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Multiresolution-Based Image Fusion
with Additive Wavelet Decomposition

Jorge Nifiez, Xavier Otazu, Octavi Fors, Albert Prades, Vicétah, and Roran Arbiol

Abstract—The standard data fusion methods may not be  One possible solution comes from the field of data fusion
satisfactory to merge a high-resolution panchromatic image and [1]. A number of methods have been proposed for merg-
a low-resolution multispectral image because they can distort the ing panchromatic and multispectral data [2], [3]. The most

spectral characteristics of the multispectral data. In this paper, d the intensitv-h turation t f
we developed a technique, based on multiresolution wavelet COMMon Procedures are e intensity=nue-saturation transiorm

decomposition, for the merging and data fusion of such im- based methods (IHS and LHS mergers) [4], [5]. However,
ages. The method presented here consists of adding the wavelethe IHS and LHS methods produce spectral degradation. This
coefficients of the high-resolution image to the multispectral (low- js particularly crucial in remote sensing if the images to
resolution) data. We have studied several possibilities concluding merge were not taken at the same time. In the last few

that the method which produces the best results consists in It uti \vsis has b f th t
adding the high order coefficients of the wavelet transform of years, muitiresolution-analysiS nas Decome one oi ine mos

the panchromatic image to the intensity component (defined as promising methods for the the analysis of images in remote
L = £+5E8) of the multispectral image. The method is, thus, an sensing [6]. Recently, several authors ([7]-{13]) proposed a
improvement on standard intensity-hue-saturation (IHS or LHS)  new approach to image merging that uses a multiresolution
mergers. We used the &'trous” algorithm which allows to use @ 55ysis procedure based upon the discrete two-dimensional
dyadic wavelet to merge nondyadic data in a simple and efficient . L

scheme. We used the method to merge SPOT and LANDSAT (2-D) wavelet transform. We also ca_rrled ou_t a_prellr_nln{:lry
(TM) images. The technique presented is clearly better than the Study of the wavelet-based method in combination with im-

IHS and LHS mergers in preserving both spectral and spatial age reconstruction [14]. The wavelet approach preserves the

information. spectral characteristics of the multispectral image better than
the standard IHS or LHS methods.
I. INTRODUCTION Wavelet-based image merging can be performed in two

HERE ARE several situations that simultaneously requiVéayS: 1).by replacing some wavel_et coeffigignts of the mglti-
high spatial and high spectral resolution in a Sing@pectral image by the corresponding coefficients of the high-

image. This is particularly important in remote sensing. IfESolution image and 2) by adding high-resolution coefficients

other cases, such as astronomy, high spatial resolution éﬂ&he multispectral data. Here, we further explore the wavelet

high signal-to-noise ratio (SNR) may be required. Howevetrr,anSform image merging technique with special attention to
“additive” merger. To decompose the data into wavelet

in most cases, instruments are not capable of providing sUbf i , )
data either by design or because of observational constraiffefficients, we u§e“th-e d|screEe wavelet transform algorithm
For example, in remote sensing, SPOT PAN satellite provid§80Wn as 4 trous” (‘with holes”). The method is applied to
high-resolution (10 m pixels) panchromatic data, while LANDT€r9€ SPOT and LANDSAT (TM) images.

SAT TM satellite data provides low-resolution (30 m pixels)

m_ultispectral images._ln astronomy, the spaceborne telesco_pes Il. STANDARD MERGING METHODS

give high-resolution images but the photons are expensive _
to collect, making long-exposure multispectral observations 1€ Standard merging methods are based on the frans-
unusual. From the ground, on the other hand, the resolutifimation of the RGB multispectral channels into the IHS
is poor but the photons are cheap to collect and the SNR &gmponents [15]. Intensity refers to the total color brightness,

be increased. Besides, it is easy to obtain long-exposure (Bu{e refers to the dominant or average wavelength contributing
low-resolution) multispectral data from the ground. to a color and Saturation refers to the purity of a color relative

