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Abstract- The work presented in this paper evaluates the 
statistical characteristics of regional bias and expected error 
in reconstructions of real PET data of human brain fluoro- 
deoxiglucose (FDG) studies carried out by the maximum like- 
lihood estimator (MLE) method with a robust stopping rule, and 
compares them with the results of filtered backprojection (FBP) 
reconstructions and with the method of sieves. 

The task that we have investigated is that of quantifying ra- 
dioisotope uptake in regions-of-interest (ROI’s). We first describe 
a robust methodology for the use of the MLE method with 
clinical data which contains only one adjustable parameter: the 
kernel size for a Gaussian filtering operation that determines 
h a l  resolution and expected regional error. Simulation results 
are used to establish the fundamental characteristics of the 
reconstructions obtained by our methodology, corresponding to 
the case in which the transition matrix is perfectly known. Then, 
data from 72 independent human brain FDG scans from four 
patients are used to show that the results obtained from real 
data are consistent with the simulation, although the quality 
of the data and of the transition matrix have an effect on the 
final outcome. The most important results are that, for equal 
resolution, expected pixel-by-pixel error in the MLE and sieves 
reconstructions are lower in the regions of low counts than in 
the regions of high counts, the lowest being for the MLE. In 
contrast, FBP reconstructions show an expected error that is high 
and nearly independent of the number of counts in a region. 
As a consequence, the determination of radioisotope uptake in 
ROI’s of high activity has approximately the same standard 
deviation in MLE, sieves, and FBP reconstructions, while the 
standard deviation in ROI’s of low uptake is substantially lower 
for MLE, while sieves take an intermediate value. The use of a 
well-constructed Monte Carlo transition matrix improves all the 
results with real data in a measurable way. We conclude that 
our proposed MLE methodology and the method of sieves have a 
definite advantage over FBP. There is a tradeoff between shorter 
computation time, a slight bias but lower standard deviation 
for MLE and longer computation time, a basically unbiased 
estimation but higher standard deviation for sieves. 
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I. INTRODUCTION 
INCE the introduction by Shepp and Vardi [ l ]  of the S maximum likelihood estimator (MLE) method of image 

reconstruction for positron emission tomography (PET) based 
on the expectation-maximization (EM) algorithm of Dempster 
et al. [ 2 ] ,  considerable work has been done by a number of 
research groups with the aim of understanding its character- 
istics and controlling its shortcomings. After a few years of 
work in our group, we have developed a body of knowledge 
on that subject that we feel is now ready for presentation 
as a practical methodology for the utilization of the MLE in 
the reconstruction of clinical PET data. The measurement of 
the basic statistical characteristics of a reconstruction method 
can best be made by simulation since all the parameters are 
under the control of the experimenter. The transition matrix 
of the simulated tomograph, for example, is known exactly. In 
the present work, however, we have wanted to carry out the 
assessment of the reconstructions one step further, but using 
data that have originated in real clinical measurements. In that 
case, the transition matrix is not known exactly, there may 
be variations of radioisotope uptake as a function of time 
in scans obtained consecutively from the same patient, and 
patients are anatomically different from each other. We have 
endeavored to ascertain whether, under those conditions of 
variability, statistical characteristics of reconstructed images 
from real data sets are consistent with the results of analyzing 
simulated images. 

We have concentrated our effort on the task of evaluat- 
ing radioisotope uptake in regions-of-interest (ROI’s), in a 
comparison between our MLE methodology, filtered back- 
projection (FBP) methods currently used in clinical practice, 
and with the method of sieves [3], [4]. For the reasons 
indicated above, assessment of bias and variance in uptake 
measurements has been carried out first with simulated data. 
Then, by using three different transition matrices with different 
degrees of accuracy and a components of variance model 
for statistical analysis, we have been able to show that the 
characteristics obtained from real human FDG brain data are 
consistent with the results of the simulation studies. 

This paper will be divided into a number of sections, with 
references to our or other groups’ work as appropriate. Section 
I1 defines the problem and the notation to be used in this 
paper. Section I11 follows the development of the EM form of 
the algorithm for the practical case in which corrections for 
absorption, detector gain variations, and random coincidences 
are included in the formulation, along with considerations 
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regarding the conservation of counts. A variation of the al- 
gorithm based on the successive substitution (SS) method [51, 
which allows substantial speeding up of the MLE calculations, 
will also be described in that section. Section IV briefly 
reviews the concept of feasibility and justifies the use of a 
stopping rule in the iterative process. It then introduces a 
robust stopping rule for real PET data based on likelihood 
cross validation, leading to our version of the MLE for PET 
reconstruction. Section V presents the methods, data, and 
results of a comparative bias and variance study in which 
the characteristics of the MLE and sieve images are shown 
to be superior to FBP images in a well-defined manner. In the 
Conclusion, we summarize the results obtained, discuss the 
relationship between our work and that of other groups, and 
what has been accomplished. 

11. DEFINITION OF THE PROBLEM AND NOTATION 

A.  The Tomographic Instrument 

We consider the case of a single-plane PET instrument 
with n d  detectors in a ring configuration. The number of 
projection angles possible with that system is also r i d ,  and 
we consider that each projection is divided into n b  bins or 
tubes. The total number of tubes is then ?id x nb = J .  
We will consider the results of one measurement to consist 
of one vector p with .I elements, containing the number of 
counts detected in each detector pair from true y-ray pair 
coincidences, contaminated by a certain fraction of accidental 
coincidences, which we will call “random counts” or simply 
“randoms.” We will consider the case in which the PET 
electronics can obtain a spatial estimate of the distribution 
of randoms in vector p by the method of a delayed time 
window and recording a separate randoms vector r for the 
delayed coincidences [6]. In many installations, each count 
recorded in r would be subtracted automatically from p during 
the data acquisition process, but we will consider obtaining 
both vectors independently, as can be done easily in some 
instruments. A vector c will contain multiplicative correction 
factors incorporating the effects of gamma ray absorption in 
the patient and detector gain nonuniformity. Vectors p ,  r ,  and c 
are all of dimension .I. Without loss of generality, we assume 
that the PET detector system is fixed, i.e., no wobbling is 
considered. If there is detector motion, the dimension J has to 
be modified accordingly to reflect the total number of tubes of 
the system. The image plane will be described by a centered, 
square array of 7~~ x rip pixels, represented as a vector of 
activities a with np x rip = I elements. 

Finally, we define a transition matrix f, whose elementsfJz 
correspond to the expected number of counts detected per 
unit time in tube j per unit radioisotope activity in pixel i, 
in the absence of absorber, with all detectors having uniform 
gain. This matrix will have I columns, one per pixel, and J 
rows, one per tube, and will be sparse. The sum of all the 
elements in a column will give the total number of counts 
that the system will detect per unit time for a unit activity in 
the corresponding pixel, i.e., its sensitivity. The matrix values 
that we have used for the reconstructions with simulated data 

have been obtained by the simple procedure of finding the 
area of the intersection of a circle of area equal to a pixel 
area, centered on that pixel, and the parallel-line tube that 
joins the faces of two detectors. The geometry of the CTI- 
831 Neuro-PET system has been used for the calculations. 
For the reconstruction of real PET data, we have used two 
different matrices: 1) the simple matrix indicated above, and 2 )  
a preliminary matrix calculated by Monte Carlo (MC) methods 
[7] taking into consideration actual detector system geometry, 
detector efficiency, crystal penetration, and energy resolution 
for the detector system (CTI-831). The generation of the MC 
matrix will be discussed in Appendix B, and the relationship 
between matrix characteristics and the application of measured 
gain corrections [8] will be described in Appendix A. 

B. Handling Random Coincidences 
If a tomograph can provide an estimate of the randoms 

counted during a measurement in the form of vector r de- 
scribed above, we can postulate the existence of a fictitious 
pixel somewhere in space that emits coincidence gamma 
rays into the detector pairs of the tomograph with a spatial 
probability proportional to the elements of vector T .  Then, it 
is an additional task of the MLE to estimate the activity ab 

in that background pixel, along with the rest of the pixels in 
the image plane. The vector r, or a smoothed version of it, 
becomes one more column of the matrix f since it can be 
considered to contain elements that correspond to the number 
of background counts detected during the measurement time 
by each detector pair for an arbitrary unit of activity in the 
background pixel. This column will not be sparse, and it is 
fully corrected for absorptions, gain differences, etc. since it 
is the result of a measurement. The MLE estimation of ab 

effectively subtracts the background from the reconstructed 
image in a manner statistically consistent with the rest of the 
estimation. Politte and Snyder in [9] treated the problem of 
randoms as a correction, assuming our “background pixel” to 
be a known constant, rather than a parameter to be estimated. 

