
The field of digital image restoration has a quite
long history that began in the 1950s with the
space program. The first images of the Earth,
Moon (mainly of the opposite side), and planet

Mars were, at that time, of unimaginable resolution. The
images were obtained under big technical difficulties,
however, such as vibrations, bad pointing, motion due to
spinning, etc. These difficulties resulted, in most cases, in
medium to large degradations that could be scientifically
and economically devastating. The need to retrieve as
much information as possible from such degraded images
was the aim of the early efforts to adapt the one-dimen-

sional signal processing algorithms to images, creating a
new field that is today known as digital image restoration
and reconstruction.

The application of early image restoration techniques
to these images was very successful. If we compare the raw
data obtained by the spacecraft with the “final” products
(obtained also by adding several images) one could think
that they were obtained using different equipment and in
different epochs.

Since their introduction, the techniques of image re-
construction and restoration have been a “must” in all sci-
entific disciplines involving projections or interferometric
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data as medical tomography, seismology, magnetic reso-
nance imaging, and even some astronomical applica-
tions such as mapping in radio astronomy. If we look at
the “dirty map” of a radio-interferometric observation
(see Fig. 1) obtained with the very large array (VLA), it
is almost impossible to distinguish anything but the im-
age of the beam. After the restoration process, however,
the images of tiny extended sources (Fig. 2) can be easily
recognized.

For a long time, image restoration was considered a
luxury in other fields such as optical astronomy. None-
theless image restoration was applied to images coming
from space such as the case of the images taken in 1986 of
comet Halley by the spacecraft Vega and Giotto. Again,
the raw images of the comet obtained, for example, by the
Vega mission have almost nothing to do with the elegant
“peanut shape” images of the comet Halley nucleus.

In 1990 something happened which changed the situ-
ation of image restoration in the field of optical astron-
omy. After the launch of the $2000 million Hubble Space
Telescope (HST), an “impossible” mistake was discov-
ered in the main mirror. The mirror had a severe problem
of spherical aberration because it was polished with the
help of a faulty device and checked with the same faulty
device. Thus, the checking was perfectly coherent with
the polishing but the curvature of the mirror was wrong
(see Fig. 3). Since a single minute of observing telescope
time cost about $100,000, any effort to improve the im-
ages was cheap. Since then, a substantial amount of work
has been done in image restoration directed towards opti-
cal astronomy (see [70], [16], [46], [1], and [19]). As re-
sult of such efforts, it was possible to correct the aberrant
HST images.

Today, restoration is routinely carried out on many as-
tronomical observations. As another example, the final
product of the HST Deep Space Survey (HST-DSP), re-
cently delivered, is an elegant and colorful series of very
deep images of a selected area. The raw data (needed for
some astronomical measurements) contain a great num-
ber of cosmic-ray hits, readout noise, low signal to noise
ratio, etc. Again the final product requires restoration,
dithering, and co-addition.

The restoration techniques used have improved enor-
mously since the beginnings of the digital image restora-
tion era The goal of this article is to present some of the
methods most widely used to restore images in optical as-
tronomy.

To better understand the image restoration problem,
it is important to recognize it as a particular case of the
more general field of inverse problems which arise in
many scientific fields, with astronomy being a prime ex-
ample. In this field, one of the fundamental characteristics
of the inverse problems is that the theoretical understand-
ing of the formation of astronomical entities is limited,
which precludes the direct approach of predicting the ex-
perimental data using a theoretical model developed from
first principles.

The restoration problem can be cast in the form of a
Fredholm integral equation of the first kind:

g H f( ) ( , ) ( )x x y y dy=∫ (1)

in which f ( )y is the function of interest (image to be re-
covered), g( )x is the function accessible to measurement
(observed image), and H( , )x y is the kernel of the integral
equation (point spread function). Equation (1) is the im-
aging equation of the restoration problem.
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� 1. Dirty map of the radio-interferometric observation of the star
LSI +61~303 obtained with the VLA. The image is in logarith-
mic scale.

� 2. Restoration of the image shown in Fig. 1 by the FMAPE
method. The image of the star itself was removed to show the
extended sources. The image is in logarithmic scale.
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Since the data are obtained by measurements and
therefore subject to accidental errors, the direct inversion
of the ill-posed problem represented by (1) magnifies the
accidental errors giving unacceptable results. This fact
forces us to recognize that the image restoration problem
should be treated by the methods of statistical estimation
theory or regularization principles. The statistical estima-
tion methods most used in astronomy are the maximum
likelihood method (MLE), the maximum entropy (ME),
and the Bayesian methods. MLE seeks the maximization
of the likelihood function, resulting in an image for which
the measurements have the highest probability. Given
the ill-posed nature of the image reconstruction problem,
however, the maximum likelihood solution is (as the di-
rect inversion of the imaging equation) very sensitive to
noise. To avoid this problem, it is necessary to stop the it-
erations of the algorithm before reaching the point of
maximum likelihood.

Another approach is to use Bayesian probability the-
ory to define a different target function to be maximized.
Bayesian solutions are increasingly being used for the res-
toration of images from noisy and incomplete data. The
process seeks the image of highest probability given the
data. The Bayesian target function and the likelihood are
related through Bayes’ Rule, which includes the probabil-
ity distribution of the image, also known as image prior.

Most MLE, ME, and regularization-based algorithms
can be seen as special cases of the Bayes theorem: in the
MLE case by adopting a flat distribution as prior, in the
case of ME by adopting an entropic form as prior distri-
bution, and in the case of regularization, the constraints
defining the prior model. Thus, we will use the Bayesian
strategy as a framework to present the different ap-
proaches to manage the image restoration problem. To
examine the correct likelihood function is also necessary,
since in optical astronomy different types of cameras are
being used.

When preparing an article on image restoration in as-
tronomy, it is obvious that some topics have to be
dropped to keep the work at reasonable length. We have
decided to concentrate on image and noise models and
on the algorithms to find the restoration. Topics like pa-
rameter estimation and stopping rules are also com-
mented on but much more briefly. Because of the length
of this article, we have decided to omit a section on mul-
tichannel image restoration in astronomy; the interested
reader can consult [19] for a recent, although short,
overview. We include a sidebar on “Software and Online
Information in Astronomy.”

We will start by describing the Bayesian paradigm and
then proceed to study the noise and blur models used by
the astronomical community. Then the prior models
used to restore astronomical images are examined. In the
next section we describe the algorithms used to find the
restoration for the most common combinations of degra-
dation and image models. Then we briefly comment on
important issues such as acceleration of algorithms, stop-

ping rules, and parameter estimation. We comment on
the huge amount of information available to, and made
available by, the astronomical community.

Bayesian Methods
The philosophy within statistics known as Bayesian infer-
ence has a very long history, but has only relatively re-
cently been used explicitly in image processing in
astronomy. It is distinguished from the perhaps more fa-
miliar classical statistical ideas by using prior information
about the images being studied.

Image restoration in astronomy involves considering
the image being made up of point sources (stars) and
smoothly varying luminosity. Bayesian methods are dis-
tinguished from others most particularly by the inclusion
of specific spatial information about the objects present in
the image.

We will distinguish between f , the “true” image which
would be observed under ideal conditions (i.e., no noise
and no distortions produced by blurring and instrumen-
tal effects), and g, the observed image. The aim is then to
reconstruct f from g. Bayesian methods start with a prior
distribution, a probability distribution over images f . It is
here where we incorporate information on the expected
structure within an image. It is also necessary to specify
P( | )g f , the probability distribution of observed images g
if f were the true image. The Bayesian paradigm dictates
that inference about the true f should be based on P( | )f g
given by

P P P P P P( | ) ( | ) ( ) / ( ) ( | ) ( )f g g f f g g f f= ∝ . (2)
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� 3. Blurring of the HST Faint Object Camera working at f/96
modeled by Tiny Tim. The blurring is shown in logarithmic
scale and corresponds to the aberrated optics (before the ser-
vicing mission which added correction lenses).
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To show just one restoration it is common (but not oblig-
atory) to choose the mode of P( | )f g , that is, to display the
image �f which satisfies

� ( | ) ( )f g f fmaximizes P P . (3)

This is known as the maximum a posteriori (MAP) esti-
mate of f .

