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Circuits and Systems Expositions 

Analysis of Linear Networks with 
Inconsistent Initial Conditions 

Javier Tolsa and Miquel Salichs 

Abstract-This paper presents a new method to analyze time- 
invariant linear networks allowing the existence of inconsistent 
initial conditions. This method is based on the use of distributions 
and state equations. Any time-invariant linear network can be 
analyzed. The network can involve any kind of pure or controlled 
sources. Also, the transferences of energy that occur at t=O are 
determined, and the concept of connection energy is introduced. 
The algorithms are easily implemented in a computer program. 

I. INTRODUCTION 
NITIAL conditions may be inconsistent when there occurs I a change in the network topology, as when two capacitors 

with different initial voltages are connected in parallel to form 
a new network. 

The instant when a network forms a new topology will be 
t = 0. Initial conditions at 0- will be called initial conditions 
simply, while the values immediately after switching are the 
initial conditions at O+. This paper will show an efficient and 
simple method to analyze an electric network knowing the 
initial conditions at 0-. 

Voltage and current values at O+ and 0- are related by 
charge conservation in capacitive cutsets and flux conservation 
in inductive loops. Nevertheless, the application of these laws 
does not always suffice for obtaining the initial values at O+ 
from initial values at 0-: in the network of the second example 
of Section VIII, there is only one inductor, and its flux at 0- 
is different from its flux at Of .  

Consider the two capacitors again. If initial voltages are 
different, the total energy stored in capacitors at O+ is smaller 
than the energy at 0- because at t = 0, the capacitors have 
transformed part of their energy stored in their electric field 
into electric energy, which is not zero if initial conditions are 
inconsistent. This energy, which we call the connection energy, 
is analyzed in detail in this paper. 

The problem of determining initial values at O+ has been 
studied before. However, the analysis of the electric energy 
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absorbed in the network connection is a little studied subject 
that this paper treats in detail. 

Dervisoglu [3] developed an algorithm to calculate initial 
values at Of using a state variable approach. His method 
does not involve distributions directly, but introduces the Dirac 
impulse S and its derivatives in the analysis. Murakami [4] pro- 
posed another way of determining the response of a network 
with inconsistent initial conditions. However, his method does 
not allow the existence of dependent sources and pure current 
sources. His analysis is based on the state equation and the 
use of distributions, although the application of distributions 
is not as interesting as in our new formulation. Recently, Opal 
and Vlach [ 5 ]  proposed a new method to calculate initial 
values at O+ without introducing state equations. They use a 
numerical Laplace transform inversion, exact for impulses and 
its derivatives. In their algorithm, it is necessary to integrate 
a system of equations in a time interval At tending to zero. 
This fact introduces numerical errors difficult to measure. 

The problem of conservation of energy when initial con- 
ditions are inconsistent has been studied by Goknar [12]. He 
considers networks consisting of capacitors or inductors only, 
without sources. He demonstrates that in those networks, the 
difference of the energy stored in capacitors (or inductors) 
from 0- to O+ is always positive, and that this difference 
equals the energy consumed in the interval [0, +cc[ by some 
resistors properly included into the network. However, he does 
not explain why the principle of conservation of energy seems 
to be violated. 

Our approach is based on currents and voltages defined as 
distributions. The method is simple: first, equations of the 
network (Kirchhoff's laws and Ohm's law) are stated for 
currents and voltages defined as distributions. Then, we obtain 
a singular system of differential equations of distributions. This 
system is similar to classic singular systems of differential 
equations for functions, which can be written as 

d 
dt 

where the matrix T may be singular. Next, this equation is 
transformed into the following pair of equations: 

S Y ( t )  + T - Y ( t )  = E ( t )  
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Switches are not considered as elements of the network. 
Instead, we assume that the network topology for t 2 0 is 
different from the topology for t < 0. 

Our approach to the problem of energy is very different 
from [12]. Our analysis is valid for any linear time-invariant 
network, including controlled and uncontrolled sources. We 
will study the transferences of energy, and we will find out 
why the total energy stored in inductors and capacitors at 0- 
is different from that of O+. 