C. Summaly of Notation 

summarized as follows: 
p j ,  j = 1, ..., J projection data, counts detected intube j 
r j ,  j = 1, ..., J randoms vector 
c j ,  j = 1, ..., J absorption and gain corrections vector 
ai, i = 1, ..., I activity in a pixel, the image being estimated 
a,(’”), i = 1, ..., I the activity estimated at the kth iteration 
fjz transition matrix elements, uncorrected 
f i i  = f j ; c j  transition matrix elements, corrected 
ab activity in the fictitious background pixel 
/ L j  = + + T j a b  the projection of an image estimate. 

In addition, a more concise representation of the fonvard- 
projection of an estimate a, fully corrected for absorption, gain 
variations, and random background, will be defined: 

The notation that will be used in this paper can then be 

. . -. . . 
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We establish the convention that xi f,!,a; includes the ficti- 
tious pixel term rjab in all cases without explicitly mentioning 
it. 

Two sensitivity expressions will be useful in the analysis: 1) 
the uncorrected sensitivity of the detector system for a pixel 

J 

42 f j z ,  (2) 
j=1 

and 2 )  the sensitivity corrected for absorption and gain vari- 
ations 

J 

j=1 
(3) 

111. ITERATIVE ALGORITHMS 

The estimation of pixel values for the case in which the 
elements of the corrections vector c are all unity (i.e., no 
absorption or grain corrections) and the sensitivities q2 are 
all unity was treated by Shepp and Vardi [l]. In that case, 
the matrix elements f J z  are true probabilities, and those 
authors were able to develop an iterative formula based on 
the EM algorithm [2] that is known to converge towards a 
possibly unique maximum [lo] and to preserve the number 
of counts. The case with corrections and constant randoms 
has been treated more recently by Politte and Snyder [9]. The 
introduction of attenuation corrections into the EM algorithm 
has also been treated by Hebert and Leahy [l l] .  In this 
paper, we present the derivation of the EM method with 
corrections, with additional consideration to the problem of 
random coincidences. A different formulation of the MLE 
based on the SS algorithm (4), which allows speeding up 
convergence, will also be presented. 

A.  EM Algorithm 

For the development of the EM algorithm, we will make 
use of a vector z, the "complete" data set whose elements xJz  
are the number of disintegrations from pixel i that are detected 
in tube j. The relationship between the complete data set and 
the "incomplete" set p is given by 

P, = c:1.,. (4) 
1 

We will use the EM algorithm [2] to estimate a by maximizing 
the log likelihood of z given an activity distribution a. The 
complete data set z has elements which are Poisson distributed 
with means f i zaz ,  while the detected counts or incomplete data 
set vector p has elements which are Poisson variables with 
mean E, f : la z .  We consider only the case in which the data 
p are uncorrected for attenuation, etc., i.e., they are purely 
Poisson in nature. 

The target function to be maximized is, from [ I ]  and 
introducing the requirement of conservation of counts, 

L(a)  = log P(z1u) 

where P is the conditional probability of a complete data set z 
having resulted from an activity distribution a. The Lagrange 
multiplier ,u is one more parameter to be estimated by the 
algorithm, along with the distribution a. E-step: Shepp and 
Vardi show in [ l ]  that, for Poisson random variables xJ;, the 
conditional expected value of xj; given the data elements p j  
for a current estimate of the parameter ajk) is 

A physical interpretation of this estimate can be seen by 
considering that if a tube has p j  counts and the pixel values 
are a!k) ,  the expected fraction of p i  that was emitted by the 
ith pixel is fiia{'")/C1 fila!"). 

We can then compute the expected value of the target 
function (5) given the incomplete data p and the current 
estimate a('): 

I 

E { L ( a l p , a ( k ) ) }  = [ - f i ia i  + ~ { x j ; ~ p , a ( ~ ) }  
j i  

. log( fi;.;) - E{log(zji!)}] 

Replacing from (6), we have 

log( f j iu i )  + terms independent ofa, 

M-step: We now maximize the expectation equation (8) with 
respect to the parameters a, which will lead to the new values 

Setting the partial derivatives with respect to ai and 
p equal to zero, 

and solving for a; in terms of p, we get the next estimate of 
a ( k + l ) .  

2 .  

To compute p from (9b), we set the condition 
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Placing from (10) into (1 1) and solving for p, we 
obtain the ( k  + 1) estimate of that parameter in terms of the 
image estimates at iteration ( k )  as 

j 

Interchanging the order of summation in the numerator of 
(12), it becomes evident that p = 0 for any set of values of a 
and any representation of the matrix f'. Thus, conservation of 
counts is assured for the MLE problem of PET tomography 
solved iteratively by the EM algorithm. 

The quotient in brackets in (10) can be simplified by 
multiplying the numerator and denominator by c j  so that 
the iterative step can be applied with the uncorrected matrix 
elements fji. Our MLE-EM procedure, explicitly including 
the fictitious background pixel estimation, is given by the 
following iterative formulas: 

for the image pixels and 

for the background pixel. The final results are in activity 
concentration in the pixels. It may be desired to convert that 
value to counts by multiplying the resulting values a; by 
the corresponding uncorrected sensitivity values qi of (2). 
If the measured and smoothed sample of randoms r is a 
correct representation of the actual random coincidences that 
are included in the data p ,  the value of ab goes to unity as the 
iterative procedure advances. This is rarely found in practice, 
however. 

B. Successive Substitution Method 

The idea of modifying the EM solution for accelerated 
convergence has been treated extensively in the statistics 
literature, starting from Dempster et al. [2] in 1977, to Sil- 
verman et al. [ 121 in 1990. In the medical imaging literature, 
Lewitt and Muehllehner [13] and Kaufman [14] initiated 
practical modifications of the algorithm, and Tanaka [15] 
proposed the exponentiation of the EM correction term with 
renormalization after every iteration. More recently, Rajeevan 
et al. [16] have presented an elegant method of acceleration 
by vector extrapolation of a set of preliminary corrections. 
With the development to be described below, we justify the 
exponentiation form of acceleration, and place it in a form that 

can be used with practical data sets, although, unfortunately, 
a proof of convergence is not available. 

The S S  method can be described as follows: given a series 
of equations in the form 

(15) a2 = KF({a,}), 2 = 1,. . . , I  

where F is some function, {a,} is the complete set of 
variables a;,  . . . , a ~ ,  and K is a normalization constant, then 
(15) can be transformed into a recursive relation by 

Each of the new values of a,!"') is calculated from all the 
known I values of a c )  and the complete set {a,} is updated 
at once. The constant K may be obtained by invoking some 
conservation law, for example. 

For the MLE case, we start with the log likelihood of 
obtaining a set of measurements p conditional on having a 
set of pixel activities a: 

where p is a Lagrange multiplier to be evaluated for the 
conservation of counts. 

We then maximize (17) with respect to a; by setting the 
partial derivatives equal to zero: 

p . f ! .  
-- dL(a)  - - f;; + 3 - p ~ i  = 0. (18) 

da; j j c.f;1.1 
1 

Noticing that the first summation is equal to q:, we divide 
by that quantity, move p + 1 to the right-hand side, raise the 
expression to the power n, multiply both sides by a;, and 
obtain 

r 1" 

Equation (19) has the form of (15), and we can then write 
a recursive formula by the method of (16). Multiplying the 
numerator and denominator of the summation over j by c j ,  
we obtain our MLE-SS procedure: 

1=1 
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for the image pixels and 

1" 

for the background pixel. At the end of the iterative pro- 
cedures, the estimated pixel activities can be converted to 
equivalent counts by multiplication by the corresponding q; 
of (2). Formulas (20) and (21) are similar to the EM formulas 
(13) and (14), except for the exponent n and the presence of 
the l / p  + 1 multiplier. Since both sets of iterative equations 
solve the same problem and the SS formulas hold for the case 
of 71 = 1, we conclude that ,LL has to be zero, as it was for 
the EM case. 

In practice, we find that, in order to prevent instabilities of 
theSS solution, we must estimate the parameter ,U during the 
iterative procedure of (20) and (21), rather than set it equal to 
zero from the very beginning. For that purpose, renormalizing 
the estimates a; multiplied by the corresponding correction 
factors q: at the end of each iteration to the known total number 
of detected counts is equivalent to calculating p. After three 
or four iterations, the value of p has practically gone to zero. 
The exponent n in (21) controls the speed of convergence. 
Values between 1 5 71 5 3 have been found to result in 
stable solutions for simulated data, and for 1 5 n 5 2 for 
real PET data, with a speed-up factor over the EM method 
approximately proportional to n. Some damped oscillatory 
behavior is sometimes observed in the first iterations with the 
larger values of n. The difference between images resulting 
from the SS and EM algorithms stopped according to the same 
rule is found to be insignificant. 