Equivalently, we can choose �f as

� log ( | ) log ( )f g f fminimizes− −P P . (4)

The first term of (4) will be familiar as the data
log-likelihood. The second term can be thought of as a
“roughness penalty,” as images f which do not corre-
spond to our prior conceptions will have been assigned a
small P( )f and hence a large penalty.

In statistical physics it is common to define probabili-
ties by the “energy,” U, of a system, so that

P U( ) exp[ ( )]f f∝ −α , (5)

where α is 1 / kT, with T being temperature and k
Boltzmann’s constant. If we adopt this notation, then

� log ( )f fminimizes likelihood− +αU . (6)

We can recognize this as a Lagrangian form, in other
words as a regularization method, so its solution is equiv-
alent to solving

max subject tolikelihood energy constraint≤ (7)

and to

min subject toenergy likelihood constraint≥ . (8)

As we have already mentioned, many other
deconvolution principles fit into one of other of these
forms, in particular maximum entropy (see [45] for a re-
view) and the classical Richarson-Lucy restoration
method [57], [26], where a flat improper distribution
over all images is used as prior model.

Obviously, not all the methods presented here have
been developed within the Bayesian paradigm. Their au-
thors have used different approaches to tackle the restora-
tion problem. In any case, we will try to describe them
within the Bayesian paradigm and also provide informa-
tion about the approach used. Using the Bayesian para-
digm as framework for this article will allow us to
describe in a systematic way all the ingredients of an im-
age restoration problem in astronomy, that is, blur and
noise models, image models and optimal restoration, in
some statistical sense.

Having described the Bayesian process to estimate the
real underlying image we proceed to study in depth the
different observation models, the image models, and the

restoration algorithms that have appeared in the literature
to restore astronomical images.

Observation Model
The modeling of the observation model can be divided in
two parts: blurring function, in other words, point spread
function (PSF), and noise modeling. Let us start with the
blurring function.

Blurring Function
Ideal image formation, without noise, can be modeled as
the convolution of the true brightness distribution of the
object with the PSF. The PSF is the image of an ideal
point source such as a star.

The PSF fitted on each particular image must be based
on two main goals: to estimate its functional form and to
estimate the flux from each star in the image. For
ground-based telescopes, a detailed review of the atmo-
spheric processes which lead to the distortion has been
presented in [73] (see also [74]). No exact expression de-
scribing the shape of the PSF is known. However, studies
presented in [5], [10], [33], and [41]-[43] have sug-
gested a radially symmetric approximation for the PSF h
of the form

h r r
R

( )∝ +






−

1
2

2

β

.
(9)

This can be checked, and β and R chosen, by extracting
what are clearly stars from a displayed image and fitting
this function by weighted nonlinear least squares. The full
width half maximum (FWHM) for this function has the
value FWHM = −2 2 11R / β . In Fig. 4 we plot the light
profile of a star together with the fit to the PSF in (9) as
an example of the good fit of this analytical function.

Other authors prefer to model the blurring process
due to atmospheric turbulence by a Gaussian function of
the form

h r r( )∝ −





exp
2

22σ (10)

where σ 2 determines the severity of the blur (see [25]).
The Telescope Image Modeling (TIM) software was

developed at the Space Telescope Science Institute
(STScI) (http://www.stsci.edu) to model the output of
an imaging telescope viewing a general object with a de-
tector. Although the software is rather general, it was spe-
cifically developed with the science instruments of the
HST viewing a star field in mind. It is used, among other
things, to test data reduction algorithms and evaluate
photometric reduction accuracy as well as to generate the-
oretical PSFs for deconvolution purposes. A similar use is
made of the package Tiny TIM also developed at STScI.
Fig. 3 depicts a PSF generated by the Tiny TIM software.
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Since PSF modeling is not the main topic of this arti-
cle, we will proceed to model the noise. The interested
reader can examine, for instance, the contributions pre-
sented in [16] on PSF modeling.

We note that if p m n= × is the size of the image, the
blurring process can be described by Hf , where f is a p×1
vector and H is the p p× point spread matrix defining the
systematic blur (for simplicity we are assuming that the
sizes of the observed and restored images are the same).
Since each detector can have a different quantum effi-
ciency characterized by a gain correction distribution C,
we will have

H B= −( ( ))diag C 1 , (11)

where diag( )C is a diagonal matrix with entries c j and B is
the blurring matrix modeled by (9) and (10) or a soft-
ware package.

So, H models the so-called flatfield corrected PSF,
and we will assume that the gain correction distribution
C is known. Together with Hf a certain background ra-
diation b, coming mainly from the sky but also from
sources internal to the detector is normally detected.
The blurring together with the background radiation
can be described as Hf b+ where b is a known column
vector of size p×1. We will assume that the background
radiation is known and will remove it from the observa-
tion process (see [47]).

Noise Models
Let us now proceed to examine the noise models used in
the astronomical community. For the observed vector g
we could use the normal distribution g~ Hf IN n(( ), )σ 2

and so we would have

P p( | ) /g f g Hf∝ − −





β β2 2

2
exp ,

(12)

with β σ=1 2/ n .
From here we can extend the degradation model to

having the form

[ ]P
A f

( | )
( )

g f g Hf∝ − −exp 2 ,
(13)

where A( )f is a weighting matrix whose form is discussed
in [22] and [23]. Two points are worth mentioning; first,
this sort of model also appears, as we will see later, when
using signal-dependent noise and, second, the normaliz-
ing constant of the conditional distribution depends on
the signal, which is not always used when using the regu-
larization approach to image restoration.

From the degradation model in (12), the maximum
residual likelihood (MRL) criterion [50] has been pro-
posed to restore astronomical images being, in fact, an al-
ternative degradation model. Let n i pi , , , ,=1… be p
independent Gaussian variables with zero mean and vari-

ance σ 2n , Piña and Puetter [50] considered the
autocorrelation function defined by

A k n n C kn
j

p

j k j
j

p

j
n( ) ( )= =

=
+

=
∑ ∑

1 1

.
(14)

They showed that the distribution of A k kn ( ), ≠0, ap-
proaches a Gaussian distribution due to the central limit
theorem and that the statistic

[ ]
χ

σ 2A
k

m n n

A
n

n

A k E A k

k
2

1

2

=
−

=
∑

( ) ( ( ))

( ) (15)

follows an χ 2 distribution with m degrees of freedom.
The values of E A kn( ( )) andσ An

k2 ( ) can be found in [50],
together with some comments on how m should be se-
lected taking into account the blurring function.

Then, for an image restoration problem we can define
the residual image given by

r g Hf= − (16)

and form the statistic

( )[ ]
E

A k E A k

kr A
k

p
r n

An

= =
−

=
∑χ

σr

2

1

2

2

( ) ( )

( )
.

(17)

If the restored image is an accurate representation of the
true image, ri will show the behavior of independent
Gaussian distribution n i pi , , , ,=1… with zero mean and
standard deviation β−1 2/ . We can then use P E

χ 2 ( )r as
P( | )g f . We note that for this P( | )g f , if P( )f ∝const, the
MAP and MRL images are the same.