Fig. 1 .  Circuit with a perfect coupling. 

Z=C(-$E. (2) 

Then, state equation (1) is solved by the convolution of 
distributions. 11. PRELIMINARIES 

In our analysis, the matrix B need not be constant, although 
there always exists a state equation where B is constant. 
This is derived immediately from the theory of polynomial 
matrices and the Kronecker form exposed by Gantmacher [ 1 11, 
which Verghese [lo] uses in his analysis of singular systems. 
However, sometimes the computation of B in this formulation 
is very difficult. 

To illustrate these different choices for the matrix B, con- 
sider Fig. 1, with L2 = L3 = M23 = L (the coupling is 
perfect and the order of the circuit is one). We derive 

The concept of distribution [6] generalizes the concept of 
function. A distribution is defined as a continuous linear map 
from the space of all C" real functions with compact support 
into CG. Locally integrable functions can be considered as a 
particular case of distributions. Any distribution is infinitely 
derivable. The set of distributions is a vector space which is 
denoted by D'. 

It is always possible to consider the restriction of a distri- 
bution to an open set (similar to the restriction of a function 
to an open set). Nevertheless, not all distributions defined in 

d d an open set can be extended to the whole of R. 
dt dt  In an electrical network, distributions that define currents 
d d and voltages depend only on time. To define the values of 
d t  dt  distributions at 0-, we suppose that there exists an interval 

] - e, O[, 6 > 0 such that the restriction of those distributions 
to this interval is a continuous function such that its limit 
exists at 0-. If f is such a distribution and f is defined in 
] . -  e, +ea[, it is easy to demonstrate that f can be written in 
a unique way as follows: 

L-I2 + L-I3 = El 

L-I2 + L--I3 = -R413. 

If we choose I2 + I3 as the state variable, the state equation is 

d 1 ~ ( 4  + 13)  = -El.  L 
SO A is zero and 23 is constant. On the other hand, if I2 is 
the state variable, we obtain 

d 1 1 d  f = f - + f +  
-I2 = -El + ---El. 
d t  L R4 dt 

where f- is the restriction of f to the interval ] - E, O [  
(extended by zero to the interval ] - t, +CO[ and f+ is a 

follows immediately: given the distribution f and its restriction 
f- extended by zero, we define f+ = f - f- and verify that 
the support of f - f- is contained in io, +CO[. f+ is unique 
because f- is unique. 

Therefore, the distributions U ,  I ,  and E corresponding 
to voltages, currents, and values of independent sources, 
respectively, will be written as follows: 

Then, A is zero and B depends on d l d t .  

state equation when the matrix B is allowed to be not constant. 
Further, in this case, some physical magnitudes such as 
currents in inductors and voltages in capacitors can be chosen 
as state variables. In the Appendix, we explain an algorithm for 
determining a state equation with these characteristics, which 
is simpler and easier to program than the existing ones. 

Generally, the matrix C of (2) also depends on d / d t ,  even if 
the state equation is derived from the Kronecker form. In fact, 

Kronecker form is equal to the nilpotency index of S + AT 
minus 1. 

invariant element of first order: zero impedances and admit- 
tances, pure current and voltage sources, any controlled source, 

network can be not connected. 
We assume that Ohm's law is valid for any instant of time, 

while Kirchhoff s laws are applicable only if t 2 0. The instant 
t = 0 is included in the time interval where the network has a 
new topology. So voltage and current impulses are consistent 
in the new topology. These assumptions agree with the control 
theory approach to singular systems [lo]. 

There are simple and efficient algorithms to determine a distribution whose support is contained in [O ,  +ea[. This fact 

the degree of the polynomial matrix C(A) derived from the 

Our formulation allows the presence of any linear time- 

U = U -  + U+ (3) 

I = I - + I +  (4) 

and perfect couplings are analyzed by this method. Also, the E = E - + E +  ( 5 )  - 
where U - ,  I - ,  and E -  are voltages, currents, and values 
of independent sources in the interval ] - t, O[ and U+, I+, 
and E+ are voltages, currents, and independent sources in the 
interval [0, +CO[. Values corresponding to t = 0 are included 
in U+, I+, and E+. For example, if there are Dirac impulses 
in U ,  I ,  or E in t = 0, they are included in U+, I+, or E+. 
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Let us consider a network in the time interval ] - t, +CO[. 