C. Starting Point for  the Image Estimates 

As Shepp and Vanderbei discuss in [IO], the EM-based MLE 
algorithm converges towards a possibly unique maximum, and 
the image obtained at convergence should be independent of 
the initial point. However, if the procedure is stopped before 
maximum likelihood, the initial estimate can strongly influence 
the result. We have shown in [17] that the MLE-EM iterative 
procedure uses the initial estimate as prior information (in a 
Bayesian sense) for the calculation of the results of the first 
iteration, those results as prior for the second iteration, and so 
on. In that situation, in the absence of any prior information on 
the image that is to be reconstructed, the only reasonable initial 
estimate is a uniform, featureless field. All the reconstructions 
to be shown in this paper were started with uniform pixel 
values, equal to the average activity in the image plane, as 
determined from the number of counts in the data and the 
corrected sensitivities qk. The initial estimate for the fictitious 
background pixel that we have used is a small number, like 
0.01. 

- 
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D. Calculation of Change in Likelihood 

The calculation of change in likelihood between iterations 
is considerably easier than the calculation of the actual like- 
lihood, and for many purposes it is sufficient. For the case 
of a reconstruction with a corrections vector c, it is easy to 
derive that 

with the definition of hi given in Section 11-C, which explicitly 
is a function of the corrections c j .  

I v .  FEASIBILITY AND STOPPING RULES 

We have defined feasible images as those images that, if they 
were true radioisotope distributions in a patient, could have 
given the measured data by the Poisson process that govems 
the emission tomography process [ 181. We have postulated that 
feasible images are important as possible representations of 
the unknown activity distribution because they are consistent 
with the data. Fundamentally, a feasible image is one whose 
residuals p j  - hj have the correct average magnitude, so that 
each h, could be the mean of a Poisson distribution of which 
the corresponding p j  is one realization. Not all the residuals 
should be too small or too large. The concept and the tests for 
feasibility have been discussed in depth in [ 181-[21]. We only 
describe here the main results of that work. 

Statistical hypothesis tests indicate that the MLE can be 
stopped in a rather wide range of iteration numbers within 
which the resulting images are feasible. Below and at the 
lower edge of feasibility, the images have not achieved full 
contrast. At the upper edge and above feasibility, they have 
achieved full contrast, but noise has increased sufficiently 
in the regions of high counts that the images appear not 
to be useful representations of the actual source. Iterating 
past feasibility and filtering with a Gaussian kernel brings 
the images back into feasibility, although iterating to near 
convergence of the MLE requires filtering with a kernel which 
is sufficiently large to result in loss of resolution. 

Stopping the maximization of a functional before reaching 
its maximum has been found equivalent to obtaining a maxi- 
mum of a regularized version of the original functional for a 
large family of iterative reconstruction algorithms [22], [23]. 
Images obtained in that manner can be considered similar to 
reconstructions with a smoothness constraint, whose strength 
depends on the particular iteration taken [24]. 

We have obtained feasible images by a number of methods 
[25], [26],but we will discuss here only one method that is 
simple to use and provides a point of departure for the work 
to be presented below. We call this method the MLE-PF 
(for postfiltering). It consists of iterating the MLE procedure 
past the point where the test first indicates feasibility by an 
undetermined number of iterations, to a point where the image 
is usually still feasible, but it begins to exhibit excess noise. 
Slight filtering with a two-dimensional Gaussian kernel is then 
used to reduce that noise, without departing from the region 
of feasibility. The choice of a Gaussian kernel is not arbitrary: 
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it is the only linear kernel that will not create image detail that 
did not exist before filtering [27]. 

There are two problems with the above procedure: 1) the 
region of feasibility ranges over a large number of iterations 
and there is no clear criterion for choosing a specific image 
as being the most desirable one, and 2) the hypothesis test of 
[19] fails to indicate feasibility with real data from a PET 
scanner. We have ascertained that the effect is due to the 
error with which the transition matrix f can be known for 
a real tomograph [ 181, and we have proposed a modification 
of the hypothesis test that takes into account a certain amount 
of error in the matrix f by the inclusion of one adjustable 
parameter. The modified test has turned out to be not robust 
enough for practical use, as that parameter has been found to 
depend to some extent on the image being reconstructed. We 
have turned, instead, to a likelihood cross-validation method 
of stopping the MLE procedure, which we have found to be 
adequately robust with real data. The concept and tests for 
feasibility in simulated images have allowed us to accept the 
need for stopping the MLE process and to know some of 
the characteristics that images will have at different points 
of the feasibility region. The cross-validation stopping rule 
complements the above concept and provides an answer to 
the question of which feasible images should be taken. 

Coakley [28] has recently published a procedure for stop- 
ping the MLE that is based on the statistical concept of cross 
validation. In the case of tomographic image reconstruction, 
the procedure can be described as follows. Consider that the 
projection data have been split into two halves, A and B. With 
the activity in the patient tissues in a relative stable condition, 
this can be done, for example, by taking two consecutive data 
sets, each with half the desired time interval. The MLE is used 
to reconstruct data set A and, at the end of each iteration, the 
likelihood of data set B is computed with respect to the A 
image estimate. Initially, this cross likelihood will increase, but 
at some point in the iterative process, it will stop increasing and 
actually decrease. The algorithm is stopped at the maximum 
of the cross likelihood. Then the roles of the two data sets are 
reversed and the new reconstruction process is stopped again 
at the maximum. The two resulting images are then added. At 
the maxima, the estimated images are most consistent with the 
other halves of the data in a probabilistic sense. 

From the point of view of feasibility, we can understand the 
function of the cross-validation technique by considering that, 
as the cross likelihood increases, the reconstructed image is 
acquiring features that are common to the two data sets, and 
hence to features that are more likely to be true. When it starts 
to decrease, the reconstructed image is acquiring features that 
are specific to the statistical fluctuations of one data set, and the 
procedure should be stopped. This is qualitatively similar to the 
feasibility test that requires that the residuals do not become 
too small, i.e., that the reconstructed image does not follow 
the statistical noise in the data too closely. We have found 
the cross-validation technique to work reliably with simulated 
images and with a wide range of real data sets [29]. Invariably, 
the EM algorithm stops at a point in which noise in the areas 
of high activity has begun to grow visibly, corresponding to 
images at the upper end of the feasibility region. 

From a practical point of view, the PET data that are 
available to us are not usually split in two independent halves. 
However, the split can be made by the process of “thinning.” 
The process consists of taking each count in each projection 
bin and assigning it to one or other of the new data halves, 
according to the outcome of a random process of equal 
probability for each of the two outcomes. The thinning process 
results in two new Poisson distributed data sets, with means 
that are one half of the means of the original data set. 

The above is a standard result in statistics, and it can 
be shown by considering the thinning of a discrete random 
variable, that is, a process whereby each unit of its value 
is retained with a probability p and eliminated with the 
probability 1 - p ,  and each unit is retained or eliminated 
independently of all other units. If the random variable z is 
obtained by thinning the Poisson distributed variable y with 
the parameter A, z is also a Poisson distributed variable with 
the parameter PA. By the definition of thinning. 

cc 
Z !  

Prob(z = I C )  = Prob(y = i) . ~ p“1 - p) i -k  IC!(i - I C ) !  
i = k  

Indeed, in order for z to take the value I C ,  y should take any 
value i greater than or equal to I C ,  and the thinning should retain 
IC out of i units, which is given by the binomial expressions 
above. After substituting 

Prob(y = i) = e K x A i / i !  

and simple algebraic manipulations, one can show that 

Prob(z = I C )  = e-”’(pA)‘/IC! 

which was to be proved. 
The interpretation that at the point of maximum cross 

likelihood each half image is most consistent with all the data 
is strictly true if the matrix f is known exactly, which is not 
the case with real data. With real data sets with a very large 
number of counts (50M, for example), we have found that a 
maximum may not be reached, although it is always reached in 
simulations. It appears that the errors in the matrix overshadow 
the differences between the two half images. For the more real 
common data sets (100K-1OM counts), we have found that 
the maximum is always attained, with a more accurate matrix 
resulting in somewhat earlier stopping. We have also found 
that for data sets with presubtracted background, i.e., in which 
the Poisson characteristics of the data have been disturbed, the 
stopping point occurs at later iterations. These effects will be 
discussed in Section V. 