to gray. In the standard methods, the usual steps to perform
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multispectral image, the different atmospheric and illumethods. When the intensity component is defined as L it is
mination conditions, etc. This is usually performed bwlso called Lightness.
conventional histogram matching between the panchro-
matic image and the intensity component of the IHS
representation. Specifically, after computing the his-
togram of both the panchromatic image and the Intensity Multiresolution analysis based on the wavelet theory permits
component of the multispectral, the histogram of thée introduction of the concepts of details between successive
Intensity (of the multispectral) is used as reference §vels of scale or resolution.
which we match the histogram of the panchromatic Wavelet decomposition is increasingly being used for the
image. processing of images [17]-[24]. The method is based on the
4) Replace the intensity component by the panchromafi€composition of the image into multiple channels based on
image and perform the inverse transformation to O@heirlocal frequency content. The wavelet transform prOVidesa

tain the merged RGB image with merged panchromatft@mework to decompose images into a number of new images,
information. each one of them with a different degree of resolution. While

gge Fourier transform gives an idea of the frequency content in
are scaled over the range 0,255, our image, the wavelet representation is an intermediate rep-
The result of the standaré merging methods depends resentation between the Fourier and the spatial representation,

the IHS system used. Many IHS transformation algorithn@d it can provide good localization in both frequency and
have been developed for converting the RGB values. Whi{@ac€ domains. The wavelet transform of a distributfot)

the complexity of the models varies, they produce simil&2n Pe expressed as

I1l. WAVELET DECOMPOSITION

Throughout this paper we asume that all R, G, and B valu

values for hue and saturation. However, the algorithms differ .t =0
in the method used in calculating the intensity component of W(f)(a,b) =|a| 2 / f(t)zp(—)dt 1)
the transformation. The most common intensity definitions are —o0 @

I = max(R, G, B) wherea andb are scaling and translational parameters, respec-

R+G+ B tively. Each base function (=) is a scaled and translated
L= 5 version of a functiomy) called Mother Wavelet These base
. -y _
I max(R, G, B) + min(R, G, B) functions aref 4 (*5*) = 0.
= 5 .

We call the systems based on these definitions IHS, LH’%‘, The "a trous” Algorithm

and L’HS color systems, respectively. The first system (basedThe discrete approach of the wavelet transform can be done
on 1), also known as the Smith’s hexcone [15], ignores twaith several different algorithms. However, not all algorithms
of the components to compute the intensity and will produgse well suited for all the problems. The popular Mallat's
equal intensity for a pure color (e.g. 255, 0, 0) and for a whigorithm [25] uses an orthonormal basis, but the transform is
pixel (255, 255, 255). However, the second system (base@t shift-invariant, which can be a problem in signal analysis,
on L), known as Smith’s triangle model [15], would producattern recognition or, as in our case, data fusion [22].
intensities of 255 for a white pixel but only 85 for a pure color. To obtain a shift-invariant discrete wavelet decomposition
The third system (based or)L[16] would again produce a for images, we follow Starck and Murtagh [26], and we use
result of 255 for the white pixel, and 125 for a pure color. the discrete wavelet transform known aa trous” (*with
Furthermore, the transformation algorithm based on the thii@les”) algorithm [27] to decompose the image into wavelet
definition (L') shows bizarre behavior in some cases. F@®anes. Given an image we construct the sequence of
example, if we have RGB values of (100, 150, 200), transfor@®proximations:
them to HS, add ten counts (over a maximum of 255) to the
L’ component and reverse the transformation, the resulting Fi(p) =p1, Fa(p1) =p2, Fa(p2) = ps,
RGB values are (115, 160, 205), i.e., the color with the lowest ) i
value (R) is the one which has largest increment, while the 10, construct the sequence, this algorithm performs suc-
component with highest value (B) has the lowest incremeff€ssive convolutlons_ with a f|_|ter obtained from an auxmqry
On the other hand, if we transform the same RGB valugén_cnon named SC"?"'”Q functlon_. We use a scaling f”T‘C“O”
(100, 150, 200) to the LHS sytem and again add 10 coung!Ch has aB; cubic spllne pro_ﬂle. The use of B cubic
to the L component and reverse the transformation, the RGB!INE 1eads to a convolution with a mask 0H&5:

values would be (107, 160, 213). In this case, the increment 1 4 6 4 1

of ten counts in the intensity is distributed proportionally to L[4 16 24 16 4

the values of the R, G, and B components. . 576 6 24 36 24 6 )
Thus,_ in thl$ paper, we prefer the deflnltldin: = Nl 16 24 16 4

for the intensity component, although we will also use the 1 4 6 4 1

definitions | and L, in the first example of Section V, to
compare the results. The IHS and LHS methods will be The wavelet planes are computed as the differences between
also used to compare our results with the standard mergimgp consecutive approximations;—; and p;. Letting w; =
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pi—1—p: ({ =1,...,n), in which p, = p, we can write the  5) Replace the first wavelet planes of the R, G and B

reconstruction formula decompositions by the equivalent planes of the panchro-
n matic decomposition.
p=> W +p,. (3)  6) Perform the inverse wavelet transform.
=1 n
In this representation, the imagps (! = 0, ..., n) are ver- Ruew = »_Wp + R,
sions of the original image at increasing scales (decreasing =1
resolution levels)w; (I = 1,...,n) are the multiresolution n
wavelet planes, ang, is a residual image. In our case, we Grew = ZWPI + G
are using a dyadic decomposition scheme. Thus, the original 121
imagepo has double resolution thagm , the ima double
g€po ary gep: Bnew — Z Wp, + Br-

resolution thanp,, and so on. If the resolution of imags,
is, for example, 10 m, the resolution ¢f would be 20 m,
the resolution ofp, would be 40 m, etc. Note, however, thaB. Additive Method
aII_ the consecutive approximations (and _wavelet plane_s)_ In1Another possibility is to add the wavelet planes of the high-
this process have the same number of pixels as the origina L . : :
. o » = resolution image directly to the multispectral image. The steps
image. This is a consequence of the fact that thetrbus f this “additive” h he followi
algorithm is a nonorthogonal oversampled transform [22] Thcl)st S agjdmve method are the fo owing. .

) 1) Adding to theRG B Components:The first possibility

Is a rest.rict?on on the use of this particulgr wavelet approaféll is to add the high-resolution information directly to the R
for applications such as image compression. G, and B bands. The steps of the method are as follows.

1) Register the low-resolution multispectral image and per-
i ) form histogram matching between the panchromatic
The wavelet merger method is based on the fact that, in the image and the intensity component of the color image

wavelet decomposition, the images (I = 0,...,n) are the as before. LePAN be the panchromatic image ai
successive versions of the original image at increasing scales. ¢ andB be the three bands of the multispectral image.
Thus, the first wavelet planes of the high-resolution panchro-, Décompose only the panchromatic high-resolution im-

matic image have spatial information that is not present in the age ton wavelet planes (resolution levels). Usually
multispectral image. The wavelet-based image merging canbe ,."_ 5 o 3.
carried out in two ways, as follows.

=1

IV. WAVELET IMAGE FUSION METHOD

PAN =" wp,; + PAN,.
A. Substitution Method —

In the wavelet substitution method, some of the wavelet 3) Add the wavelet planes of the panchromatic decompo-
planes of the multispectral image are substituted by the planes sition to the R, G, and B bands of the multispectral

corresponding to the panchromatic image as follows. image.
1) Register, as in Section Il, the low-resolution multi- n
spectral image to the same size as the high-resolution Riew = ZWPI +R
panchromatic image in order to be superimposed. =1

2) Perform histogram matching between the panchromatic n
image and the intensity component of the color image Gnew = ZWPI +G
as before. LePAN be the panchromatic image ait] =1