At t = 0, all branches are connected to form a new network 
topology. Currents and voltages are determined by Ohm's law 
and Kirchhoff s laws. Ohm's law is assumed to be valid in the 
whole interval ] - E ,  +CO[. The equation is expressed as 

d 
-u- dt = { -&t<o} - SU(0-) 

d 
dt 
-I-  = { ;Ilt<o} - SI(O-). 

Replacing these expressions in (9), we obtain 

= E - .  

(6) 

where U and I are vectors of branch voltages and currents, 
respectively, and E is a vector whose elements correspond to 
independent sources in the network. The elements of vectors 

d d 
d t  d t  

MU + N I +  P-U +&-I  = E 

U ,  I ,  and E are distributions dependent on time. M ,  N ,  P ,  and 
Q are constant square matrices. Their dimension is equal to the 
number of network branches. Equation (6) is a very general 
expression: it allows the presence of any linear time-invariant 
element of first order in the network. 

The restriction of distributions U and I to the interval 
] - t, O[ is supposed to be defined by C' functions and the 
restriction of E by a continuous function. We also assume that 
the limits U(0-) ,  (d/dt)U(O-), (d/dt)I(O-), and E(O-) 
exist and are finite. Therefore, U ,  I ,  and E can be written 
as in (3), (4), and (5). 

Kirchhoffs laws can be applied to U+ and I+ only: 

AI+ = o 
BU+ = 0 

where A is the incidence matrix and B is the loop matrix. 
These equations are equivalent to 

I+ = B ~ I ~ , +  (7) 

where I; is the vector whose components are link currents 
and V$ is the vector of node voltages (it is not necessary to 
choose a normal tree: any tree is suitable in this formulation). 

Equation (6) is also true if all distributions are restricted 
to t < 0: 

d d 
MUlt<o + NIlt<o + P ~ U l t < o  + QzIl t<o = Elt<o. 

Equation (6) is equivalent to 

MU+ + M U -  + N I +  + N I -  + P-U+ 
d 
dt 

From the last two equations, we get the equation shown in 
(10) at the bottom of this page. Equations (7), (8), and (10) 
determine U+ and I+. So we have a system of algebraic 
and differential equations in the algebra of distributions with 
support contained in R+, that is to say, in the convolution 
algebra Vl [6], [7]. 

Iv. DETERMINATION OF THE STATE EQUATION 

We denote the following expression by K(O-): 

K(O-) = PU(0-) + QI(0-).  (11) 

From Section 111, we derive this equation: 

+[PAt I QBt]% = E+ + SK(O-). FI 
If we denote the vector whose components are V$ and I; 
by Y +  and the other matrices of the first member by S and 
T ,  we obtain 

d 
dt 

SY+ + T-Y+ = E+ + SK(0-). 

All distributions that appear in this equation are functions If the network is the polynomial det ( S + X T )  Tf 0. 

which can be extended by as distributions. If 
we denote their extension by zero by { U I ~ < ~ ) ,  { I I ~ < ~ ) .  
{(d/dt)Ult<o), {(d/dt)Ilt<ol* and {Elt<O)? we have 

M{Ult<O) + N{Ilt<o)+ p 

to In this case, it is easy to find matrices F ( X )  and D such that 

F(X) (S  + XT)D = 

where D is an invertible matrix, F (  A) is a unimodular matrix, 
and Id,, Idb are identity matrices of orders a and b. The 

the Appendix or any other method. 
= { E ~ ~ < ~ } .  (9) matrices F(X)  and D can be calculated using the algorithm in 

MU+ + N I +  + P$U+ + Q&I+ = E+ + S(PU(0-) + QI(0-)) .  
(10) 
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Then, (12) is equivalent to 

[W] [$I 
with the following change of variables: 

and the matrix F(d/dt)  has been written as 

F -  = -  (i) [:;;;I. 
So the system (12) is equivalent to 

z+=c - (E+fSK(O-)). (3 
Equation (15) is the network state equation for distributions. 