We now move on to consider signal-dependent noise.
To take into account the charge-coupled device detectors
used in astronomy, each component of the observed vec-
tor g is assumed to follow a Poisson distribution, and so
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� 4. Fitted radial profile PSF function (solid line) for the observed
values (asterisks)
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which is widely used in the astronomical community.
This model can be approximated, at least for high bright-

ness values, by the Gaussian distribution � (( ) ,( ) )Hf Hfi i .
An alternative model is to assume g zi i= λ where
z Hfi i~ ( )� . This is the case in many images provided by
the astronomers. For this model we can use the Gaussian ap-
proximation g f ~ H f H fi i i| (( ( )) , ( ( )) )� λ λ λ , and substi-
tuting λf by f , we have

g f Hf Hfi i i| ~ (( ) , ( ) )� λ . (19)

Finally, the noise model

( ) ( )g f Hfi i| ~ ( ) ,� �+ 0 2σ

takes into account both the detection process, Poisson
model, and the reading process by an electronic device
which adds a Gaussian read-out noise with mean zero and
variance σ 2 (see [47]). The conditional model, in other
words the data likelihood, has then the form

P e e
ki

p

k

i
k

i k i( | )
( )[ ( ) / ] ( )g f
Hfg Hf=

= =

∞
− −∏ ∑ −

1 0

21
2

2 2

πσ
σ

!
.

(20)

Note that for each component, i, this distribution can
be approximated by a � (( ) , ( ) )Hf Hfi ia b+ for appropri-
ate constants a and b. In this case,

− = +∑2 2log ( | )p E
i

ig f const ,
(21)

with Ei i i i= −[( ( ) ) / (( ) )]g Hf Hfσ , σ(( ) )Hf i being the
standard deviation, a b i+ ( )Hf in the noise model just
described (see [43] and [41] for methods on how to esti-
mate a and b).

This Gaussian approximation allows the easy incorpo-
ration of robust statistics concepts to deal with detector
errors like bad lines or hot pixels [41], but that should be
used very carefully in regions with point sources which
can be mistakenly taken as hot pixels. The idea is to
downweight observations which are far away from their
means. Such values are given too much weight in (21).
The squared term in Ei represents the number of stan-
dard deviations that g i is away from its mean. In robust
statisticsΣ i iE 2 is replaced byρ( )Ei for a functionρwhich
penalizes extreme values less severely. A typical functionρ
is Huber’s “proposal 2” function defined by

ρ( )
, | |

| | , | | .
x

x x c
c x c x c

=
≤

− >




2

22
for
for (22)

This is quadratic in the center, but penalizes large devia-
tions linearly rather than quadratically. Equivalently, ob-
servations Ei are downweighted if | |Ei exceeds c. In
practice c is chosen at about two, which downweights

only those observations more than two standard
deviations away from their means. Note that Huber’s dis-
tribution has been used as image model in image restora-
tion (see [66]) but it has not been used much to model the
noise process.

For Poisson noise, White [72] introduces a modifica-
tion of the noise model to make it flatter in the vicinity
of a good data fit. Instead of using log ( | )P g f from (19)
he uses

( )log '( | ) ( | )P z s
i

ig f g f=∑ ,
(23)

where

s
T

g
g

gi i
i

i
i i( | ) log

( )
( )g f

Hf
Hf= − − +





2

2
(24)

with

( )z x
N
N

x x x

x x

N N

( ) ,

,
=

−
+

− + <

≥





+1
1

1 1

1

1

(25)

with z x( ) being the damping function. This function is
chosen to be a simple function, that is x for x >1, is ap-
proximately constant for x ≈0 and has continuous first
and second derivatives at x =1. The constant N deter-
mines how suddenly the function z becomes flat for x <1,
for N =0, z x x( )= and there is no flattering in the vicinity
of a good data fit. The larger the value of N, the flatter the
function is. The constants and multiplicative factors in
s i pi ( | ), , , ,g f =1… are chosen to determine at what level
the damping turns on (see [72]).

Finally, to complete the degradation models used in
astronomy, we describe the use of multiresolution tech-
niques to model the conditional distribution. A wavelet
transform for discrete data that is used in the astronomi-
cal community is the à trous (with holes) algorithm (see
[18] and [59]). The wavelet transform of an image by the
à trous algorithm produces a set of coefficients { }wl at
each scale l which has the same number of pixels as the im-
age. The original image c can be expressed as the sum of
all the wavelet planes and the smoothed array c k , so,

c c wk= +
=
∑
l

k
l

1

.
(26)

We can then consider the residuals defined in (16) and
perform the à trous transform algorithm on them (see [2]
and [64]) to obtain

r c wk= +
=
∑
l

k
l

1

.
(27)

Any iterative scheme that uses the residuals as defined in
(16) can instead use the modified residuals defined at
each pixel position j by
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( )r c T w wj j
k

l

k

j
l

j
l= +

=
∑

1

,
(28)

where T is a function which is defined by

T w
w
wj

l j
l

j
l( )

,
,

=
1
0

if is significant
if is not significant



 (29)

where methods to define whether w j
l is significant or not

can be found in [64].

Image Models
In this section we examine the image models used to re-
store astronomical images (for a short recent review of
some multichannel models see [19]).

It is important to note that the introduction of prior
models means making assumptions about the real un-
derlying astronomical image and that testing the valid-
ity of those image models means, in fact, the
introduction of distributions on the prior models. We
will not discuss that problem here. Furthermore, be-
fore using a prior model to restore an astronomical im-
age, it is important to know what each prior means. For
example, as we will see now, some priors introduce
smoothness constraints which make sense when restor-
ing smoothly varying objects but that should not be ap-
plied when restoring point sources like stars. From our
point of view there is not a so-called “best prior model”
and to restore an observed image, several methods
should be tried, examining then their restorations, and
residuals, on the regions of interest.

Maximum Entropy and Related Methods
Frieden [11] was the first author to use the Shannon form
of entropy in image restoration. He assumed that in each
intensity value f j pj , , , ,=1… there is an allowed uncer-
tainty ± −α 1 . Following [11] it was then sufficient to re-
store each n j defined byαf nj j= (we note thatα−1 can be
understood as a variance and that we will see later how
this uncertainty has been made signal dependent).

Let N n j=Σ , and let us assume that the occurrence of
one object unitα−1 does not affect the possible location of
any other object units. Thus, the object units are statisti-
cally independent within each cell and from cell to cell. If
n = ( , , )n n p1 … then, the number of ways,S( )n , that a typ-
ical object can occur is

S N
n n n p

( ) !
! ! !

n =
1 2 �

and so

P S
p

N

( ) ( )n n= 




1 .
(30)

Then, using the approximation, n n en n!= − we find that

log ( ) logP f fi
i

p

if = − +
=
∑α

1

const,

where we have used the fact that N is a fixed number
known approximately by conservation of energy princi-
ples that is, N E=α 0 where E f i0 =Σ ι with E0 known.
This produces

P f f
i

p

i i( ) exp logf ∝ −



=

∑α
1

.
(31)

We note that this prior probability can also be written as

P E p p
i

p

i i( ) exp logf ∝ −



=

∑α 0
1

,
(32)

with p f Ej j= / 0 (see [15] for the classical “team of mon-
keys” justification of the maximum entropy principle and
[62] for a general description of maximum entropy algo-
rithms).

In 1983, Frieden [12] (see also [13]) refined his initial
formulation of the maximum entropy approach and al-
lowed the introduction of a probability distribution over
object units going to pixels. He denoted such probability
by r = ( , , )r r p1 … . Then (30) becomes

P N
n n n

r r
p

n
p
n p( ) !

! ! !
n =

1 2
1

1

�
� ,

(33)

and the prior model defined in (31) becomes

P f f r
i

p

i i i( ) exp log( / )f ∝ −



=

∑α
1

.
(34)

To work at the same scale for f and r, this equation can be
rewritten as

P f f Q
i

p

i i i( ) exp log( / )f ∝ −



=

∑α
1

,
(35)

where Q r= E0 . Note that Q represents an a priori image
(not distribution) for the real underlying image. Equa-
tion (34) can also be written as

P E p p r
i

p

i i i( ) exp log( / )f ∝ −



=

∑α 0
1

.
(36)

As Frieden [13] pointed out, the need to know the dis-
tribution r is both the drawback and strength of the pro-
cedure (see [45] for a full account on the use in astronomy
of the maximum entropy methods described so far).