G, andB be the three bands of the multispectral image.
3) Decompose the R, G, and B bands of the multispectral

Bnew = ZWPI + B.
image ton wavelet planes (resolution levels). Usually =t

n = 2 or 3. We call this method AWRGB.
n 2) Adding to the Intensity Componen&nother possibil-
R= Z wr; + R ity, which we consider the best approach, is to incorporate the
=1 high-resolution information directly to the intensity component
i of the multispectral image. We carried out a preliminary study
G= ZWGI + Gy of this approach [28], [29]. The steps of the method are the
=t following.
B = ZWBI +B,. Steps 1) and 2) are as before. Thus
=1 "
4) Decompose the panchromatic high-resolution image ac- PAN = ZWPI + PAN,..
cordingly. =1
" 3) Transform the RGB components of the multispectral
PAN = ZWPI + PAN,.. image into the IHS representation. LBt H and S, be the
=1 three componets of the multispectral image.
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4) Add the wavelet planes of the panchromatic decomposiansform on a high-resolution image using an image pyramid

tion to the L. component. similar to the Laplace pyramid [30], replace then the first
n signal approximation which has half the initial resolution with
Loy = ZWPI +L images from a multispectral data set, and perform the inverse

wavelet transform. Since thea“frous” algorithm also uses a
dyadic decomposition (but without the decimating which gives
5) Transform the new values back into RGB representatiofe pyramidal scheme), our AWRGB method (not the AWL
As stated above, we can use |, L, antitb represent the that adds on the L component) would almost coincide with
intensity component. Depending on which of the intensit¥RS|S if the data were dyadic (as, for example, SPOT-XS and
definition is used we call the merging method AWI, AWL, an&pPOT-P) and only one wavelet plane were added. There is a
AWL’, respectively. However, as stated in Section Il, we wiliondyadic ARSIS extension [13] that uses a “tryadic” wavelet
prefer to use usd, = Z+S+E (AWL method) to represent 1o merge SPOT and LANDSAT images but it is needed to
the intensity component. devise a different wavelet for each resolution ratio. As stated
In the substitution method, the wavelet planes correspondigBove, our wavelet image fusion methods (AWRGB, AWL)
to the multispectral image are discarded and substituted by g’]ee a Simp|e and efficient solution using a|Ways the same

corresponding planes of the panchromatic image. Howevgadic wavelet to merge images of any resolution.
in the additive method all the spatial information in the

multispectral image is preserved. Thus, the main advantage V. RESULTS

both sensors is used. The main difference between adding t(R\DSAT (TM) images. The original panchromatic SPOT
panchromatic wavelet planes to the R, G, and B bands orifRages have 10-m pixels while the original multispectral
the intensity component is that in the first case, panchromatifNDSAT (TM) images have 30-m pixels. The LANDSAT

information is added in the same amount to all three banggiginal bands were converted to the (R, G, B) system using
biasing the color of the pixel toward the gray, while in thene following transformationk = Batbr G = Batbs p—

second case the high-resolution information modifies only tha+8. \ye present two examples in the following subsections.

intensity, preserving multispectral information in a better waytpe first example is a low resolution image generated to have
Thus, from the theoretical point of view, adding to the intensityy, griginal image to which compare the results. The aim of this
component is a better choice than adding to the R, G, andiB example is to quantify the gain of the different merging

bands. As stated in Section I, the reason for using the L comathods. The second example shows the application of our
ponent to represent the intensity instead of using I’dslthat preferred method to a full-resolution image.