In practice, we reconstruct real PET data by the “data 
splitting” method described above, carrying out the two partial 
reconstructions in parallel in the same computer program and 
stopping when one of the cross likelihood reaches a maximum. 
We have called that the MLE-CV (for cross validation) method 
of reconstruction, and it can be based on the EM or on the 
accelerated SS iterative formulas described above. 
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v .  BIAS AND VARIANCE ANALYSIS 

In the last few years, a number of groups have reported 
their findings on the characteristics of MLE, sieves, and 
modified MLE for PET, compared to FBP reconstructions, 
using a variety of criteria for stopping the iterations. Rosen- 
qvist et al. [30] used a substantially modified MLE algo- 
rithm proposed by Tanaka [31] to equalize the frequency 
response and increase the convergence speed. They find that 
the modified MLE offers no particular advantage in quanti- 
tation over FBP, and conclude that possible advantages of 
statistically based algorithms may come from the use of 
prior information. For the highly modified MLE algorithm, 
they decided to stop at a fixed number of iterations. Holte 
et al. [32] investigated the behavior of the MLE algorithm 
principally in cold spots. They found that noise in regions 
of low counts was lower than in regions of high counts, 
and that by iterating to a point where the high-count regions 
exhibited substantial noise, quantitation of cold spots was 
excellent. Llacer and Bajamonde [33] found similar results 
to the above two papers by analyzing real data from the 
Hoffman brain phantom. Those authors found that, in order 
to obtain unbiased ROI estimates (in regions of high and 
low counts), it was necessary to continue some arbitrary 
number of iterations past the onset of feasibility. They also 
reported a preliminary form of the main results of the current 
paper. Liow and Strother [34] camed out a very careful 
analysis of the relationship among noise, quantitation, and 
the number of iterations. For the purposes of the work re- 
ported here, their most important finding was that images 
stopped at the onset of feasibility “terminate the iteration 
prematurely, leading to significant errors.” This finding is in 
agreement with [33]. Herman and Odhner [24] have studied 
the comparative behavior of the MLE algorithm for spe- 
cific tasks. Particularly interesting from our point of view 
is their finding that at a large number of iterations, the 
“noisy” MLE images give very accurate estimates of ROI 
uptake, although point estimates are not good. We shall 
comment on their finding further below. Finally, Politte and 
Snyder showed in [9] that, for simulated data in a time- 
of-flight PET environment, the introduction of a statistically 
correct procedure to account for absorption and randoms 
yields MLE reconstructions with sieve constraints that are 
essentially unbiased. The standard deviations (expected errors 
averaged over pixels) are from two to three times lower 
than in reconstructions made by the confidence-weighted al- 
gorithm (linear method) for both white and gray matter ar- 
eas of the phantom for equal spatial resolution. Those find- 
ings are in apparent disagreement with the work reported 
here. 

In this section, we will report on a detailed comparative 
statistical study of MLE, sieves, and FBP reconstructions of 
data from simulations and from fluoro-deoxiglucose (FDG) 
human brain PET studies of four normal subjects (nontime- 
of-flight PET). Section V-A describes the data, reconstruction, 
and analysis methods, Section V-B describes the results of the 
statistical analysis for simulations, and Section V-C describes 
the results obtained with real data. 

Fig. 1 .  Phantom used for the simulations, The high-intensity areas corre- 
spond to 100% activity; the interior background was set to 25%, with no 
activity in the outside background. The labeled white patches are the six 
ROI’s chosen for the statistical analysis of reconstruction characteristics. 

A.  Data, Reconstruction, and Analysis Methods 

1 )  Data: The data for the simulations were obtained by 
generating 24 independent sets of scan data based on the 
phantom of Fig. 1. The areas of high intensity correspond to 
100% activity, the background in the interior of the phantom 
corresponds to 25%, with the exterior having no counts. 
For each of the data sets, 1.3 million (1.3M) counts were 
distributed by a random process into the different structures 
of the phantom, with means proportional to the designated 
activity. A second step distributed each of the counts by a 
multinomial probability to one of the 20 480 bins (320 angles, 
64 bins per angle) of a single image plane of the CTI-831 
tomograph. The multinomial probability was obtained from 
the “simple” transition matrix described in Section 11-A. This 
two-step simulation allows us to measure the statistical charac- 
teristics of the source distribution. No attenuation, scattering, 
or background were included in the simulation. 

For the tests with real data, scans from four subjects, SI-S4, 
scanned with a CTI-831 Neuro-PET system, have been used 
in this study. FDG data were taken from each subject in 
six sequential time intervals of 5 min, when the radioisotpe 
concentration in the brain was relatively stable, approximately 
45 min after injection. The number of counts per data set 
was between 1.1 and 1.4 million per image plane, and the 
differences between the total number of counts in the six 
consecutive time frames of each subject were within 2-3%. 
From the 15-plane data sets for each subject, three were 
selected, one in the upper, one in the middle, and one in the 
lower brain. This corresponds to 18 data sets per subject. Data 
for subjects S1  and S 2  were obtained with separate random 
coincidence files, while the randoms for S3  and S4  were 
presubtracted by the hardware. The customary absorption and 
gain corrections files were part of the data sets. 

2 )  Reconstruction Methods: Both the simulation and the real 
data sets have been reconstructed by the FBP method with 
two different filters whose frequency pass characteristics are 
shown in Fig. 2. The Shepp-Logan filter has a cutoff frequency 
that has been selected through the experience of several 
years of clinical practice with FDG brain images, and the 
Butterworth filter exhibits improved response in frequencies 
in the region between 0.15 and 0.3 of the sampling frequency 
(3.18 cycleskm), while reducing higher frequency noise. The 
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Fig. 2 .  SheppLogan and Buttetworth filter functions used in the FBP 
reconstructions reported in this paper. 

appropriateness of the parameters chosen for the Butterworth 
filter was confirmed by analyzing the power spectral density 
of a group of independent images of the same source distribu- 
tion and determining the approximate cutoff frequency above 
which there was mostly noise. Independent visual tests carried 
out by physicians at the Department of Nuclear Medicine, 
UCLA, have confirmed the appropriateness of the filter for 
the brain data used. The filtering and the backprojection (BIN) 
algorithms for the reconstructions were obtained from the 
Donner Algorithms Package [35].  It has not been the intention 
of the present work to compare the MLE-CV with the best 
that can be obtained in linear methods (like a Wiener filtering 
that has to be tailored to a specific class of images), but we 
intend it to be a comparison with the methodology currently 
used in clinical practice. SheppLogan filters are standard in 
the software packages that are shipped with the scanners. The 
Butterworth filter represents an easily implementable possible 
improvement over that standard. 

All the data sets were also reconstructed by the MLE-CV 
method.The simulated data were reconstructed with our simple 
matrix, which is exact for the reconstruction step. The patient 
data sets were reconstructed with two different matrices, as 
described in Section 11-A. Details of the matrix generation by 
MC methods are discussed in Appendix B. We consider the 
work with the MC matrix still preliminary, but the results 
obtained are already useful to illustrate the points that we 
intend to make in this paper. For all the data sets, the MLE-CV 
iterative process was stopped at the point of maximum cross 
likelihood (iterations 35-45, except as noted below). The 
resulting images were then filtered with a Gaussian kemel 
to decrease the noise in the reconstructions. The size of the 
kernels was obtained by requiring that the resolution of the 
MLE-CV reconstructions be as close to that of the FBP 
results as can be measured. The measurement of resolution 
is discussed below. The resulting kemel sizes were u = 0.75 
pixels (0.1848 cdpixel)  for the simulations and for the data 
of subjects S1 and S2, and u = 1.0 for subjects S3 and 
S4. The reconstructions for S3 and S4 always stopped at a 
substantially larger number of iterations than in the case of 
S1 and S2. Evidently, the late stopping is caused by the non- 
Poisson nature of the data with presubtracted background. The 
reconstructions for S3 and 54  were noisier and sharper than 
those of S1 and S2, and could, therefore, be filtered with a 
larger kemel. Real data reconstructions with the MC matrix 
usually stopped a few iterations earlier than those with the 
simple matrix. It appears, then, that the quality of a matrix will 

also affect the stopping point of the cross-validation procedure. 
It has been interesting to carry out the iterative process 

to a large number of iterations and postfilter with a kernel 
of sufficient size to bring the resolution to that of the FBP 
results. This is equivalent to a method of sieves in which 
the sieve and resolution kernels have the same size [3]. Note 
that reconstructions at convergence of the MLE algorithm 
are extremely sharp because there has been an attempt at 
deconvolving the point response function of the tomograph. 
The larger kernel filter brings the resolution to the FBP levels 
and controls the high noise effectively. For both the simulated 
and real data sets, we have obtained images at iteration 300 
and have filtered them with kernels of U = 1.25 pixels for the 
simulations and real data of S1 and S2, and with u = 1.50 for 
S3 and 5’4. Real data sets were reconstructed in this manner 
with the MC matrix only. 