In 1993, Núñez and Llacer [47] used Frieden’s formu-
lation and noted that in (36) when α→0 the maximum
likelihood restoration provided by the degradation model
used was obtained and that whenα→∞ the solution ob-
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tained was the trivial one provided by the prior model,
that is, f Qi i= . They applied this prior model in conjunc-
tion with the noise model defined in (21) and proposed
the so-called fast maximum a posteriori with entropy prior
(FMAPE) algorithm to find the restoration.

To obtain an space-variant α, Nuñez and Llacer [48],
[49] proceeded as follows. They redefined ni asα i if and
obtained, from similar derivations to the ones used
above, that

P f f Q
i

p

i i i i( ) log( / )f ∝ −



=

∑exp
1

α .
(37)

The authors then applied this prior model in conjunction
with the noise model defined in (21) to obtain the
so-called FMAPEVAR algorithm to find the restoration
(see [48]). They later renamed the algorithm as the multi-
ple output channel FMAPE algorithm [49].

In 1988 Skilling [61] considered the traditional “team
of monkeys” throwing balls at p cells at random with Pois-
son expectation µ i , i p=1, ,… , having in this case

P e n
i

i
n

i
i i( | ) / !n µ µ µ=∏ − ,

(38)

whereαf ni i= andα µmi i= . Then using again the facto-
rial approximation, we have

( )P f m f f m
i

i i i i i( | ) exp log( / )f µ α∝ − − −





∑ .
(39)

Note that this prior is similar, in some sense, to the
ones studied above with the main difference being the in-
troduction of the term f mi i− .

The image model just described was first applied to
image restoration by Gull [14] in a companion paper to
[61]. There, the author introduced some ideas about how
to modify the underlying image model µ and also com-
mented on the possibility of generating m = ( , , )m m p1 …
from a blurred image of hidden variables.

Gull [14] and Charter [7] incorporated the concept of
preference for spatial correlation in maximum entropy
restoration with the use of the intrinsic correlation func-
tion (ICF). In this model the restored image is defined as
the convolution of some hidden image i with the ICF,G,

f Gi= , (40)

where G is some blurring function, such as a Gaussian.
Note that the idea is to introduce correlation between
neighboring pixels. Then the prior model becomes

P i m i i m
k

k k k k k( | ) ( log( / ))i µ α∝ − − −





∑exp ,
(41)

and the blurring process is modified from Hf to HGi.
The ICF was later extended by Weir [69] to a multi-

channel decomposition, where f was written as

f f=∑
k

k
kw ,

(42)

where k was the number of channels and wk the weight of
image channel k. Then each channel was considered to be
obtained as the convolution of the corresponding hidden
space channel having the form

f G ik
k

k= , (43)

and the image prior reformulated as

( )P i m i i m
k n

n
k

n
k

n
k

n
k

n
k( | ) log( / )i µ α∝ − − −





∑ ∑exp .
(44)

The method has also been extended to a pyramidal de-
composition of the images (see [4] for details).

Starck et al. (see [64] and references therein and [63])
have proposed the use of the so-called multiscale entropy
to restore and filter astronomical images. Considering the
à trous decomposition of the original image in a similar
manner as was done for the residuals in (26), we can write

f c w= +
=
∑k

l

k
l

1 (45)

and so define the prior model

log ( ) | |log
| |

P w m w
w

mI
l j

l j
l l

j
l j

l

l
f = − −







∑ ∑1

2σ
σ

scales 
 + const

(46)

where the wavelet coefficients are taken in absolute value
since they can be positive and negative (see [65]),σ I

2 is an
overall variance and the σ l are scale-dependent devia-
tions. Following [64], it is possible to estimate the scale
deviations and also the model at each scale m l .

This multiscale entropy can also be combined with a
multiresolution support by multiplying each term in the
sum in (46) by a term of the form Aj

l (initially zero or
one but later convolved with a B-spline function) to in-
troduce regularization on the corresponding wavelet co-
efficient [64].

To finish the entropic priors, let us now describe the
pixon approach. In this approach, the original image is re-
placed by a pseudoimage smoothed locally by a function
with position-dependent scale, that is,

f K x i
i

fi
x

x= −





∑ δ( )

pseudo ,
(47)

where δ( )i is the locally variable scale and K x i i[( ) ( ( ))]− δ
is a smoothing function normalized to volume one, for
instance,
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K x i
i

x i
i

x i i−





∝

− − − ≤
δ δ

δ
( )

|| ||
( )

, || || ( )

,

1

0

2

2

elsewhere





 (48)

where K x i i[( ) ( ))]− (δ is called the pixon shape function
(see [51]) where pixons are basically variable cells. Note
that the classical pixels are pixons for particular values of
the scaling function but the concept of pixon is more gen-
eral and, in some sense, can be considered as spreading, in
some cases, over several pixels.

It is then possible to define an entropic prior on the
units of signal on the pixons (see for instance [51], [55],
[56], and [32]) and in combination with a degradation
model proceed to find the MAP. Obviously, there are two
important questions: how to calculate the scale parame-
ters and the pseudo image, f pseudo . That will be discussed
in the algorithm section.

Noninformative Priors and Extensions
One of the most widely used image restoration methods
in astronomy is the so-called Richardson-Lucy (R-L) al-
gorithm. This algorithm [57], [26] was initially derived
from Bayes theorem and shown to increase the likeli-
hood, as defined in [26], assigned to the observed image.
The same algorithm was later obtained by Shepp and
Vardi [60] and developed further by Vardi et al. [68] as
an EM algorithm ([9], see also [30]) for medical image
reconstruction with Poisson noise.

From the Bayesian point of view, the R-L algorithm
can be obtained assuming that P( )f ∝const, a so-called
noninformative prior, and that the degradation model is
the one given in (19). In this case we have

log ( | ) ( ) log( )P g
i

p

i
i

p

i if g Hf Hf= − +
= =
∑ ∑const

1 1

,
(49)

and so

� ( ) log( )f Hf HfRL f
i

p

i
i

p

i ig= − +



= =

∑ ∑arg max
1 1

.
(50)

Note that the image model used is improper, it does not
integrate to one, and that the term noninformative is
rather misleading, since assuming that all the images have
the same probability is quite informative.

The R-L algorithm was later adapted to incorporate
designated sources having specified shape and known po-
sitions [27]. The designated sources are point sources,
and the specified shape is the delta function. The idea is to
use this a priori information, at least for the designated
point sources, and so try to eliminate the ringing associ-
ated with recovered delta functions. The method de-
scribed below is the so-called PLUCY algorithm. To
incorporate this a priori knowledge the real underlying
image is divided into two parts, that is,

f f f= +s * ,

where f s represents the smooth contribution and f * the
designated point sources. This representation is achieved
by defining f * to be zero everywhere except at the loca-
tions of the N known point sources. Then a smoothness
constraint is introduced on f s by defining an entropic
prior of the form (see for instance [67])

P P
f fs

i

i
s

i
s

i

( ) ( , ) exp log*f f f= ∝ −





∑α σ ψ

,

whereσ =Σf i
s andψ i m im i

sR f=Σ . The resolution kernel
R im is a Gaussian function whose width is the required
resolution limit.