The components of X+ are the state variables. The derivatives 
which appear in (15) and (16) are in the sense of distributions. 
It is also interesting to observe that E+ can be any distribution, 
not only a continuous function. For instance, E+ can include 
any impulses ~ ( “ 1 ,  n 2 0. 

v .  SOLUTION OF THE STATE EQUATION 
The state equation is equivalent to the following system of 

convolution equations in the algebra D:: 

(S’ ld  - SA) * X+ = B - (E’ + SK(0-)) (3 
(the symbol * stands for the convolution of distributions). This 
result is due to the fact that for any distribution f, 

Also, we have 

( S ’ l d  - = h(t)etA 

where h(t)  is the Heaviside function (h( t )  = 0 if t < 0 and 
h(t) = 1 if t 2 0). Then the solution of the state equation 
exists and is unique [6], [7], and it is equal to 

X’ = (h(t)e”) * B( &) (E+ + SK(0-)). 
(17) 

VI. SOLUTION FOR INDEPENDENT 

SOURCES DEFINED AS FUNCTIONS 

Given a solvable network, let us suppose that E is defined 

1) If the matrix B does not depend on d/dt, from (17) we 
by a function E ( t )  continuous in the interval ] - E ,  +m[. 

derive 

h(t - x)e(t-”)ABE+(x) dx 

+h( t )PBK(O- ) .  

That is to say, 

I X + ( t )  = Jie(t-X)ABE+(x) dx + h(t)etABK(O-). 

Then, the initial values of state variables at O+ are 

X(O+) = B(PU(O-) + Q l ( O - ) ) .  

2) If the matrix B(d/dt)  depends on d/dt and it is written 

a) if n = 1 and E is derivable, (17) is equivalent to 
as Cy=, Bi(di/dti), 

b) the solution Vn when the function E ( t )  is n-derivable is 

n 

i=O 

This expression is easy to introduce in a computer program. 
The initial values at O+ are obtained setting t = 0 in the last 
equation: 

Voltages and currents are determined from X +  and 2’ using 
(141, (7), and (8). 
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If the matrix C ( d / d t )  is written as CEO Ci(di/dti), we have 

m 

2+( t )  = CCi{ ;E+(t)} 
i=O 

VII. ENERGY ANALYSIS 

A. Multiplication of Distributions 

Electric power is equal to the product of current and voltage. 
If currents and voltages are defined by distributions, their 
product is not possible in general (only the product of a 
distribution and a C” function is well defined). Due to this 
fact, power and energy cannot be analyzed in the space of 
distributions. 

To multiply distributions, it is necessary to introduce another 
space where multiplication is possible. Such a space is the 
space G of generalized functions defined by Colombeau [8]. 
In this formulation, a distribution is a particular case of 
generalized function. So the space 2)‘ of distributions is a 
subspace of 6 .  

The product of two generalized functions always exists in 
G, in particular if these generalized functions are distribu- 
tions. For example, the square of the Dirac impulse 6 is the 
generalized function f i 2 ,  which is not a distribution. 

Electric energy is defined as the definite integral of power, 
which is a generalized function that depends on time. The 
definite integral of a generalized function in an interval [a,  b] 
is introduced in [8] too. It is always defined and is equal to a 
generalized number (the set of generalized real numbers is an 
extension of R). Obviously, if a generalized function is defined 
by a continuous function, its definite integral as a generalized 
function coincides with its usual definite integral as a function. 

We assume that the space 2)’ of distributions is included in 
the space G of generalized functions, where power and energy 
can be analyzed correctly. 

Thus, the total electric energy consumed by the network in 
the time interval [a ,  b] is 

6 
W = 2 W i  = Pdt.  

i=l 

In the interval [a, b],  -6  < a < 0 < b, W; can be written as 

wi = 1”U2Ii dt = l b ( U :  + U J ( I ?  + I T )  d t  

b 
= U:I: dt + l b U ; I ;  dt + lbU:I;  d t  

+ lbU;I:  dt. 