3)  Measurement of Resolution: The definition of resolution 
when discussing linear methods of reconstruction can be given 
in a precise manner in terms of a modulation transfer function. 
The same is not true when we are dealing with a nonlinear 
method which may reconstruct different features in a different 
way, depending on this intensity, location, shape, etc. In 
addition, the images that we wish to compare will not register 
exactly (different assumptions about point response function 
variation over the image plane made for different methods of 
reconstruction). Edge sharpness, however, if it is consistent 
over a whole reconstruction, can be used to define resolution 
when comparing images obtained by different methods. The 
comparison will be meaningful if there is no artifactual ringing, 
which would imply undesirable sharpness. In order to measure 
edge sharpness under the less than optimal conditions that 
we are facing, we have tumed to an objective measurement 
that comes from the field of vision and image analysis. We 
can convolve the image of interest with a direction- and 
position-invariant kemel that yields “edgeness” [36]-[38] or 
edge strength. The kernel used for the convolution is given by 

where G is a two-dimensional Gaussian with uz = oy defining 
the “scale” at which the operator acts. What the operation does 
is measure the magnitude of the image gradient at a particular 
point [z.y] in the direction of maximum gradient. The mea- 
surement is averaged with a Gaussian weight over a region of 
dimensions given by the scale parameter. The operation is very 
robust against noise in spite of taking derivatives because of 
that averaging effect. After some preliminary experimentation, 
a scale of 2.7 pixels was chosen as yielding clean edge strength 
images by being sufficiently insensitive to image noise. An 
edge strength image corresponding to the phantom of Fig. 1 
is shown in Fig. 3. The intensity displayed is proportional to 
edge strength. The postfiltering step after our reconstructions 
effectively removes ringing, so that the results of edge strength 
are meaningful. This will be demonstrated below. 

4 )  Bias Analysis Methods: Bias has awell-defined meaning 
in statistics and, in the imaging context, could be described as 
differences between the expected value of reconstructed pixel 
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Fig. 3. Edge strength image corresponding to the phantom of Fig. 1. 
Brightness at a point is proportional to the magnitude of the gradient at that 
point in the direction of maximum gradient. 

intensities and the correct values. In the case of tomographic 
reconstructions, in which filtering of high frequencies is a 
necessity, the above definition of bias is not practical since 
all edges in the image would show bias. A more practical 
definition that we devised in [33] is that of “regional bias” 
as the difference between the expected average value in 
extended uniform regions, away from edges, and the correct 
average values for those regions. In the case of simulated 
reconstructions, we have selected six ROI’s (rl-r6) for the 
regional bias measurements. They are shown in Fig. 1 as 
labeled areas, both in the hot and in the cold regions of the 
image. The average of the 24 reconstructions for each of the 
six ROI’s can then be compared to the known phantom values 
for each method of reconstruction as a measurement of bias. 

For real data, we do not know what the correct region 
values are. As discussed in Appendix A, even the FBP 
reconstruction, in which all reasonably possible corrections 
have been incorporated by the standard procedures used in 
the clinic, a certain amount of bias can be expected due to 
the way the correction factors are obtained. However, the 
FBP reconstructions can be used as a reference for the MLE 
and sieve reconstructions for the purposes of discussing their 
results. For each of the groups of six data sets obtained from a 
given brain plane of each patient, two ROI’s have been chosen, 
one in the gray matter and one in the white matter. Examples 
of the selections are given in Fig. 4. The mean values of each 
ROI in each reconstruction and the standard deviation from 
that mean have been measured, yielding 24 sets of values 
for each method of reconstruction. In order to simplify the 
presentation, the mean values have been processed so as to 
yield a set of global numbers giving one average ROI value 
for all white matter measurements and one ROI average for all 
gray matter, for each of the methods of reconstruction. There is 
a lack of registration between the reconstructions by different 
methods at the points where some of the ROI’s are defined. 
By moving the ROI’s by one pixel in different directions, it 
has been ascertained that the regional bias measured is not 
substantially affected by that lack of registration. 

5 )  Estimation of Standard Deviation in ROI Intensity Mea- 
surements: For the case of simulated data, the procedure is 
straightforward, and the results can be plotted along with the 
estimated mean ROI intensities by means of error bars. For 
real data, however, there can be variability of radioisotope 
intensity in different structures of a human brain at different 

Fig. 4. Samples of ROI’s selected for the analysis of statistical characteristics 
of real data. One gray matter and one white matter region have been selected 
from each of the three planes of each of the four subjects used in the study. 
The images shown are the mean images from reconstructing six independent 
data sets by the FBP-Buttenvorth method. 

times during the six 5-min intervals of the independent mea- 
surements. In addition, we cannot pool all the measurements 
because of different levels of activity in different patients, 
different structures chosen as ROI’s, and different tomograph 
sensitivities at different planes (odd versus even planes in a 
multiplane tomograph). A preliminary analysis on a plane- 
by-plane and patient-by-patient basis has been carried out, 
disregarding the possible problem of temporal changes in 
activity. Then, a more sophisticated method based on analysis 
of variance has been used. The results of the two methods are 
consistent. We shall show an example of the first method, and 
report on the latter method in more detail since it takes into 
account all the variations that we encounter. 

The analysis method used is based on the “components 
of variance model” (see [39], for example). It assumes that 
the measured ROI activity data can be tabulated as a two- 
dimensional matrix with elements xij. One matrix is generated 
for each method of reconstruction and for each of major ROI 
divisions: gray and white matter. For each matrix, index i 
corresponds to an independent instance of the measurement. 
Thus, 1 5 i 5 6 for the human data. Index j ranges over 
all the different patients and image planes that enter into the 
study. The model assumes that xi j  can be represented as the 
sum of three independent, normal variables: 

(27) 

The variable U ;  depends only on the variability of measured 
activity in the ROI as a function of the time. For a large number 
of ROI’s from different planes and patients, we can consider 
it a normal random variable with a mean pa and standard 
deviation ga. Variable v ~ j  depends on the particular plane and 
patient. That component of activity will have different values, 
and if we introduce a sample large enough, one can define 
a mean and standard deviation for that variable as pb and 
q,, respectively. Finally, wij is the true brain activity whose 
standard deviation crc from some mean pc we want to evaluate. 
It is caused only by the statistical fluctuations in the activity 
measurements. 

From the data of a matrix xij, there is a staightforward 
procedure to calculate the standard deviations oar m,, and oc 
[39]. The corresponding means are of no interest. The resulting 
variances and standard deviations can be shown in a table. 

6) Pixel-by-Pixel Standard Deviation Analysis: Continuing 
the preliminary work by Llacer and Bajamonde in [33], we 
have obtained two-dimensional histograms of the number of 

xij = ui + v j  + W i j .  
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pixels that have a certain standard deviation from their mean 
versus number of counts in that pixel. The procedure is the 
following. 

For a set of independent reconstructions of a particular 
image (24realizations for simulated data, six realizations for 
each plane of each patient for real data), a mean image is 
generated. Then, a two-dimensional histogram is generated 
in which the abscissa corresponds to number of counts in a 
pixel of the mean image, and the ordinate corresponds to the 
standard deviation over the ensemble of reconstructions for 
that pixel with respect to the same pixel in the mean image. 
The gray scale corresponds to the logarithm of the number 
of pixels in each bin of the two-dimensional histogram. The 
logarithm is taken in order to be able to see the large range 
of number of pixels in the different histogram bins in a single 
display. The two-dimensional histogram shows the relationship 
between average counts in a region of the image and the 
standard deviation that can be expected in the reconstruction 
of that region, or "expected error." 