There are two extensions of the PLUCY method. In
the first one, called the CPLUCY algorithm, the point
sources are notδ-functions but simply X,Y positions at ar-
bitrary subpixel locations, see [19] and CPLUCY man
pages at ftp://ecf.hq.eso.org/rhook/cplucy. GIRA is the
second extension of PLUCY: this algorithm handles the
deficiencies of PLUCY and CPLUCY when using the
entropic constraints on the background (the smooth sig-
nal). In GIRA, the background is represented not as a set
of independent pixels but as the sum of a set of Gaussians,
one for each pixel. The width of these Gaussians is a free
parameter which constrains the maximum fine structure
in the background (see [52]). Note that in the astronomi-
cal literature some authors refer to PLUCY, CPLUCY
and GIRA, together with the method to be described just
below, as two-channel restoration algorithms. We prefer
to use this terminology with restoration algorithms that
combine different images.

There is an alternative image model which is, in some
sense, similar to the ones described in this subsection but
which has been obtained from a different starting point.
To solve the problem that appears when the observed
data obey the sampling theorem but the deconvolved data
do not, Magain et al. [29] propose to deconvolve not
with the total PSF, H, but with a narrower function, S,
chosen so that the deconvolved image has its own PSF, R,
compatible with the adopted sampling. The blurring ma-
trices are related by

H SR= . (51)

The shape and width of the PSF corresponding to R are
chosen by the user. The only constraint is that (51) admits
a solutionS. The process is very intuitive: think about the
decomposition of a normal distribution with varianceσ 2

as the sum of two Gaussians with variances σ1
2 and σ 2

2

such thatσ σ σ2
1
2

2
2= + , one corresponding to the scale of

the original imageσ1
2 and represented by S and the other

to the scale of the deconvolution process, corresponding
to σ 2

2 and represented by R.
The original image is then decomposed using

f s Rc= +
=
∑
k

M

k ka
1

,
(52)

MARCH 2001 IEEE SIGNAL PROCESSING MAGAZINE 19

Authorized licensed use limited to: Universitat de Barcelona. Downloaded on February 13, 2009 at 06:15 from IEEE Xplore.  Restrictions apply.



where M is the number of point sources, for which a k and
the vectors c k are free parameters corresponding to their
intensities and positions and s is the extended component
of the solution, that is, generally a rather smooth back-
ground. Note that the c k are basically column vectors
which are zero everywhere except in one component
where it takes the value one (a subpixel approximation is
also possible).

We could now write s Rs= ′ and use this knowledge to
try to find s′, but s′may violate the sampling theorem, so
the authors prefer to use this equation to impose smooth-
ness on s on the scale length of R, and so in [29] the fol-
lowing was used

P a
k

M

k k
W

( | ) expg f g S s Rc∝ − − +

 














=
∑1

2 1

2

,
(53)

where W is a weighting diagonal matrix with diagonal en-
tries 1 2/ σ i . The image model is defined by

P( ) expf s Rs∝ − −





λ
2

2 .
(54)

Regularization and Spatial Statistics Models
We now move on to examine the image models that have
appeared from the point of view of regularization or from
the explicit use of spatial statistical models to restore as-
tronomical images.

To do so, we denote by i i i i: : : :+ + + +1 2 3 4, , , the four pix-
els around pixel i (see Fig. 5) and consider the following
quadratic form

( )C f f f f fi i i i i
i

f 2
1 2 3 4

2
1
4

= − + + +

 




+ + + +∑ : : : : .
(55)

We can then restore an image by minimizing
α βCf g Hf2 2+ − (see [21]). This is equivalent to us-
ing P( | )g f as defined in (12) and

P C( ) expf f∝ −





α
2

2 .
(56)

From the point of view of regularization,|| ||Cf 2 is used as
a way to set constraints on the Laplacian of the restora-

tion or to limit the high frequencies in the restoration.
Note that this model is the so-called simultaneous
autoregressive model (SAR) within the statistical com-
munity (see [58]).

From the point of view of regularization a model that
has been used to restore astronomical images is the one
given by

[ ]P Cw B
( ) exp ( )

( )
f f f

f
∝ −α 2 ,

(57)

where B( )f has been included to make the restoration al-
gorithm spatially adaptive and where the regularization
parameter α( )f is a function of the original image (in
practice it becomes a function of an estimate of the origi-
nal image).

This prior model in combination with the noise model
defined in (13) has been used by Katsaggelos et al. ([22],
see also [23] and [1]) to find the restoration by minimiz-
ing the functional

M C
A

w B
( ( ), ) ( )

( ) ( )
α αf f g Hf f f

f f
= − +2 2 ,

(58)

where to satisfy some optimality criteria for the functional
defined in (58), it is shown in [20] that, among others, a
possible choice for the regularization parameter is

α
γ

w
A

B
C

( )
( / )

( )

( )

f
g Hf

f
f

f

=
−

−

2

1
21

,

(59)

where γ 1
21 2= / ( )g .

We note that from the point of view of regularization
the normalizing constants of the prior and degradation
models are not taken into account when finding the
MAP. This can be justified by the weak dependence of the
restoration on them (only the logarithm of those normal-
izing constants should be present in the objective func-
tion to be minimized to find the MAP).

From the point of view of regularization we can also
use the prior model defined by

[ ]P f f f fi i i i
i

( ) exp ( ) ( ): :f ∝ − − + −





+ +∑α 1
2

2
2 ,

(60)

which means setting constraints on first derivatives. We
will reencounter this model again from the point of view
of spatial statistics.

This prior model has been extended to

( ) ( )[ ]P f f f f
i

i i i i( ) exp : :f ∝ − − + −





∑ + +α ϕ ϕ1
2

2
2 ,

(61)

whereϕ( )x is an edge preserving function satisfying some
constraints (see [3] and [6]). The MAP is then found by
an algorithm, ARTUR, proposed by the authors [3], [6].
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From the point of view of spatial statistics, the simplest
prior model to restore astronomical images consists of
working at linear scale. Consider an image with no stars
but regions of smoothly varying luminosity. We then ex-
pect f i ≥0 and f to be spatially smooth. In this case
smoothness is modeled by spatial autoregressions [58].

The conditional autoregression, CAR, model is de-
fined by

p t( ) exp ( )f f I N f∝ − − φ


α
2

,

whereα−1 is the unknown prior variance, matrix N is such
that N ij =1 if cells i and j are spatial neighbors (pixels at
distance one), zero otherwise and scalar φ is just less than
0.25. The term f I N ft ( )− φ represents in matrix notation
the sum of squares of the values f i minus φ times the sum
of f fi j for neighboring pixels i and j.

We note that

( ) ( )[ ]
f I N ft

i
i i i i if f f f f

( )

( ): :

− φ =

φ − + φ − + − φ∑ + +1
2

2
2 21 4

(62)
and so a CAR model in the limit case, φ=025. , is equivalent
to setting constraints on first derivatives. We note that
when φ=025. , ( )I N− φ is equal to C as defined in (59).

The parameters in a CAR model can be interpreted by
the following expressions describing the conditional dis-
tribution

( )E f f j ii j j
j i

| , and≠ = φ ∑ f
nhbr

var( | , )f f j ii j ≠ = −α 1 .

It is also possible to modify the smoothness scale when
working with a CAR image model. The luminosity distri-
bution of pure disk in a galaxy can be modeled by “the ex-
ponential law” written as

I r I b r( ) ( )exp( )= −0 0 . (63)

Furthermore, the luminosity distribution of elliptical gal-
axies has been investigated by many astronomers, and
several analytical functions have been proposed to model
this distribution. Among others, the most commonly
used is the “r 1 4/ law” proposed by de Vaucouleurs

[ ]log( ( ) / ) . ( / ) /I r I r rE E= − −333 11 4 , (64)

where r is the distance from the center of the galaxy and I E
and rE are parameters which differ from galaxy to galaxy.

