDfn(x1, x2) �= 0, for all (x1, x2) ∈ R2, the
functions fn, n ∈ Z, are global diffeomorphisms.

The sequence of maps (50) satisfies Definition 1.2 if we take as Ei
n the coordinate

axes and we set λ1 = µ1 = log(1/3), λ2 = µ2 = log(1/20), � = 1, ε = 0. We take ES
n

to consist of just the first coordinate axis. In such a case, NS = [log 20/ log 3] = 2.
The set of manifolds graph (Vn) satisfies the condition

fn(graph (Vn)) = graph (Vn+1) for all n ∈ Z

if and and only if the functions Vn satisfy

(52) Vn+1(x1) =
1
20

Vn(3x1) + δn,0ϕ(3x1, Vn(3x1)),

where δ is the δ of Kronecker.
Furthermore, it is easy to verify by induction in n that a sequence of functions

Vn satisfying (52) also satisfies the initial condition

V0 = Ψ,

where Ψ : R → R is a C∞ function with compact support such that Ψ(0) = 0, if
and only if it is of the form

(53) Vn(x1) =

{(
1
20

)n (Ψ + 20ϕ ◦ (Id, Ψ))(3nx1), n ≥ 1,(
1
20

)n Ψ(3nx1), n ≤ 0.

We see that

(54)
dj

dxj
1

Vn(x1) =

⎧⎨
⎩

(
3j

20

)n
dj

dxj
1
(Ψ + 20ϕ ◦ (Id, Ψ))(3nx1), n ≥ 1,(

3j

20

)n
dj

dxj
1
(Ψ)(3nx1), n ≤ 0.

We make the following observations:

(i) Since V ′
n(0) =

(
3
20

)n Ψ′(0) we see that the derivative is unbounded unless
Ψ′(0) = 0. In such a case, V ′

n(0) = 0 for all n ∈ Z. This phenomenon of
boundedness of first derivatives implying tangency is an illustration of part
(d) of Theorem 1.9.

(ii) Suppose that Ψ has support not containing 0. If j ≤ NS , equivalently,
3j/20 < 1, we have that |V (j)

n (x1)| is bounded uniformly on n in a ball
around the origin. This follows by observing that for n > 0, we have
uniform boundedness in (54) because of the factor

(
3j

20

)n

. For n < 0, we
have boundedness because for n sufficiently negative, the support of Vn is
outside of the unit ball. This illustrates that we cannot expect uniqueness
by only assuming boundedness of derivatives of order less than NS .

(iii) Let j > NS . Choose ϕ ≡ 0 and Ψ such that Ψ(0) = 0, Ψ′(0) = 0 and
Ψ(j)(0) �= 0. Then, it is easy to see that |Vn|Cj is bounded for n negative
but not for n positive.

(iv) If j > NS , the only possibility of having uniform bounds for |V (j)
n (x1)| when

n > 0 is that

(55) Ψ = −20ϕ ◦ (Id, Ψ).
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We claim that this equation has a unique continuous solution which is C∞

and has compact support. Indeed, for any x ∈ R, condition (51) implies
that the right-hand side of the equation

y = −20ϕ(x, y)

is a contraction, and, hence, has a unique solution Ψ(x). Since ϕ has
compact support, Ψ(x) also has compact support. The standard implicit
function theorem ensures that Ψ is C∞. This uniquely determines the
functions Vn for all values of n. Note that for these functions |V (j)

n (x1)| is
uniformly bounded for n < 0.

This illustrates the fact that we have uniqueness under the assumption
of uniform boundedness of the derivatives of order bigger than NS .

Now we show how to embed this family in a smooth map. In the following, we
will denote by S2 the two-dimensional sphere.

Proposition 3.2. Consider the family of maps {fn}n∈Z of Example 3.1. Then
there exists a two-dimensional compact smooth manifold M2, a smooth map F :
S2 × M2 → S2 × M2, a point z0 ∈ S2 × M2 with orbit {zn = Fn(z0)}, and smooth
two-dimensional submanifolds Nn ⊂ S

2 × M2 such that
i) zn ∈ Nn, F (Nn) ⊂ Nn+1.
ii) There exists a diffeomorphism σ such that F|Nn

= σ−1 ◦ fn ◦ σ, n ∈ Z.

Proof. The construction of the map F is performed in two steps. The first one
consists of lifting the discrete family {fn} to a smooth family of maps {g̃λ}λ∈[0,1]

with g̃λ : S2 → S2. In the second step, with the aid of an auxiliary map on a
compact smooth manifold, exhibiting sufficiently rich hyperbolic dynamics — a
Smale horseshoe, for instance — the map F and the orbit are explicitly given.