B. Results of Measurements with Simulated Data (Matrix 
Exactly Known) 

1)  Resolution Measurements and Postjiltering Kernel Size: 
Fig. 5(a) shows profiles taken vertically through the mean 
image of the 24 independent reconstructions obtained from 
the phantom of Fig. 1, and from the mean source image. FBP 
results with the Butterworth filter of Fig. 2, MLE-CV with 
postfiltering by a = 0.75, and sieves results (300 its), a = 1.25 
are shown. The profiles correspond to structures approximately 
in the center of the left half of the phantom. It is shown that 
ringing is well controlled in all cases. Fig. 5(b) shows the 
corresponding cut through the edge strength image obtained 
from the same mean images as above for the three methods 
of reconstruction. For the majority of structures, edge strength 
is very similar for all the reconstructions, although the outer 
edges are sharper for the MLE-CV than for the other methods. 
The reason for this effect is not understood at present. FBP 
results with the Shepp-Logan filter of Fig. 2 show significantly 
lower edge strength than those for the Butterworth filter. 

2) ROI Bias and Standard Deviation Resu1ts:Fig. 6(a) shows 
the average over the 24 reconstructions of mean intensity value 
over the high-activity ROI's (rl, r2, and r3) for a variety of 
reconstruction methods and for the original source images. 
The line across the graph corresponds to the true known mean 
value. Fig. 6(b) shows similar results for the low-activity 
ROI's (7-4, 7-5, and r6). The standard deviations of the mean 
intensity values have also been plotted by error bars. For each 
method of reconstruction, averaging the mean intensity values 
over regions and adding the corresponding variances yields 
the results of Table I. 

Three initial comments will be made here on the results. 
a) The MLE-CV unfiltered results and the unfiltered 

results at 300 iterations (a = 0 points in Fig. 6(a) and (b) and 
in Table I) are the important bias results for the MLE methods. 
All filtered results (including FBP) may include some edge 
effects which bring the regional results down for the high- 
intensity ROI's and up for the low-intensity ROI's, unless the 
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Fig. 5. (a) Vertical profile of a cut through the source and reconstructions 
of the phantom of Fig. I ,  approximately at the middle of the left half. The 
mean image over 24 independent data sets was first obtained and the profiles 
taken on that mean image. Good control of the edge artifact is exhibited in 
all the reconstructions. (b) Edge strength for a cut corresponding to the same 
location of (a). It shows a good match of edge strength, except at the edges, 
indicating similar resolution for the three methods of reconstruction. 

TABLE I 
GLOBAL MEAN AND STANDARD DEVIATIONS FOR 

THE DIFFERENT KINDS OF SIMULATED IMAGES 

size of the ROI's is made small compared to the size of image 
features. Since linear filtering cannot change the mean value 
of a region except by inclusion of edges, it is clear that the bias 
of a reconstruction has to be estimated in its unfiltered form. 
b) The MLE-CV, a = 0 results show some bias (2.l%and 
2.5%, high and low ROI's, respectively), while at 300iterations 
(sieves, a = 0 data), the bias has dropped considerably (0.14% 
and 1%). It appears, then, that the MLE carried to a large 
number of iterations will lead to an unbiased estimation. The 
standard deviation of the results at 300 iterations is large, 
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Fig. 6.  Mean and standard deviation results of measuring the average activity 
in ROI's of the 24 independent phantom reconstructions for a variety of 
reconstruction methods. (a) is for high-intensity ROI's, (b) is for low-intensity 
ROI's. 

however, and in any one single measurement, the value of 
having an unbiased estimator may be offset by having a large 
variability. c) The size of the filter kemel determines the 
standard deviation of a measurement. For equal resolution, 
the MLE-CV and sieves show standard deviations which 
are similar to FBP results in the high-intensity ROI's. In 
the regions of low intensity, the MLE-CV shows a lowered 
standard deviation with respect to FBP, approximately by a 
factor of 0.66. The method of sieves results in a lowering by 
approximately 0.83. 

3) Pixel-by-Pixel Expected Error Histograms: Fig. 7 shows 
pixel-by-pixel expected error histograms for the ensemble of 
24 independent reconstructions of the simulation. We show 
FBP with the Butterworth filter (top), with the MLE-CV, 
(T = 0.75 (center) and sieves, 0 = 1.25 (bottom). Each 
histogram shows three main regions: a) the rightmost "cloud" 
of pixels, corresponding to the regions of high activity in the 
images (1 00%); b) a second "cloud" to the left, corresponding 
to the background regions inside the phantom (25%); and c) 
farthest to the left, points corresponding to the background 
outside the phantom (0%). Selecting the MLE filters to yield 
approximately the same resolution as the FBP reconstruction 
has resulted in high-count regions in the three histograms 
that indicate a similar expected pixel-by-pixel error. The 
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Fig, 7. Pixel-by-pixel standard deviation versus pixel value histograms 
(scatter plots) for the mean image of the 24 independent phantom recon- 
structions for three methods of reconstruction. The gray scale corresponds to 
the logarithm of the number of pixels that fall in one bin of the histogram. 
To allow a reasonable printed reproduction, the gray scale has a substantial 
pedestal and is compressed. 

background inside region, however, is different for the three 
cases: the FBP results indicate a similar expected error to that 
of the high-count region, the MLE-CV shows a substantially 
lower expected error, while the sieves show an intermediate 
error. Finally, external background has an expected error going 
towards zero for the MLE reconstructions, while it remains 
high for the FBP reconstructions. 

The even distribution of noise in different regions in linear 
methods of tomographic reconstruction has been explained by 
Barrett and Swindell [40] and it can be expected for any linear 
filter. The MLE reconstructions exhibit a noise behavior that 
is local, i.e., it depends on the average number of counts in a 
particular region. There appears to be no analytic explanation 
for this behavior at the time of this writing. The pixel-to-pixel 
expected errors of the three methods shown are, evidently, 
the underlying cause for the ROI standard deviation values of 
Table I. 
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TABLE I1 
(a) SAMPLE OF GRAY MATTER ROI DATA FOR SlX INDEPENDENT DATA SETS, 

I (b) SAMPLE OF WHITE MATIER ROI DATA 
A SETS, AVERAGE OVERROI (COUNTS) 

AVERAGE OVER ROI ( C o m  
FOR SIX INDEPENDENT D, 

2203.6 
2097.8 
2108.0 
21 14.0 

stadev 48.9 

MLE-CV 
simple mah% 

2101.3 
2199.6 
2115.8 
2156.3 
2135.9 
2062.2 
2128.5 

47.28 
FBP - Buflerrror(b MLECV.  q l e  ma(nx 

46.39 45.95 

MLE-CV I Sieves MLE-CV 

846.8 
860.6 872.33 

837.7 837.2 
851.1 855.9 

812.6 952.3 
706.5 
768.2 788.2 

822.4 830.9 
727.9 729.4 
790.5 791.2 
730.9 724.0 
793.4 794.7 

MLECV.  M C  n“ S m .  M C rnatnx 

TABLE 111 
GLOBAL MEAN AND STANDARDDEVIATION FROM 
COMFQNENTS OF VARANCE MODEL (COUNTS) 

Reconsauction 

FBP - Butterworth 918.8 
947.3 
966.2 

Sieves, M.C. mamx 927.6 47.9 

Fig. 8. Mean images obtained from six independent data sets of a midbrain 
plane of one of the subjects for four different methods of reconstruction. The 
black line on the top left image corresponds to the cut used for analyzing 
resolution. Normalized to maximum brightness in each image. 

C. Results of Measurements with Patient Data 

1 )  Resolution Measurements: Following the procedure es- 
tablished for the simulation data, we show here that the 
choice of filters established in the simulations also results 
in resolutions for the MLE-CV and sieves that are at least 
equal to that of FBP-Butterworth reconstructions. Fig. 8 shows 
the mean images from the six independent data sets for 
subject 5’1, at a midbrain plane, for four different methods of 
reconstruction. The reconstructions with the MC matrix exhibit 
a slight degree of “fuzziness” when compared to the MLE-CV 
image obtained with the simple matrix. As shown in Appendix 
B, there is some noise in the matrix elements which we believe 
causes the imperfections noted. 

Fig. 9(a) shows a cut through the line crossing the FBP 
image of Fig. 8. The four reconstructions were normalized 
to 100% intensity at the leftmost bright area near the skull, 
just above the line. The two central bright features show 
approximately 102% intensity for the FBP and MLE-CV, 
simple matrix, while the results with the MC matrix are higher 
by approximately 16%. This is due to a bias that results from 
using the MC matrix together with the standard corrections 
vector from the CTI-83 1 tomograph, as discussed in Appendix 
A. Fig. 9(b) shows the edge strength corresponding to the 
same line as Fig. 9(a). Since edge strength is proportional to 
the intensity of a feature [37], [38], the edge strengths for the 
two central features in the MC results are also higher by at 
least the same amount as the features themselves. Then, for 
most of the features that are fully crossed by the cut line, all 
the MLE-CV and sieves results show equal or higher edge 
strength than FBP, while features that are crossed by the cut 
line at “skirts” show equal or lower edge strength. There is 
more noise in the mean images for real data than there was 

for the simulations (approximately 8.4M counts in the set of 
data versus 33M, respectively), and therefore, the edge strength 
results for real data are less consistent than in the simulation. 
We can conclude, however, that the MLE or sieve results are 
of similar sharpness as the FBP results. 