These results suggest that the luminosity of galaxies is
most naturally considered on log scale (see [43]). The
smoothness of the luminosity is then modeled on log
scale except for very small values of luminosity (see [43]
and [41]). This means using a CAR prior for
y f 1= +ln( )γ , where γ is a small constant, that is,

− = + − φ2 ln ( ) ( )P ty y I N yyconst α . (65)

It is very important to note that we are proposing an im-
age model for y and then obtaining an estimate of the
source image as � exp[� ]f y 1= − γ , where �y is the MAP resto-
ration for the log-scale formulation.

The CAR model either on linear or log scale can be ex-
tended to restore astronomical images when the location
of objects is known in advance [44].

Compound Gauss Markov Random Fields image
models (CGMRF, see [21]) have also been applied to the
restoration of astronomical images. The image model has
the form

( ) ( )[− = + φ − −

+

∑ + +log ( , ) : [ , : ]

[ , :

P f f l

l
i

i i i i

i i

f l const α

β

2
11

2
1

( )
( )

]

+ +

+ +

+ φ −

× − +

+ − φ

1 2
2

2 2

2

1

1 4

] :

[ , : ] [ , : ]

( ) ,

f f

l l

f

i i

i i i i

i

β

(66)

where the function l i j[ , ] takes the value zero if pixels i and j
are not separated by an active line and one otherwise and φ
is just less than 1/4. The introduction of the line element
[ , ]i j is then penalized by the term βl i j[ , ] since otherwise
the expression in (67) would obtain its minimum value
by setting all line elements equal to one. The intuitive in-
terpretation of this line process is simple; it acts as an acti-
vator or inhibitor of the relation between two neighbor
pixels depending on whether or not the pixels are sepa-
rated by an edge. In the process of restoring the image,
this method requires the estimation of the line process
too. Since the energy of this model for f and l is no longer
convex finding the MAP becomes more complicated (see
[36] and [38]).

To finish this section on image priors we note that the
following prior has been used to restore images of planets

P
f fi ji j

( ) exp
[( ) / ],

f ∝
+ −







< >

∑β δ
1

1 2
,

(67)

where < >i j, denotes the set of pixel pairs ( , )i j at unit dis-
tance apart (see [35]).

Algorithms
As discussed previously, the MAP restoration will be ob-
tained by

minimizing − −log ( | ) log ( )P Pg f f , (68)

sometimes with the constraint of energy conservation
that can be expressed as

i

p

i
i

p

i
j

p

j jg q f
= = =
∑ ∑ ∑= =

1 1 1

( )Hf
(69)

where
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q hj
i

p

ij=
=
∑

1 (70)

which usually satisfies q j pj = =1 1, , ,… .
The exact form of the Bayesian function to be mini-

mized will depend on the specific models used for both
the prior distribution and the likelihood, as described in
the previous sections. Here we will comment on the gen-
eral aspects of the minimization methods and present
some of the most used algorithms.

Classical Gradient Techniques
To obtain the MAP the simplest way is to solve

∂
∂

=
f

f g 0log ( | )P ,
(71)

which aims at finding the stationary points of the poste-
rior distribution. This so-called direct minimization has
the problem that in most cases, mainly when using
entropic forms as prior, it leads to compute exponentials
that produce large instabilities when used in iterative
formulae. Finding the solution of (71) it is possible in
some cases, for instance when the blurring is space in-
variant, the noise model is the classical Gaussian inde-
pendent one, see (12), and the prior model is the SAR
model described in (56). In this case, the MAP restora-
tion can be found by solving

( )λC Ct t t+ =H H f H g, (72)

with λ α β= / . The solution can be found using Fourier
transform. This method, however, does not necessarily
satisfy the nonnegativity constraint of the restoration.

The simplest method to incorporate gradient based
techniques into the problem of finding the solution of
(69) is to use the steepest descent algorithm [53]. The
method seeks to minimize the Bayesian function along
the direction of the steepest descent, defined by a vector
proportional to the gradient.

The main advantage of the steepest descent method
over direct methods is that usually it is not needed to
compute exponentials avoiding the instabilities of the
direct minimization. A serious disadvantage, how-
ever, is that the method does not guarantee positivity.
In almost every iteration in which the gradient step is
sufficiently large to enable significant development of
the intensities in reasonable time, there are pixels with
negative values. Since intensity negative values have
no physical meaning and at the next iteration it would
not be possible to compute the logarithms appearing
in the gradient (especially using entropic priors), after
each iteration any negative intensity should be reset to
a small positive value. By doing this, we are deviating
the iteration point from the search direction given by
the gradient vector. The consequence is that neither
the decrease of the Bayesian function nor the conver-
gence are guaranteed. If many pixels become negative,
the effect is to stop the algorithm progressing towards
a minimum.

Gradient descent techniques have been applied to,
among others, the minimization of the functional
M( ( ), )α f f defined in (58) (see [22] and [23] for details),
to the CAR image model in log scale [see (65)] together
with multiplicative noise model [see (21)] described in
[43] and [41] and to the multiscale entropy prior de-
scribed in [64]. Figure 6 shows the restoration of a simu-
lated image by the method described in [64].

NGC 450/UGC 807 is a case of two galaxies having a
small angular separation but with very discrepant
redshifts. The original and deconvolved frames using the
log CAR prior are presented in Fig. 7. As can be seen
from the figure, many small scale features are strongly en-
hanced mainly at the disk of NGC 450 and the arms of its
companion are now clearly delimited.

The conjugate gradient method has also been applied
to image restoration in astronomy. It starts like the steep-
est descent (indeed, the first iteration is exactly the same)
but in place of minimizing along the direction of the gra-
dient, the conjugate gradient minimizes in the vectorial
subspace generated by the steepest descent vector corre-
sponding to the iteration and the steepest descent vectors
of all (or several) the previous iterations (see [53] for de-
tails). The conjugate gradient represents a clear improve-
ment over the steepest descent algorithm at no extra
computational cost. Nevertheless, the problem of nega-

22 IEEE SIGNAL PROCESSING MAGAZINE MARCH 2001

(a) (b)

(c) (d)

� 6. Simulated object (a), blurred image (b), deconvolved image
by MEM (c), and deconvolved image by MEM multiresolution
(d).
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tive values for the intensities is not solved and in most
cases the solution is plagued by them, although several
authors have presented variants of the conjugate gradient
algorithm (see, for instance, [62]) to prevent the appear-
ance of negative values.

Expectation Maximization and
the R-L-EM Algorithm
The expectation-maximization (EM) algorithm was in-
troduced by Dempster et al. [9] and first applied to im-
age reconstruction by Shepp and Vardi [60] in the field
of medical imaging (positron emission tomography).
The algorithm was identical to the algorithms obtained
independently by Richardson [57] and Lucy [26], the
R-L algorithm.

The R-L algorithm can be seen as a particular case in
the Bayesian framework by considering the case of pure
Poisson noise distribution [see (18)] and taking as con-
stant the prior information [see  (49)].

The solution of (68), in this case by the EM algorithm,
gives the following iterative scheme

f f
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(73)

where k denotes iteration. This equation can be rewritten
as
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Hf

p.
(74)

Equation (73) is the R-L-EM algorithm which is exten-
sively used for maximum likelihood in image reconstruc-
tion and restoration. Since the observational data ( g j ) are
positive in the Poisson case, the form of the algorithm
guarantees that the solution is always positive (or zero) at
each pixel. Also the energy is preserved at global and local
scale. These are two of the most important properties of
this algorithm.

The R-L algorithm has the general form of an iterative
formula in which the value of a pixel at each iteration is
equal to the previous one multiplied by a modifying fac-
tor. The modifying factor between brackets in (73) con-
sists of a projection and a backprojection. In the case of
space-invariant PSF, the projection and backprojection
operations can be performed using the fast Fourier trans-
form (FFT). From the point of view of the computation
requirements, in the case of space-invariant PSF and as-
suming that the FFT of the PSF is calculated at the begin-
ning of the process and stored in memory, each iteration
needs two FFTs in the projection step and two more in
the backprojection step. All the other computations are
vector operations that have little impact on CPU time.
Thus the R-L algorithm is basically an algorithm with
four FFTs per iteration.