| ignores two of the RGB values, and, using the increments
of intensity (obtained by adding the wavelet planes) are di&: Application to an Inferior Level
tributed, in some cases, not proportionally to the RGB values.gacause we do not have any LANDSAT (multispectral)
_The advantages of using the wavelet image merging t€Ghiaqe at 10-m resolution to compare with, the evaluation of
nique over the standard IHS or LHS methods are as followg,g jmprovement of the additive wavelet method with respect
1) The spectral quality of the color image is preserved g other merging methods is not easy. To solve this problem, in
a higher degree. the first example, we applied the merging method to an inferior
2) The resolution of the panchromatic image is added fével of resolution, that is to say, on a SPOT panchromatic
the solution without discarding the resolution of themage at 30-m resolution and a LANDSAT multispectral image
multispectral image. Thus, the detail information fronyt 90-m resolution. The result of the image fusion method is a
both images is used. merged multispectral image at 30-m resolution which can be
3) The wavelet planes (except the residual image) have zg&mpared with the original LANDSAT image at 30 m. In this
mean. Thus, the total flux of the multispectral image irst example, we use a scene that includes both urban area and
preserved. agricultural lots. The SPOT and LANDSAT images were taken
4) The additive wavelet on the intensity method can b& different epochs. This is an aditional problem for the merg-
considered as an improvement on the classical IHS/LH&y process but we chose this example because it is the usual
method in the sense that the intensity component is ng§se when the images to merge come from different satellites.
substituted by the panchromatic image, but the highegfe do not show the images of this lower resolution example to
resolution features not present in the multispectral imaggve space for the second example which is at full resolution.
are introduced into the merged image by adding the The available SPOT and LANDSAT (TM) original images
first wavelet planes of the panchromatic image to thgere degraded to 30-m and 90-m resolution, respectively.
intensity component. These degraded images are the images to merge. The images
It is important to note that the AWL method allows use ofvere registered and the SPOT image was photometrically
a dyadic wavelet @ trous”) to merge nondyadic data as, focorrected to present a histogram similar to the intensity com-
example, LANDSAT (30 m) images and SPOT (10 m) imageponent of the LANDSAT (TM) image. In order to compare
Is interesting to note that our wavelet image fusion methdbe results, in this example we used the three definitions
have similarities but also differences with the ARSIS methdd, L, L’) for the intensity component. Then, we applied
[10]. The ARSIS method consists in to perform a waveléhe additive wavelet-based image fusion methods explained

=1
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TABLE |
CORRELATION BETWEEN THE STANDARD METHODS (IHS, L'HS, LHS), AND
ADDITIVE WAVELET-BASED METHODS (AWRGB, AWI, AWL', AWL) AND THE
ORIGINAL LANDSAT TEMATIC MAPPER IMAGE AT 30-m RESOLUTION (TMoyig.)

Correlation
Images Red Green Blue
THS|T Moyyig. 0.420 0.307 0.358
L'HS|T Moyig. 0.589 0.375 0.376
LHS|TMoyig. 0.668 0.376 0.421
AWRGB /[T Moyig. 0.861 0.719 0.757
AWT/T Mg, 0.805 0.639 0.711
AWL' [T Morig. 0.836 0.695 0.759
AW L/TMoyig. 0.849 0.721 0.781
AwWL Ditto, but adding toL’ component
AW L Ditto, but adding tol. component

above (AWRGB, AWI, AWL, AWL) and compared the results *
between them and to those given by the standard methods.
this example, three wavelet planes were added. ‘
To quantify the behavior of the standard and wavelet-base
image fusion methods we computed the correlation betwee SRR
the different solutions and the original LANDSAT at 30-nFig. 1. Detail of the SPOT image.
resolution image. To compute the correlation coefficient, we
use the standard coefficient Looking to the correlations of the additive wavelet solutions,
Zr'lpix (4, — A)(B; — B) we can see that the correlations obtained for the; AWL solytion
j=L " J are higher than the AWI and AWLmethods. This is, again,
\/Z?ﬁif( A; — A) E?ﬁif( B; — B) in accordance with the theory that the L component represents
the intensity component better that | of (Section Il). The
where A and B state for the mean value of the correspondingprrelations of the AWRGB solution are very close to the
data set. correlations of the AWL method. Note that the correlation in
Table | shows the correlations between the different solthe R band is even higher in AWRGB than in AWL, although
tions and the original LANDSAT (TM) at 30-m resolutionthis is compensated by the higher value of the correlation
image. As stated above, the different solutions are as folloved.the AWL in B band. However, as stated above, from the

IHS Standard substitution technique using | to reprdbeoretical point of view, adding to the L component (AWL) is

Corr(A/B) =

sent the intensity. a better choice than adding to the R, G, and B bands (AWRGB)
L’HS Ditto, but using L because the last introduces a bias in the color of the pixel
LHS Ditto, but using L. toward the gray.