2 )  ROI Bias and Standard Deviation Results: Table II(a) and 
(b) presents a sample of ROI data obtained for one plane of 
one of the subjects, for white and gray matter brain regions, 
respectively. They correspond, specifically, to the regions of 
the middle image of Fig. 4 for patient 5’4. For each of the 
six independent data sets, they show the measured means over 
the ROI for the different reconstruction methods. The last two 
lines of the tables contain the means over the corresponding 
columns and the standard deviation for the six measurements. 
There is a total of 12 of those tables pairs, and in order to 
simplify the presentation, we have pooled all the white matter 
data and the gray matter data into the global averages shown 
in Table 111. All the MLE and sieve statistical results for real 
data have been evaluated with filtered images for consistency 
in comparisons with FBP, which is, of course filtered. 

It is found that the FBP method and the MLE-CV using 
the simple matrix show very good agreement in the mean 
values of both white and gray matter regions. Both methods 
of reconstruction assume perfect detectors with a uniform 
response across the width of a tube joining a pair of detectors. 
As explained in Appendix A, the gain corrections applied 
to the reconstruction process as part of the multiplicative 
vector c (Section 11-A) are applied to both reconstructions 
similarly, and both can be expected to have a small similar 
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Fig. 9. (a) Cut through the images of Fig. 8 at the level indicated by the 

bias, which we cannot measure. The results obtained with the 
full MC matrix are substantially different from the FBP results, 
particularly for the gray matter regions. This is expected by 
the fact that the MC matrix includes the true response of 
the detector system, which is also included in the vector c. 
Thus, geometric corrections are applied twice, resulting in the 
observed bias. It has not been found possible, a posteriori, to 
modify the corrections vector to remove its contribution to the 
bias. For the clinical use of an MC matrix, corrections will 
have to be measured differently (Appendix A). 

For the ROI standard deviation measurements, Table I11 
shows the results of analyzing the measured data by the 
method of components of the variance. The value ac of the 
model described in Section V A-5) is the one we are interested 
in since it corresponds to the statistical effects of reconstruction 
methods. The values of aa are small (approximately 20 and 
10 for gray and white matter, respectively), indicating that the 
effects due to temporal variation in the radioisotope activity 
in the patient are small. The values of ab are large and reflect 
the variability between patients and planes, but are of no 
concem here. The global values of a<, shown in Table I11 
in the "stadev" columns, are in basic agreement with those 
found in the phantom measurements: the standard errors in 
measuring ROI intensity in gray matter are very similar for all 
the reconstruction methods studied, with the best values being 
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Fig. IO.  Pixel-by-pixel standard deviation versus pixel value histograms for 
the mean image of six independent data sets for the images of Fig. 8. 

obtained with the MC matrix (MLE-CV and sieves). For white 
matter, the MLE methods show a substantial improvement in 
expected error, with the MLE-CV MC being the best and 
sieves MC being an intermediate with respect to FBP. 

3) Pixel-to-Pixel Standard Deviation Results: Fig. 10 shows 
two-dimensional expected error histograms for patient data, 
similar to those of Fig. 7. We show FBP-Butterworth, 
MLE-CV (a = 0.75) with the simple matrix, with the full 
MC matrix, and the sieve method, also with the MC matrix. 
The histograms shown correspond to the ensemble of six 
reconstructions for the same patient and plane as in Fig. 8. The 
results obtained in all cases are very similar to those of the 
simulations, and the comments made in Section V-B.3) also 
apply here. One should add the observation that the histograms 
for MLE-CV with the simple matrix and those for the MC 
matrix are nearly identical. 

4 )  Effect of Background Subtraction Methods: The obser- 
vation that the cross-validation stopping rule stops later for 
real data sets in which the background has been presubtracted 
raises the question of whether images reconstructed from 
data sets with separate random background data yield better 
images than those with presubtracted background. In order to 
answer this question, the data sets for subject SI have been 
reprocessed by subtracting the random background (setting 
negative numbers to zero) and reconstructing accordingly. 
The results obtained show that regional bias and pixel-to- 
pixel standard deviation at the new cross-validation stopping 
point are practically indistinguishable from the results obtained 
originally if a somewhat larger filter kemel is used. The only 
conclusion that one can extract from this experiment is that, 
in cases with relatively low background (on the order of 5% 
or less), reconstruction from data in which the background 
data were obtained separately from the scan data allows for a 
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more “elegantly” defined stopping point, but the results are not 
significantly different from reconstructions with presubtracted 
background. This may not be the case with data sets in which 
the background fraction is substantially higher. 

5)  Effect of Speeding Up the Reconstruction by the Succes- 
sive Substitutions Method: The reconstructions reported above 
have been carried out by using the MLE iterative formulas 
based on the EM algorithm, (13) and (14). The data sets 
for subject 5’1 have also been processed by the faster iter- 
ative formulas derived from the successive substitutions (SS) 
algorithm, (20) and (21), with the simple matrix. Although 
in simulation experiments a speed-up parameter of 3.0 could 
be used with no apparent instability, we have found that, 
with real data, we should stay below n = 2.0 for reliably 
stable solutions. This results in reconstructions of the 5’1 data 
sets that are visually indistinguishable from those of the EM 
algorithm. ROI mean value results differ from the EM case 
usually in the third digit, while the expected error histograms 
are not significantly different from those of the EM. The 
SS results have been obtained in approximately one half the 
number of iterations needed by the EM method. 

VI. DISCUSSION AND CONCLUSIONS 

In this section, we will summarize the findings of Section V, 
compare our results with those of other workers, and present 
the conclusions from our study. 

From simulated data (matrix known exactly), we have 
observed the following. 

I )  The MLE procedure appears to lead to an unbiased 
estimator for high iteration numbers. 

2) Stopping according to the cross-validation rule leads to 
some bias (2-2.5% for the example shown). 

3) The expected error in a single measurement of an ROI 
average is substantially higher for the unbiased estimator than 
for the MLE-CV case, both for high- and low-intensity ROI’s. 

4) Filtering the unbiased estimator (leading to the method 
of sieves) or the MLE-CV reduces the expected error in a 
single measurement, but depending on the size of the ROI, 
the underlying anatomical structures, and the size of the filter 
kemel, it may lead to bias. 

5) For equal resolution, the filtered MLE-CV and sieves 
pixel-by-pixel standard deviation and the corresponding stan- 
dard deviation in the estimation of an ROI mean are very 
similar to those of the FBP methods in regions of high 
intensity. For regions of low intensity, the filtered MLE-CV 
shows substantially lower standard deviation than the FBP, 
by a factor of approximately 0.66, while the sieves method is 
lower by approximately 0.83. 

For real data, the following is observed. 
1) The FBP results can be expected to have some rela- 

tively small unspecified bias due to the way the correction 
measurements are carried out. 

2) In MLE reconstructions, bias will be dependent on the 
characteristics of the transition matrix and of the quality of the 
corrections vector. For the filtered MLE-CV method using our 
simple matrix, global ROI means show small differences with 
respect to the FBP data (at most 3% in white matter). The use 

of an MC matrix along with a corrections vector tailored to the 
FBP method of reconstruction leads to substantial differences 
with the FBP results (up to 6 7 % ) .  

3) The pixel-by-pixel and corresponding ROI standard de- 
viations in gray matter for the MLE-CV simple matrix recon- 
structions are similar to the FBP results. The use of the MC 
matrix for both the MLE-CV and sieves reconstructions yields 
significantly smaller standard deviation values. 

4) The standard deviation results in white matter follow the 
same pattern as the simulated results. The improvement in 
ROI standard deviation in the MLE-CV simple matrix case 
is by a factor of 0.7, dropping to 0.67 for the MLE-CV MC 
matrix. The improvement for the sieves and the modified MC 
is approximately 0.77. 