Figure 8 shows the raw data of an image of Saturn ob-
tained with the WF/PC camera of the HST, before the re-
furbishing mission in 1994. Figure 9 shows its
reconstruction using the R-L algorithm with 50 itera-
tions. The restoration shows a well-reconstructed image
of the planet and sharp separations in the rings.

The R-L algorithm has been extended to the methods
PLUCY, CLUCY, and GIRA described earlier, to the
noise model described in (23) and also to incorporate
smoothness constraints in the form of a CAR prior model
(see [39] for details).

Note that in (74), g can be substituted by Hf rk k+
where r k are the residuals at iteration k. A wavelet decom-
position can be applied to those residuals and the wavelet
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(b)

� 7. (a) Original and (b) deconvolved images of NGC 450/UGC
807 by the method proposed in [43].
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coefficients can be modified as described in (28). Figure
10 shows an example of the use of such an algorithm.

The algorithm given by (73) was extended in [47] to
the case Poisson + Gaussian readout noise [see (20)].

The obtained algorithm has the same form as the R-L al-
gorithm but changing the data g j to
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In the absence of readout noise or when it is negligible
[σ→0 in (75)], the exponentials are dominant at k g j=
and g gj j′ → . We note that by its definit ion,
g j pj′ =, ,..., ,1 is always positive, while the original data
g j pj , ,..., ,=1 can be negative. For example, if the back-
ground of the image is small, the mean background is just
above zero, but due to the readout noise, we may find a
large number of pixels with negative values. Negative val-
ues are not allowed in any algorithm with projec-
tion-backprojection operations, like in the classical R-L
algorithm. A preprocessing of the data or other approxi-
mations are common. Using (75), however, approxima-
tion or preprocessing is not needed. In fact,
g j pj′ =, ,...,1 , is a representation of the data that is
positive and close to the data, with a degree of closeness
that depends on the projections ( ) , ,..., ,Hf j j p=1 and
the standard deviation of the Gaussian readout noiseσ. In
this sense g j pj′ =, ,..., ,1 can be considered as a Bayesian
filtered version of the data.

Successive Substitutions
Although the EM algorithm is well behaved, it is difficult
to use in the Bayesian case (mainly with entropy priors)
because it requires the solution of transcendental equa-
tions in the M-step. Instead, it is possible to use the
method of successive substitutions ([17], [31]), which
has been used in image restoration in astronomy (see, for
instance, [47] and [49]). This method allows greater flex-
ibility than other methods and results, sometimes, in rap-
idly converging algorithms.

The successive substitutions method can be described
as follows: given a series of equations with the unknowns
f i pi , ,..., ,=1 in the form

f KF i pi i= =( ), ,...,f 1 , (76)

where Fi is some function and K is a normalization con-
stant, (76) can be transformed into a recursive relation by

( )f KF i pi
k

i
k( ) ( ) , ,...,+ = =1 1f . (77)

Each of the new values of f i
k( )+1 is calculated from all the

known p values of f ( )k , and the complete set is updated at
once. The constant K is obtained by invoking the energy
conservation law:
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� 9. Reconstruction of the image of Saturn using the R-L algo-
rithm.

� 8. Raw image of planet Saturn obtained with the WF/PC cam-
era of the HST.

� 10. Simulated HST wide field camera image of a distant cluster
of galaxies. Four quadrants. Upper left: original, unaberrated,
and noise-free. Upper right: input, aberrated, noise added.
Lower left: restoration, Richardson-Lucy method with noise
suppression, 28 iterations. Lower right: restoration, Richard-
son-Lucy method without noise suppression, 40 iterations. In-
tensities logarithmically transformed.
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This optimization technique has been applied to the
image model defined in (35) and the noise model defined
in (20). The method, as we already know, is the so-called
FMAPE algorithm ([47]). This optimization method has
also been applied to the image model defined in (37) pro-
ducing the FMAPEVAR algorithm or the multiple out-
put channel FMAPE algorithm (see [49]).

As we have already seen in the introduction, Fig. 1
shows in logarithmic scale the “dirty map” of a ra-
dio-interferometric observation obtained with the VLA
of the star LSI + 61 303. Note that the image of the beam
dominates practically all the scene. Figure 2 shows, also in
logarithmic scale, the restoration of Fig. 1 by the FMAPE
method described in the text. The image of the star itself
has been removed to better show the tiny extended
sources surrounding the star.

Figure 11 shows the result of the reconstruction of Sat-
urn in Fig. 8 using a nine-channel multichannel FMAPE
algorithm, that is, nine different hyperparameters α i in
(37). The restoration shows a well-reconstructed image of
the planet and sharp divisions in the rings. By the use of the
variable resolution FMAPE algorithm, noise amplification
was avoided in all regions of the image.

Other Methods
Deterministic techniques to find the MAP for edge pre-
serving priors [see (61)] have been proposed in [3] and
[6], producing the ARTUR algorithm. Stochastic tech-
niques like simulated annealing (SA) have also been used
to restore astronomical images when the noise model is
the one given in (12) and the prior model is the CGMRF
given by (66).

Figure 12(a) shows a96 250× image of Saturn taken at
the Cassegrain f/8 focus of the 1.52m telescope at Calar
Alto Observatory (Spain) in July 1991. Results are pre-
sented in a image taken through a narrow-band interfer-
ence filter centered at the wavelength 9500 Å. Figure
12(b) shows the restoration obtained when using the
modification of SA proposed in [38]. The obtained line
process for this restoration is shown in Fig. 12(c). In all
the images the improvement in spatial resolution is evi-
dent. In particular, ring light contribution has been suc-
cessfully removed from equatorial regions close to the
actual location of the rings and amongst the rings of Sat-
urn, the Cassini division is enhanced in contrast, and the
Encke division appears on the ansae of the rings in all
deconvolved images.

We describe, briefly, here how the pixon based ap-
proach [see (47)] is used to restore astronomical images.
The pixon prior is normally used in combination with a
Gaussian noise model [see (12)] or the noise model de-
scribed in (15). The method starts by finding a restora-
tion (maximum entropy, for instance) to be used as a
starting point for f pseudo in (47). Then, the scales of the

pixons,δ( )i , initially set equal to one in (47), are modified
to increase the posterior probability. This is done taking
into account that by increasing the length of the scales we
increase the pixon prior probability but that will usually
decrease the log likelihood of the data. Once the new
lengths of the scales maximizing the posterior have been
found, a new pseudo image in (47), and so a new restora-
tion, is calculated trying always to maximize the posterior
probability (see [54]).
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(a)

(b)

(c)

� 12. (a) Observed 96 × 250 image of Saturn from Calar Alto
(Spain), (b) restoration by the modified SA algorithm proposed
in [38], and (c) its line process.

� 11. Reconstruction of the image of Saturn using the FMAPE al-
gorithm with nine channels.
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Software and Online Information in Astronomy

Professional Free Software

Comprehensive professional implementations of both R-L
and ME methods for image restoration can be obtained from

IRAF. IRAF (Image Reduction and Analysis Facility) is a general
purpose software system for the reduction and analysis of astro-
nomical data. IRAF is written and supported by the IRAF program-
ming group at the National Optical Astronomy Observatories
(NOAO) in Tucson, AZ. NOAO is operated by the Association of
Universities for Research in Astronomy (AURA), Inc. under coop-
erative agreement with the National Science Foundation. IRAF is
freely available on all common platforms via anonymous ftp from
the server at http://iraf.noao.edu (see also the mirror at
http://ecf.hq.eso.org/iraf/web). The software for image restora-
tion can be found in the STSDAS package stsdas/analysis/re-
store. There, the reader will find implementations for the R-L
method (Lucy), an implementation of the ME method (MEM),
the primitive Wiener filtering Fourier linear method (Wiener), and
the CLEAN method of PSF fitting and removal (clean).

