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Reconstructing Images From Their Most
Singular Fractal Manifold

Antonio Turiel and Angela del Pozo

Abstract—Real-world images are complex objects, difficult to
describe but at the same time possessing a high degree of redun-
dancy. A very recent study [1] on the statistical properties of nat-
ural images reveals that natural images can be viewed through dif-
ferent partitions which are essentially fractal in nature. One par-
ticular fractal component, related to the most singular (sharpest)
transitions in the image, seems to be highly informative about the
whole scene. In this paper we will show how to decompose the
image into their fractal components. We will see that the most sin-
gular component is related to (but not coincident with) the edges
of the objects present in the scenes. We will propose a new, simple
method to reconstruct the image with information contained in
that most informative component. We will see that the quality of the
reconstruction is strongly dependent on the capability to extract
the relevant edges in the determination of the most singular set. We
will discuss the results from the perspective of coding, proposing
this method as a starting point for future developments.

Index Terms—Coding, edge detection, fractal, multifractal, re-
construction.

I. INTRODUCTION

EDGE detection is a common feature of the mammals’ vi-
sual neural system [2], [3]. It has been proposed that edge

detectors could be used to provide efficient coding algorithms
[4] and in fact maximization of the information transfer lead
to orientational edge-detecting filters [5]. However, providing a
reasonable, nonconventional definition of “edge” is more con-
troversial [6].

A different strategy to produce efficient coding can be that of
the statistical analysis of images [7], [8]. This kind of analysis
implies to identify the origin of redundancies (like that of the
power spectrum [9]) to devise redundancy-reducing codes (as
in [10], [11] for the case of the power spectrum).

In the last years a new statistical study has arisen, that of mul-
tifractals in natural images [1], [12]. The multifractal scheme
provides a richer framework than that of the simple character-
ization of the power spectrum. This scheme makes possible to
split any image into a collection of fractal sets, from which one
of them is supposed to be the most informative [1]. Not surpris-
ingly, that set is usually edge-like [1], [13].

In this paper we will make use of the multifractal scheme
to obtain the most informative component. We will propose a
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method to reconstruct all the image just using information con-
tained in this set. We will design this method by requiring it to
have several reasonable features. We will study its theoretical
properties and discuss its experimental performance over real
data.

The paper is organized as follows: In the following Section
some notations and the methods are defined. Section III is de-
voted to review the multifractal scheme. In Section IV the re-
construction procedure is issued and in Section V the quality of
the method over real natural images is tested and discussed. The
statistics about the computer implementation of the new tech-
niques issued are presented in Section VI. In Section VII we
discuss the results and some of the possible improvements. Fi-
nally, the conclusions are presented in Section VIII

II. NOTATION AND METHODS

We will denote the recorded field of luminance intensities as
. We will work with an additive normalization of it, the

global contrast field, which is defined as

(1)

where is the average luminosity over the image. So, the av-
erage of over any image vanishes.

As monochrome test images we will make use of several pic-
tures taken from Hans van Hateren’s web database (see [14]
for technical details). In all the cases we will work on sev-
eral 512 512 patches from those scenes. We will also use the
512 512 resolution greylevel version of Lena’s picture to il-
lustrate several examples.

The determination of the multifractal structure of each
image was made by means of wavelet analysis [15], [16]
using wavelets from the family [1]
for and averaging the resulting coefficients.
The distribution of exponents was computed for each image
recording the relative frequencies. The most singular exponent
was computed as the mean of the 1% and 5% quantils. The
dispersion around this value is conventionally fixed in a
convenient value, depending on the image.

III. FRACTAL DECOMPOSITION OFIMAGES

There are several equivalent ways to show that natural images
possess multifractal structure. One possibility consists of con-
structing a positive measure, which assigns a positive value to
any set . The measure can be defined by its density as:

(2)
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We will define a measure which takes into account the sharp
transitions found inside each area. Following [1], we will define
the measure density as

(3)

The measure gives an idea of the local distribution of the gra-
dient of and its inhomogeneities across the image. It is possible
to use it to characterize the behavior of any particular pointby
observing the evolution of the measure of balls centered on.
By we will denote the ball of radiuscentered on . The
measure is said to define a multifractal if at each pointin the
image, the measure can be characterized by a local singularity
exponent in the way

(4)

where means a term which is negligible in compar-
ison with for small values of and is the di-
mension of the space. For a multifractal measure, (4) determines
uniquely the coefficient and the exponent : they can
be obtained by linear regression of versus .
The coefficient depends on some arbitrary choices, like
the particular metrics used to define the ballsand the scale
unit for and it provides no information about the changes in
scale. On the contrary, the exponent is independent of the
metrics and scaling unit and gives all the information about the
evolution under changes in scale (changes in; see [1] for a full
discussion of the interpretation of ). We will see that there
exist better choices than to complement the information
provided by (for instance, the value of over a partic-
ular subset).