AWRGB Additive wavelets solution adding the high- Regarding to the degree of correlation obtained, although
resolution information to the R, G and B bandshe target would be a correlation of 1.0 (perfect reconstruction

AWI Additive wavelets solution adding the high-Of the original image), given that the LANDSAT and SPOT

resolution information to the | component. images were taken at different epochs this is not possible.
AWL’ Ditto, but adding to £. component. Correlations of about 0.85 as the ones obtained with the
AWL Ditto, but adding to L component. additive wavelet method should be considered as the maximum

The first, second, and third lines of Table | show thOrrelation possible in this case. — g
correlation between the R, G, and B bands of the standard! hus: the main conclusion of this section is that the additive
solutions (IHS, LHS, LHS) and the same bands of the originéf’avelet solution on L (AWL) b_e_haves better than the standarq
LANDSAT (TM) at 30 m resolution. Note that the best solutiof’€thods and the other additive wavelet-based methods in
between the standard methods corresponds to the LHS metREgFeTving both spatial and spectral characteristics of the
as expected from the theory exposed in Section II. original image during _the image merging process. T_hls is our

The last four lines of Table | show the correlation betwedp€férred method, which will be used to merge the images at
the R, G, and B bands of the additive wavelet-based solutigdh resolution of the following example.

(AWRGB, AWI, AWL’, and AWL) and the same bands of o )

the original LANDSAT (TM) at 30-m resolution. Note thatB- APplication to Full Resolution

the correlations of all the additive wavelet-based solutions areln the second example, we merge two SPOT and LANDSAT
clearly higher than the correlations of the standard solutionimages at their full resolution. As stated above, the original
This means that the additive wavelet solutions preserve t820T image has 10-m pixels, while the LANDSAT image
spectral characteristics of the multispectral image to a greates 30-m pixels. The images show a small portion of the
extent than the standard IHS/HS, and LHS solutions. Argentinian coast that includes urban area, agricultural lots
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(d)

Fig. 2. (a) Detail of the LANDSAT (TM) image. (b) Result of the fusion by the standard IHS method. (c) Result of the fusion by the standard LHS
method. (d) Result of the fusion by the additive wavelets on L component (AWL) method.

and rivers. The images were registered and the SPOT imatj#erent from their appearance in the LANDSAT image. Also,
was photometrically corrected to present a histogram simildrere are several structures in the SPOT picture that were not
to the L component of the LANDSAT image. Then, we appliedresent when the LANDSAT image was taken.
the AWL image fusion technique and compared the results toFig. 2(b) shows the result of the fusion of the LANDSAT
those given by the standard methods. and SPOT images by the standard IHS method. The increase
Fig. 1 shows a detail of the original SPOT image. Fig. 2(a) resolution with respect to the original LANDSAT image is
shows the same area of the LANDSAT image. The spatievident. Most of the resolution of the SPOT image has been
resolution of the SPOT image is clearly better than thacorporated into the result. However, as stated above, there is
LANDSAT image as expected from the different pixel size. $pectral degradation and intensity dependence of the resulting
is easy to see that the SPOT and LANDSAT images were takewlor and a strong correlation between the merged image and
at different epochs, as is usual when working with images frothe panchromatic intensity. This fact can be seen qualitatively
different satellites. Note, for example, the aspect of the bediafthe colors of the crop fields, in the streets of the city, or the
the river, the water ponds (black rounded areas in the SP®&d of the river at the bottom of the image, in comparison with
image) or the crop fields, which in the SPOT image are cleatlye same areas in Fig. 2(a). Fig. 2(c) shows the fusion of the
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TABLE I
CORRELATION BETWEEN IHS, LHS AND ADDITIVE WAVELETS ON L COMPONENT
(AWL) M ERGING METHODS AND SPOTAND LANDSAT (TM) | MAGES

however, lower in the additive wavelets solution. This is a
positive fact because it means a lower dependence of the AWL
solution on the SPOT image.