Similarly, we derive 
W = [ b U f t I + d t  + [‘U-‘I-dt 

J a  Ja  

Let us define 
b 

W: = lbU:I:dt, W; = l UTI; d t  

B. Energy Analysis 

The.electric power absorbed by a network branch “i” is the 
generalized function defined by the product of branch current 
and branch voltage (we suppose that the current leaves the 
positive node and arrives at the negative node): 

Pi = UiIi. 

Wi- is the electric energy absorbed by the branch ‘5’’ in 
the interval ] a ,  O[. W: is the electric energy absorbed by 
the branch ‘‘i” in the interval [0, b[. W,C is an electric energy 
absorbed by the branch ‘‘i” due to the topology change. We 
define W,C as the connection energy of the branch “i.” Then, 
we have 

We also define 

The energy W+ is equal to zero provided that 
The electric energy Wi absorbed by a network branch “2” 

in the time interval [a,  b] is the following generalized number: u+~I+ = v;~(AB~)I,+ = 0. 

Replacing this expression in (19), we obtain 
Wi = I’p, dt. 

w+ = 0. (21) 

Therefore, W = W -  + W“. 

interval ] a ,  0[, while W+ is the electric energy absorbed in 
the time interval [0, b[. W+ is null, as we have derived. W -  

The electric power absorbed by the network is 

n n W -  is the electric energy absorbed by the network in the 
P = C P i  = C U J ;  = P I .  

i=l i=l 
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is also zero if we assume that there exists an initial network 
topology in the interval ] - E ,  0[ (in general, this topology is 
different from the final topology). However, this assumption 
is not necessary in our analysis since we only require the 
existence of a network topology for t 2 0. 

The energy W" is not zero in general. We define W" as the 
network connection energy. This electric energy is absorbed by 
the network in t = 0 as a consequence of the topology change. 

Consider the energy W: again. We can observe that the total 
energy absorbed by the branch ''i" in t = 0 is not only W:, 
but the addition of W: and the part of W,' corresponding to 
t = 0, which we will denote as W,". 

However, the part of the energy absorbed by the whole 
network in t = 0 corresponding to W+, which we denote as 
WO, is zero [this is derived immediately from (21)]. Therefore, 
the total energy absorbed by the network in t = 0 is equal to 
W". 

Let us assume that there exists an interval 10, E'[ where 
the restrictions of distributions I;' and U,' are continuous 
functions with limit at O+. Then, operating as in Section 11, 
we obtain 

U,' = U," + u,'o 
I;' = I," + I;o 

where U," and IT0 are the restriction of distributions U,' and 
I,' to the open interval 30, +CO[ extended by zero and U,", I," 
are distributions with support in (0) (this is always possible if 
the vector E of independent sources is defined by a piecewise 
C" function). From [8], we derive 

C. Determination of the Connection Energy 

To calculate the integrals of (23), we must take into account 
that U', Io ,  U - ,  and I -  are generalized functions. The 
following results are derived from the formulation given by 
Colombeau [8]. 

If a < 0 < b and if f is a continuous function in ] - t, 0[ 
and 10, E [  and the limits f ( 0 - )  and f ( 0 + )  exist, then 

On the other hand, the integral 

is a generalized number, but not a classical real number. If n = 
I, it can be considered as the product +m(f(0-) - f ( 0 - t ) ) .  

To illustrate the use of these equations, let us consider a 
circuit where the voltage in the branch "i" is the impulse IC6 
and the current in t = 0 is finite. From (22), we obtain 

We can use (24) to calculate this integral, provided that It: 
is a continuous function in ] - t, 0[ and is zero in [O, +m[. 
Therefore, 

So we have 

W t  = 0 if initial conditions are consistent since there are no 
impulses in the network and U: and I: are equal to zero. Also, 
W: = 0 if initial values at 0- are null. 