5 )  A biased MLE reconstruction by having used an inappro- 
priate corrections vector c is an effect that is decoupled from 
the ROI or pixel-by-pixel standard deviation results. The latter 
are affected by the accuracy of the matrix and the statistical 
characteristics of the data which, in turn affect the stopping 
point of the MLE-CV method. 

For the quantitation of ROI uptake in regions of high 
uptake, our results coincide with those of Rosenqvist et al. 
[30], who found that there is no significant advantage in 
using their highly modified MLE algorithm with respect to 
FBP. Our results indicate a possible exception when using 
an MC matrix well matched to the tomograph. The results 
of Hoke et al. [32], Llacer and Bajamonde [33], Liow and 
Strother [34], and Herman and Odhner [24] are all verified 
by our work. We find our results difficult to reconcile with 
those of Politte and Snyder [9]. For time-of-flight (TOF) 
PET, at equal resolution, those authors have found a very 
strong improvement in expected error with the sieves method 
with respect to their linear method of reconstruction. The 
improvement is for both gray and white matter regions in 
a simulation. The most important difference between their 
work and ours is in the nature of the problem. The TOF-PET 
problem is considerably better posed mathematically than the 
standard PET [41]. The spectrum of eigenvalues for TOF-PET 
is considerably more uniform than that of the standard PET. 
It is not clear, though, how this difference could account for 
the differences in reconstruction statistics between their results 
and ours. 

In conclusion, it appears that our work, together with the 
work of the above referenced workers, clarifies the issue of 
what are the characteristics of MLE images that can make 
that method of reconstruction superior to FBP: when properly 
handled, MLE images provide measurably better quantitation 
in regions of low intensity in the presence of regions of 
high intensity in the same image. One would also expect that 
those characteristics would lead to better lesion detectability in 
regions of low uptake. A clinical ROC study is currently being 
conducted to test that idea. It is felt that a positive outcome 
of such studies would help establish the MLE methods as the 
preferred methodology for PET reconstructions. 

In choosing between the MLE-CV and a sieves method, 
one is faced with a tradeoff between the shorter computation 
times for the MLE-CV (even when reconstructing split data 
sets concurrently), a basic slight bias and a low standard 
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deviation in ROI measurements, and longer computation times, 
a basically unbiased estimator, and higher standard deviation 
for the sieves method. It should be mentioned that the method 
of sieves used in the current work is only for the case of the 
sieve and resolution kernels having the same size (a, = cr). 
In earlier work, Veklerov and Llacer [26] examined the range 
of values for the two kernels leading to feasible images. It was 
determined that the condition a, M aT was necessary in order 
to obtain images at the upper end of the feasibility range, with 
good control of the edge artifact [3], just as the MLE-CV 
method does. For that reason, we consider our current choice 
of parameters for the sieve method appropriate. 

With the availability of cost-effective computing power, we 
feel that the MLE method of reconstruction, particularly the 
MLE-CV, is now ready to be tested in the PET clinic. We 
will start with the “simple” matrix and progress to using MC 
matrices for the direct and the cross planes of a multiplane 
tomograph after sufficient preparation and validation work. 
The principal author of this paper has made available a 
package of programs in the C language for the generation of 
the simple matrix, simulation, and reconstruction of simulated 
and real PET data. 

VII. APPENDIX A 
RELATIONSHIP BETWEEN TOMOGRAPH CALIBRATIONS 

AND TRANSITION MATRIX GENERATION 

The process of tomograph calibration, which is carried out 
frequently in a PET installation, is done, in concept, according 
to the following procedure. A flat source that can rotate 
about the center of the tomograph, as seen in Fig. 11, is 
placed at some angle (0 = 0 for the example in the figure) 
with respect to the z and y coordinate frame shown. The 
response of pairs of detectors that form tubes perpendicular 
to the source is recorded for a fixed period of time. Then, 
the source is successively rotated so that all the detector pairs 
are recorded. This procedure would be impractical, and only 
a relatively small number of equiangular source positions is 
chosen, with appropriate geometrical corrections carried out 
on the measured data [8]. Using the example of the 0 = 0 
angle of Fig. 10, we observe that the results of a measurement 
mj on the j th  tube consist of the product of two components: 

where Ij is the integral of the response of the j th tube to 
all the pixels in the source that are within the field of view 
of the corresponding detector pair, assuming uniform detector 
crystals and photomultiplier tubes, and gj is a factor on the 
order of 1.0 that corresponds to the actual relative sensitivity 
of the particular pair of detectors involved. Assuming no 
absorption, the multiplicative correction factors cj used in the 
reconstruction are calculated by taking the mean f i  over all 
the measured mj’s and defining 

Let us now consider the set of transition matrix elements fJL 
that correspond to the tubes and pixels of the above example. 

I I I I I I I 1  :I I I I I I 

I I I I I I  I I I I I  I 
Source 

\ I  I I I l l  I I I I  I I  I I  I /  

Detector tubes 

Fig. 1 1. Schematic description of the method used to obtain detector gain 
corrections in a tomograph. 

When the corrections factors c j  are used to correct the matrix 
elements as in (l), complete rows of the matrix are corrected, 
including not only the set of pixels at y = 0, but also sets of 
pixels for those same tubes corresponding to source positions 
at y # 0. The correction would be good if the measurements 
mj were independent of the y coordinate of the flat source. A 
linear or nonlinear reconstruction method that assumes perfect 
detectors (FBP or MLE with our “simple” matrix) can be 
expected to have some bias due to that error in the calibration. 
Initial simulations, described in Appendix B, show that these 
effects are not negligible. 

If a transition matrix could be calculated perfectly by taking 
into consideration the actual geometry, detector response, 
detector Compton scattering, positron range, etc., the matrix 
elements fj; would already include the correct values I j ,  and 
only the elements gj  should enter into the correction factors cj. 

In the specific case of the real data reconstructions described 
in this paper, the available correction factors from the CTI- 
831 tomograph contain the values I ) ,  and application of the 
corrections together with an MC calculated matrix can be 
expected to lead to substantial bias, as has been observed. 

For reconstruction by FBP, the scan data resulting from 
a patient measurement are partially rebinned, following a 
prescription detailed in [8], for the purpose of compensating 
for gamma-ray crystal penetration in peripheral tubes. This 
rebinning should also be done when reconstructing with our 
simple matrix. This would result, however, in changing the 
Poisson nature of the data, and we have chosen not to carry it 
out. The effect is to obtain a slightly distorted, smaller image. 
When using the MC matrix, rebinning is not necessary. 

VIII. APPENDIX B 
MC MATRIX CALCULATION 

Reference [7] discusses the generation of an MC matrix for 
PET and its application to reconstruction of real data from 
the ECAT-I11 tomograph. For the purpose of providing a more 
accurate matrix than the “simple” matrix used in the present 
paper, we have adapted the methodology described in [7] to 
the CTI-831 tomograph. The process is carried out in three 
parts. 1) A Monte Carlo method is used to obtain detector 
responses for positron emission sources located in a series 
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Fig. 12. Monte Carlo calculated response of the detector system of Fig. 11 
to a flat source at y = 0 and at the y = 11.82 cm edge of the image plane. 
The lack of smoothness indicates noise in the process of obtaining the matrix. 

of points forming a raster in a quadrant of the image plane, 
only for tubes that are perpendicular to the raster lines and 
for those corresponding to the next projection angle. 2) The 
obtained responses are fitted to a piecewise linear function, 
convolved with a Gaussian. The parametrized responses are 
smoothed versions of the discrete response results of the first 
part. 3) Finally, the matrix is calculated by suitable rotations 
of the available parametrized functions. For the MC part of the 
matrix generation, we have used 50 0oO gamma pairs from a 
single source point directed into a fixed solid angle that will 
always cover the detector element pairs, independent of the 
position of the emitting point source. Positron range for “F 
(in FDG) was used in the calculations, although the magnitude 
of this effect is negligible for the low-energy positrons emitted 
by that radioisotope. After the complete generation, some tests 
have been carried out to establish the correctness of the matrix. 
Fig. 12 shows the calculated response of the detector pairs of 
Fig. 11 to a flat source along the z axis for both the cases 
of y = 0 and y = 11.82 cm (at the top of the image plane). 
Except for some irregularities that we believe are due to noise 
in the MC phase of the calculations and, possibly, to errors in 
the fitting functions process, the shape and magnitude of the 
response variations for the y = 0 case are almost identical to 
the responses for the same situation presented by Hoffman 
et al. in [8, Fig. 21 from tomograph measurements. From 
the curve at y = 11.82 cm, we see that one can expect a 
y dependence in the measurements of system response, as 
discussed in Appendix A. 
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