Extensions of the R-L algorithm PLUCY, CPLUCY and GIRA can
also be obtained. PLUCY is available under IRAF stsdas/contrib
package. Using the code available at ftp://ecf.hq.eso.org/
rhook/cplucy CPLUCY can be incorporated into IRAF. The IRAF
implementation of GIRA is under construction.

Several restoration algorithms including the R-L one in a
multiresolution context can be obtained from the ESO-MIDAS pack-
age. ESO-MIDAS is the acronym for the European Southern Obser-
vatory Munich Image Data Analysis System which is developed by
the European Southern Observatory (see http://www.eso.org/pro-
jects/esomidas) The ESO-MIDAS system provides general tools for
image processing and data reduction with emphasis on astronomi-
cal applications including imaging and special reduction packages
for ESO instrumentation at La Silla and the Very Large Telescope at
Paranal. In addition it contains applications packages for stellar and
surface photometry, image sharpening and decomposition, statis-
tics and other packages. ESO-MIDAS is available under the GNU
General Public License (GPL). In particular, the Richardson-Lucy im-
plementation is under the LUCY/WAVE package.

In radio astronomy the most widely used image processing sys-
tem are the AIPS/AIPS + + packages. The AIPS, Astronomical Image
ProcessingSystem, is a softwarepackage for calibration,dataanalysis,
imagedisplay, plotting, andavarietyof ancillary tasksonastronomical
data. It comes from the National Radio Astronomy Observatory. Al-
though it is primarily for radio astronomy, AIPS has also routines for
general image processing. AIPS + + (C + + based) is a software to
process (again primarily radio) astronomical data. It is developed by
an international consortium of observatories. AIPS/AIPS + + pack-
ages are available at http://www.cv.nrao.edu/aips and
http://aips2.nrao.edu, respectively.

Commercial Software
In recent years the number of commercial companies offering
software for image deconvolution and restoration for astron-
omy has increased dramatically. Some companies offer soft-
ware directly specialized while others offer software that
includes image deconvolution as a part of a general package.
Here we present only some of them.

Special software for ME image restoration (MEMSYS) has
been commercially available for a long time. The MEMSYS pack-
age is produced by Maximum Entropy Data Consultants Ltd.
(MEDC) (see http://www.maxent.co.uk). MEDC was created in
1981 by two Cambridge University academics: John Skilling, of
the Department of Applied Mathematics and Theoretical Phys-
ics, and Steve Gull of the Department of Physics. The company
specializes in custom and semicustom software for Bayesian
Data Analysis, including the maximum entropy method and
massive inference. Applications include image processing, us-
ing either direct or Fourier data (deconvolution, reconstruction
from sparse data, motion deblurring, etc.). MEMSYS is also avail-
able through the Starlink system (http://star-www.rl.ac.uk).

Multi Resolutions Ltd. (http://www.multiresolution.com)
offers the commercial wavelet packages MR/1 and MR/2 which
include many deconvolution methods such as Lucy, MEM, the
regularized Lucy method, and the multiscale entropy method
for demanding and high-performance scientific, engineering,
medical, financial, media and biological applications.

Pixon LLC (http://www.pixon.com/) offers software to re-
store images using the pixon approach. The company offers
software for several geometric-based data sets such as images.
Applications include image reconstruction in astronomy. The
software also includes application to other imaging systems
such as medical, geophysical, surveillance, radar, and sonar.

Most of the foregoing packages run on PC Windows platform
and here are a few more: CCDSOFT of Software Bisque
(http://www.bisque.com) which includes the R-L algorithm;
MAXIMDL of Cyanogen Productions Inc. (http://www.
cyanogen.com) which includes a version of the ME method and
ASTROART of MSB software (http:// www.msb-astroart. com)
which includes versions of R-L and ME methods.

Online Information
A few web areas which can be used as a starting point in the
search for data, bibliographies, and software are as follows.

AstroWeb: Astronomy/Astrophysics Resources on the
Internet can be accessed from http://www.cv.nrao.edu/fits/
www/astronomy.html and a number of mirror sites. AstroWeb
currently contains about 3000 distinct resources.

The American Astronomical Society, http://www. aas.org, can
be used as starting point for major meetings and other resources.
The International Astronomical Union, the association of profes-
sional astronomy, is at http://www.iau.org and includes an on-
line directory of members worldwide.

The most useful tool for searching and retrieving bibliogra-
phies is The NASA Astrophysics Data System. The Astrophysics
Data System (ADS) is a NASA-funded project with an Abstract
Service, which includes four sets of abstracts: 1) astronomy and
astrophysics, 2) instrumentation, 3) physics and geophysics, and
4) Los Alamos preprint server. Each data set can be searched by
author, object name (astronomy only), title, or abstract text
words. In addition, it is possible to retrieve scanned images of
over 40,000 articles appearing in most of the major astronomical
journals. This service is available at http://adsabs.harvard.edu. A
preprint repository is at http://xxx.lanl.gov.
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Optimization of the Results
The optimization of the algorithms presented above re-
quires us to address several questions related to the speed
of convergence of the iterative algorithms toward the
maximum, the relative weight of the prior and the condi-
tional probability and the stopping point of the maximi-
zation/minimization.

Acceleration of the Algorithms
Almost all the iterative image reconstruction algorithms
have the problem of slow convergence rate. This is espe-
cially important in the algorithms based on the EM algo-
rithm and on the successive substitutions.

Techniques for accelerating the classical R-L method
have been discovered independently by several authors
(see, for example, [71], [24], and [28]). The basic idea is
to substitute (73) by
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where the value of A is chosen to maximize the likelihood
given by (18). If A=1, then (79) reduces to the standard
R-L algorithm. Interesting ideas on acceleration have
also been applied to the FMAPE algorithm and described
in [48] and [49].

Adjustment of the Hyperparameter
and Stopping Rules
An image is defined as strongly feasible if the data can be
considered as a Poisson (or Gaussian) sample with means
given by the projection of the image. An image is defined
as weakly feasible of order n if the first n moments of the
distribution are consistent with the Poisson/Gaussian hy-
pothesis. Tests based on the feasibility criteria have been
implemented. The most usual is the χ 2 test which for
pure Poisson data has the form
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These tests give as a result the desired Bayesian
hyperparameter and/or a stopping point for the algo-
rithms. To work well, however, two conditions should
be met: a) the hypothesis about the data (Poisson/Gaussi-
an) should be satisfied by the true statistics of the data,
and b) the PSF should be perfectly known.

The feasibility tests work well with computer gener-
ated data in which it is possible to control the statistics
and the PSF is exactly known. The feasibility tests often
fail with real data, however, because the nature of the sta-
tistics and the PSF are not sufficiently well known. Dis-
turbances caused by readout noise, corrections for

geometric distortion, flatfield corrections, detector
failures, reseaux marks, etc. contribute to that. Also, the
image of a field star, often used as PSF, has its own noise,
background, different color, etc. A robust alternative to
feasibility is cross validation.

The likelihood cross validation [8] is a new approach
that answers the questions posed above in a more robust
way. Núñez and Llacer have applied the cross-validation
technique successfully in both medical emission tomog-
raphy and astronomy (see [47] and [49] for details).

The minimization of the functional M( ( ), )α f f defined
in (58) together with the estimation of the weighting ma-
trices there and the corresponding hyperparameter have
been addressed by Katsaggelos et al. ([22], see also [23]
and [1]).

Finally, we would like to mention that it is also possi-
ble to treat the unknown parameters of the image and
degradation models as realizations of given distributions
and then apply the so-called hierarchical Bayesian ap-
proach to estimate both the image and the unknown pa-
rameters (see [34] for the application to astronomical
images and  [37] for the general framework).
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