With similar assumptions, we have 

where U+0 and I+' are the restriction of distributions U+ and 
I+ to the open interval 10, +cm[ extended by zero and U', I o  
are distributions with support in (0). We derive 

W" = J:UotI- dt + S,bUptI0 dt. 
(23) 

In the analysis of the connection energy, the distributions I -  
and U -  are as essential as I+ and U+. In other formulations 
of network analysis with inconsistent initial conditions [3]-[5], 
the existence of I -  and U -  is not analyzed. This is one of the 
reasons why the energy transferences cannot be understood in 
those formulations. 

1 
2 
1 1 
2 2 

w; = k-(It:(0-) + It-(O+)) 

= IC-(Iz(O-) + 0) = -ICIi(O-). 

In an RLCM network, no derivatives of the Dirac distri- 
bution 6 appear in voltages and currents if E ( t )  is derivable 
enough. Therefore, the connection energy can be calculated 
using (24), and the generalized number that defines the con- 
nection energy is a classical real number. 

In other circuits which include impulses 6("), 7~ 2 1, the 
connection energy is calculated using (25). This integral has a 
mathematical sense as a generalized number. In fact, following 
Colombeau' s theory, the generalized number defined by (25) 
is "like an infinite real number." Similarly, the value of the 
generalized function S at 0 is a generalized number with 
a mathematical sense which we can consider as an infinite 
real number. So in networks with impulses S(n), n 2 1, 
transferences of energy are defined by generalized numbers 
which can be different from classical real numbers. 

VIII. EXAMPLES 

Example I :  In the network of Fig. 2, the switch S is closed 
for t < 0 and open for t 2 0. In the new topology, the currents 
11 and -12 must be equal. Because of this sudden change of 
currents, voltage impulses appear in the network. 
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E3 'i : ::I 1: 
0 

Fig. 2. Circuit of first example. 

a) Time-Domain Analysis with the State Equation: From (7) 
and (8) and operating as in Section 111, we obtain 

After some elementary row and column transformations, we 
obtain the following state equation: 

where 

From (26), we derive 

I,+ = h(t)  exp ( - - t )  R1+ R2 
L1+ L2 

Therefore, 

Also, from (26), 

Fig. 3. Circuit of second example. 

b) Analysis of the Network Connection Energy: The con- 
nection energy in branch 1 is 

Wf = Jd I;U:dt 
b 

L1L2 (11(0-)  + 12(o-))  

In branch 2, 

1 LlL2 
2 L1+ L2 

b 
W,C = Jd I T U i d t  = 

.(I1(0-) + 12(0-))12(0-). 

In branch 3, current and voltage are finite in t = 0. Therefore, 
w,. = 0. 

The network connection energy is 

3 
(26) wc = cw; = L1L2 ( I l ( o - )  + I2(0-)) ' .  (29) 

2 L1+ L2 i=l 

From (27) and (28), we obtain 

U: = SLi(Il(O+) - Il (O-))  = 6A4l 
U$ = SL2(Iz(O+) - 1 2 ( 0 - ) )  = 6A@2 = U:. 

That is to say, flux is conserved in the loop formed by both 
inductors: A41 = A& = A$. Then, 

1 1 
2 

W" = Wf + W,C = ZA4Il(O-) + -A$12(0-) 

1 
2 = -A4(Ii(O-)  + Ii(O+)) 

1 + p 4 ( ' 2 ( 0 + )  + Iz(0-1) 

= -LJ1(0+)2 - -L111(0-)2 

+ -L212(0+)2 - -LzI2(0-)2. 

1 1 
2 2 

1 1 
2 2 

Thus, W" is equal to the increment of the energy stored in 
the magnetic field created by both inductors. From (26), we 
derive that this increment is always 5 0. 