First we introduce some notation. We fix S
2 to be {(x, y, z) ∈ R

3 : x2+y2+z2 =
1}, S2

+ = S2 ∩ {z > 0}, S2
− = S2 ∩ {z < 0} and E = S2 ∩ {z = 0}. Let π : S2

− → R2

be the map

(56) π(x, y, z) =
(
−x

z
,−y

z

)
.

Note that π is the projection of S
2 from the center of the sphere onto the plane

{z = −1}. We remark that π is a diffeomorphism. We denote π−1 by σ. It is clear
that

(57) σ(x1, x2) =

(
x1√

1 + x2
1 + x2

2

,
x2√

1 + x2
1 + x2

2

,
−1√

1 + x2
1 + x2

2

)
.

We also consider the antipodal map µ : S2 → S2, that is, µ(p) = −p. In this way,
σ is a chart of S

2 covering S
2
− and µ ◦ σ is a chart covering S

2
+.

We define the one-parameter family of maps gλ : R2 → R2 by

(58) gλ(x1, x2) = (ax1, bx2 + λϕ(x1, x2)),

where a = 1/3 and b = 1/20. We have that g1 = f0 and g0 = fn, n ∈ Z \ {0}. Now
we define a lift of gλ to S

2
− by

(59) g̃−λ = σ ◦ gλ ◦ π,

a lift to S2
+ by

(60) g̃+
λ = µ ◦ g̃−λ ◦ µ−1,
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and finally

g̃λ(p) =

{
g̃+

λ (p), p ∈ S
2
+,

g̃−λ (p), p ∈ S
2
−.

From (56) and (57) we have that, for (x, y, z) ∈ S2, z �= 0,

g̃λ(x, y, z) =
(

ax

ρ(x, y, z)
,
by − λzϕ(−x/z,−y/z)

ρ(x, y, z)
,

z

ρ(x, y, z)

)
,

where
ρ(x, y, z) =

√
z2 + a2x2 + (by − λzϕ(−x/z,−y/z))2.

We remark that ρ never vanishes. Since ϕ has compact support, g̃λ extends to a
C∞ map defined in the whole sphere. Indeed, if we take R = infr∈R{r : supp(ϕ) ⊂
Dr(0)}, we have that ϕ(u, v) = 0, for |(u, v)| > R. Then, for any (x, y, z) ∈ S

2 such
that |z| < 1/

√
1 + R2, we take ρ(x, y, z) =

√
z2 + a2x2 + b2y2 and

g̃λ(x, y, z) =
(

ax

ρ(x, y, z)
,

by

ρ(x, y, z)
,

z

ρ(x, y, z)

)
,

which is C∞ in a neighborhood of E and extends both g̃λ|S2
+

and g̃λ|S2
−

to S2.
Therefore, for each λ ∈ [0, 1], g̃λ : S2 → S2 is a diffeomorphism, which preserves
S

2
−, S

2
+ and E, and that, restricted to S

2
−, g̃λ is conjugated to gλ through π and σ.

Moreover, the dependence on the parameter λ is smooth.
Now, we consider any compact two-dimensional smooth manifold M2, and a

diffeomorphism h : M2 → M2 with an invariant hyperbolic subset Σ such that h|Σ
is conjugated to the Bernoulli shift with two symbols. We can, for example, take h
to be a Smale horseshoe. We can also assume that the Lyapunov exponents of this
hyperbolic set are bigger than − log 3, in order to avoid resonances. Let q0 ∈ Σ be
the point corresponding to the sequence (· · · 11011 · · · ). Clearly, there exists a C∞

function with compact support, η : M2 → [0, 1], such that η ≡ 1 in a neighborhood
of q0 and vanishes outside a compact set which does not include hn(q0), n �= 0, that
is, η(hn(q0)) = δn,0, n ∈ Z. We define F : S2 × M2 → S2 × M2 by

F (p, q) = (g̃η(q)(p), h(q)).

Clearly F satisfies the properties listed in Proposition 3.2. We consider the orbit
of the point z0 = (σ(0, 0), q0). It is clear that zn = Fn(z0) = (σ(0, 0), qn), where
qn = hn(q0). By definition, the submanifolds Nn = S2 × {qn} ∼= S2 verify that
F (Nn) = Nn+1 and F|Nn

= g̃η(qn). Finally, g̃η(qn) is conjugated to fn by σ, which
establishes the claim. �
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