Correlation Rows five to seven on Table Il indicate the correlation
Images Red Green Blue . .
TM/SPOT 0.191 0.149 0.313 between the same SQ|UtI0nS and the LANDSAT (TM) image.

Note that the correlation of our AWL solution is higher than

IHS/SPOT 0.911 0.734 0.830 of the IHS and LHS merging methods. This means that as
LHS/SPOT 0.758 0.734 0.774 stated above in qualitative terms, the additive wavelet solution
AWL/SPOT 0.487 0.608 0.724 on L preserves the spectral characteristics of the multispectral
[HS/TM 0418 0338 0121 image to a greater extent than the IHS and LHS solutions.
LHS/TM 0.722 0.399 0.117 Thus, the additive wavelet solution on L behaves better than
AWL/TM 0.923 0.801 0.740 the standard methods.

same images using the standard LHS method. Here, the colors
of the fields in the image match better the corresponding colors VI
of Fig. 2(a), but note, for example, the blue color of the water The additive wavelet-based methods are better suited for
beside the city (black in the LANDSAT image) as in otheimage merging than the standard techniques based on com-
areas. Note, also, the aspect of the bed of the river or thenent substitution. These methods combine a high-resolution
streets of the city, which are similar to those of the IHS resufpanchromatic image and a low-resolution multispectral image
Fig. 2(d) shows the result of the fusion by the additivly adding some wavelet planes of the panchromatic image
wavelet on L (AWL) method. In this example, three waveldp the intensity component of the low-resolution image. The
planes were added. As in the IHS/LHS solution, most of thése of the & trous” algorithm allows to use a dyadic wavelet
resolution of the SPOT image was incorporated to the mergi&dmerge nondyadic data as, for example, LANDSAT (30 m)
image. However, in this case, the spectral characteristicsimfages and SPOT (10 m) images in a simple and efficient
the LANDSAT image are preserved better than in the standsgeheme. Between the different wavelet-based methods studied,
mergers. Note the nearly identical tonalities of Figs. 2(d) arltle additive wavelet method on the L component defined as
(a). In particular, the water beside the city is black as in the = Z+$*2 (AWL), performs better. Using this method,
LANDSAT image, the bed of the river has the same appeararibe detail information from both images is preserved. The
as in Fig. 2(a), and the streets of the city are better delineat®éthod is capable of enhancing the spatial quality of the
than in the standard results. multispectral image while preserving its spectral content to a
In this example, we do not have any original image (LANDgreater extent. The AWL method does not modify the total flux
SAT at 10 m pixels) to compare with. However, we caef the multispectral image since the mean value of each of the
guantify, in some way, the behavior of the AWL methoddded wavelet planes is 0. The AWL method can be considered
in comparison with the standard methods by computing ti@ an improvement on the classical IHS or LHS methods in the
correlation of the IHS, LHS, and AWL solutions with regardsense that the intensity is not substituted by the panchromatic
to the SPOT and LANDSAT images. Note that in this case, tli@age but the high-resolution of the panchromatic image is
target for the correlation is not 1.0. Also, a higher correlatiofjected into the merged image by the addition of some wavelet
with SPOT does not mean a better result. Note, also, thanes of the panchromatic image to the intensity component
the correlation between images of different resolution (as tlé the multispectral low-resolution image.
correlation between the TM image and the fused images) has
no intrinsic significance, but it can be used to compare the
behavior of the different solutions.

CONCLUSION
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