Example 2: Given the network of Fig. 3, let us suppose that 
we interconnect its branches in t = 0. If capacitors C, and C, 
have different initial voltages, a current impulse is produced 
in the loop formed by both capacitors. This current impulse 
is converted into a voltage impulse by the controlled voltage 

(27) 

~- 

-6- LlL2 ( I ~ ( ( ) - )  + 12(o-)). (28) source E l .  Due to this voltage impulse, the flux of inductor 
LZ is not conserved and 12(0+) # 1 2 ( O - ) .  L1+ L2 
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a )  Time-Domain Analysis with the State Equation: From 
Ohm's law and Kirchhoff s laws, we derive 

0 

- c3 U3 (0- ) 
- c 4  U4 (0 - ) 

After some row and column elementary transformations, we 
obtain the following state equation: 

L 0 J 
where the new variables are 

c3 U3 (O-)+C4 U4 (0-) 
c3 + c 4  

Iz(0-1 + (& - &) AQ3 
[$] = h(t)etd [ 

The matrix A is obtained immediately from (30). From this 
result, it is easily derived that AQ3 is equal to the charge 
increment in the capacitor C3 between the instants 0- and 
O+. 

(22),  we can derive that the network connection energy is 
b) Analysis of the Network Connection Energy: Applying 

The total connection energy of both capacitors is 
1 

W,C + W,C = -AQ3(U3(0-) - u4(0-)) 
2 
1 
2 
- (u4(0+) - u4(0-))] 

2 

= -AQ3[(U3(O-) + u3(0+)) 

1 - - - 1c3u3(o+)2 - 5C3u3(0-)' 

1 1 
2 2 

+ -c4u4(0+)2 - -C4u4(0-)' 

which is equal to the increment of the energy stored in the 
electric field created by both capacitors. 

El (7 C2 
(b) 

same circuit with an additional resistor. 
Fig. 4. Networks of third example. (a) Circuit with a C E  loop. (b) The 

Example 3: Let us consider the network of Fig. 4(a). The 
switch S is open for t < 0 and closed for t 2 0. El is a 
continuous function in ] - t, +m[. We are going to analyze 
the connection energy of this circuit. 

The capacitor current is I$ = AQij. Then, 

I; = A Q ~  = -I; 

where AQ is the charge increment of the capacitor: 

AQ = Cz(Ei(0) - uz(O-)) .  

The connection energy for each branch is 
Wf = --AQ 1 Ei(0) W,C = -AQ 1 Uz(O-). 

2 2 
So the network connection energy is 

W" = -AQ(Uz(O-) 1 - El(())) 2 
= --C,(E1(0) 1 - u2(o-))2. 

2 
Now, we are going to give a physical interpretation for the 

energy W" in this circuit. To make the example simpler, we 
suppose that El(t) is a constant function. Then, in this circuit, 
-W" is equal to the limit of the energy consumed in the 
resistor of the network of Fig. 4(b) when R3 + 0 in the 
interval [0, t]  for any t such that 0 < t < +m: It is easy to 
verify that the resistor current for t 2 0 is 

1 
13(t) = -(El - UZ(O-))exp 

R3 

Therefore, 

1 R 3 I 3 ( t ) '  dt = (El - U2(O-) )zLrexp  (2) d t  
R3 0 

It is clear that the limit of this expression when R3 -+ 0 is 
-W". 

Given any value of R3, the above expression shows that 
the energy absorbed by the resistor R3 in [0, +m[ is -Wc 
too. This result is similar to the interpretation given by Goknar 
[12], although Goknar's interpretation was stated only for L or 
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C circuits without sources. However, if &(t) is not a constant 
function, the energy consumed by R3 in [0, +CO[ is generally 
different from -W“ (for example, if El(t) is sinusoidal, the 
energy consumed by R3 is +m). On the other hand, it can be 
checked that our first interpretation of -W“ as the limit of the 
energy consumed by R3 when R3 + 0 in the finite interval 
[0, t] can be extended to not constant functions E1 ( t )  if El ( t )  
is derivable enough. 

Therefore, we think that our interpretation of -W“ is better 
than Goknar’s. It should be investigated if our hypothesis is 
true for any RLCM circuit. However, this is a difficult problem 
since it involves singular perturbations in singular systems. 

APPENDIX 
Given a pencil of square matrices S + AT, we are going to 

explain an algorithm to calculate a unimodular matrix F ( A )  
and an invertible matrix D such that (13) holds. The matrices 
F(A)  and D will be calculated using elementary row and 
column transformations. Our algorithm is purely algebraic, 
such as the algorithm given by Fettweis [9]. 

The concept of elementary row and column transformations 
of polynomial matrices can be found in [I 11. If these transfor- 
mations do not depend on A, they are said to be strict. If one 
matrix is obtained from another by elementary transformations, 
these matrices are equivalent. If all the transformations are 
strict, then they are strictly equivalent. 

The concept of the row echelon of a matrix is introduced by 
Campbell [13]. He gives this definition: a rectangular m x n 
matrix A which has rank T is said to be in row echelon form 
if A is of the form 

c r x n  [ o ( m - r ) x n ]  

where the elements c;j of C (= C,,,) satisfy the following 
conditions: 

1) cij = 0 if i > j. 
2) The first nonzero entry in each row of C is 1. 
3) If cij = 1 is the first nonzero entry of the ith column, 

then the j th column of C is the unit vector e; whose 
only nonzero entry is in the ith position. This column is 
said to be a “distinguished” column. 

For example, the following matrix is in row echelon form: 

1 3 0 - 2 0 4 0  [!!i :%E]. 
It is easy to program an algorithm to obtain the row echelon 

matrix of any matrix by elementary row transformations. We 
have the following properties: 

Any rectangular matrix B can always be row reduced to 
row echelon form by elementary row operations. That is 
to say, there always exists an invertible matrix G such 
that GB = A, where A is in row echelon form. 
The rank of the matrix B equals the rank of its row ech- 
elon form A and is equal to the number of distinguished 
columns of A. 

The algorithm to obtain (13) is shown in the following 
example. Let us consider the nonsingular polynomial matrix 
S + AT(1): 

Through strict elementary row transformations in the 
polynomial matrix S + AT, the matrix T is transformed 
in its row echelon form. The resulting matrix is 

If the rank of T equals the dimensions of S + AT(1), then 
we have finished, since the submatrix T,(;) must be equal 
to the identity matrix and the submatrices S ~ ~ ’ y S ~ ~ )  
cannot exist. 
By means of strict elementary row transformations in 
S(l) + AT(1) we derive the row echelon form of the 
submatrix 

Therefore, the pencil S(l) + XT(l)is transformed into 

The rank of the submatrix 

equals its number of rows, since det (S + AT) # 0. 
Thus, exchanging some columns in S2 + AT2we obtain 

1 Id22 J 
(the columns of the submatrix Ida2are the distinguished 

). If the submatrices of S(3)  + 
AT(3) 

Si;) + AT,(:), Si;) + AT;;) 

do not exist (due to the fact that S + ATis a unimodular 
matrix), then we have finished too. 
Though (not strict) elementary row transformations, the 
pencil S(3)  + AT(3)is transformed into 

: Id22 J 
Due to the fact that 

det (Si;’ + AT(4)ll) # 0. 
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Now we return to point 1 of this algorithm, operating 
in the submatrix Si;) + AT,(:), instead of the matrix 
S + AT.However, all the elementary transformations of 
points 1, 2, 3, and 4 must be done in the whole matrix 
~ ( 4 )  + ~ ~ ( 4 1 ,  not only in s!;) + AT,(:). These operations 
will finish in point 1 or 3 after a finite number of 
loops, since in each loop the dimensions of submatrix 
Si;) + AT,(:) is strictly smaller than the dimension of 
S + AT. In fact, the number of loops must be I rank 
(T)+l. At the end of this process we will obtain the 
matrix 

-A+AId, : 
.................... [ M :I]’ 

If all of the same elementary row transformations of 
points 1-5 are made in the identity matrix, the resulting 
matrix is a unimodular matrix F(A). The only column 
transformations in points 1-5 are the column exchanges 
of point 3. Exchanging the same columns in the identity 
matrix, we derive an invertible matrix D’. If we define 

Id, : 
D = D I  . . . . . . _ _ _ _ _ _ _ _ _ . . .  

[ M  i : b ]  
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