Natural images have been shown to exhibit multifractal be-
havior with the measure defined in (3) (see [1], [13]). However,
in practice, a direct application of log-log linear regression on
(4) yields rather coarse discrimination of the exponents, spe-
cially due to discretization of the values in the radiusfor the
balls (see [17] for a discussion about how to deal with discrete
circles). The standard technique used to circumvent this diffi-
culty involves the use of wavelet projections as singularity an-
alyzers. Let be an appropriate function and let us define the
wavelet projection of over at the point and
scale as

(5)

It can be proven [15], [16] that for multifractal measures (i.e.,
those verifying (4)) the wavelet projections also scale
as power laws in , namely

(6)

where is the same as in (4) but depends on the
choice of . The exponents are obtained as the slope of
the linear regression of versus . This method
has very good performance in practice [1], [13].

The existence of a multifractal measure implies a strong hi-
erarchical organization in images. This “multiple-fractal” char-
acter shows up when the image is split in the different singular

components , being these formed by the points sharing the
same singularity exponent

(7)

The components are observed to have nontrivial fractal
dimensions [1], which can be predicted from statistical
properties of the images [18]. For that reason, those sets are
usually called the fractal components of the image (see Fig. 1).
Over real images, a direct numerical estimation of for each
fractal component is possible once the multifractal decomposi-
tion is performed. However, some popular techniques as that
of box-counting dimension (see [19] and references therein)
lead to overestimated values of the dimension because fractal
components are usually topologically dense. For that reason,
in many contexts [20] it is preferred to analyze the statistical
structure with wavelet-based techniques to obtained the correct

.
Fortunately, for wide collections of natural images the ob-

served multifractals belong to the class of the log-Poisson multi-
fractals [1], [12], [21]. The function (usually calledsingu-
larity spectrum) of log-Poisson multifractals can be described in
terms of only two free parameters and so no complicated tech-
niques are necessary in its determination. The general expres-
sion for a log-Poisson singularity spectrum is given by [1]

(8)

where . The two required free pa-
rameters are the minimum possible exponentand the dimen-
sion of the fractal component associated to it,
[1], [12]. That fractal component, denoted , is called
the most singular manifold (MSM).

The MSM plays a fundamental role in the context of multi-
fractals in natural images. It is usually observed [1], [12], [13]
to be of dimension 1.0 but with noninteger singularity exponent.
Visual inspection of this set reveals a structure which resembles
the “edges” or contours present in the scene [1], [13], which
would take account of the dimensionality 1.0 of the set (Lena’s
image has also ; see Fig. 1). For that reason, we will
always assume that , so to define completely the multi-
fractal we will just need to calculate (which is estimated as
explained in Section II).

As log-Poisson multifractals can be described in terms of the
parameters defining the MSM, it was proposed in [1] that the
MSM could contain the majority of or all the information con-
veyed by the image. This would imply, for instance, that the
second and third manifolds represented in bottom of Fig. 1 could
in fact be calculated from the first (top right). We will see in the
next section that it is possible to propose a propagator for recon-
structing the images from information which is contained in the
MSM.

IV. DETERMINISTIC RECONSTRUCTION

We will propose a simple, deterministic propagator for the
multifractal measure from its restriction to the MSM. So, we
should consider the measure density and reconstruct it
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Fig. 1. (From top to bottom and left to right): Lena’s image, MSM (taken as
the set of points for whichh = �0:5 � 0:05; D(�0:5) = 1:0 according to
log-Poisson model); second MSM (h = �0:4� 0:05,D(�0:4) = 1:42); and
third MSM (h = �0:3� 0:05,D(�0:3) = 1:65).

from its values over . The choice of the propagator is made
under the requirement of verifying the following five conditions:

1) it is deterministic;
2) it is linear;
3) it is translationally invariant;
4) it is isotropic;
5) it leads to the observed power spectrum.
Under this set of assumptions, which we will next explain,

there exists only one possible propagator. This theoretical prop-
agator (that we will also call “reconstructor”) will or will not
reconstruct the image from the data, which should be experi-
mentally checked. Now, we will construct the propagator fol-
lowing the properties we have required.

The deterministic character of the reconstruction allows to
consider the propagator not as a random variable at each point,
but as an actual function of its arguments. The following expres-
sion holds:

(9)

that is, the value of at any point is a function of the values
of over the MSM.

The linearity of the propagator forces us to work with the
gradient of the contrast, , instead of its modulus (the modulus
is a nonlinear operator). Anyway, the gradient itself contains
more information than its modulus, so if the reconstruction is
possible from the modulus, it is also possible from the gradient.
Hence it follows that there exists an integral representation for
the function in the way

(10)

where means line integration along the MSM. We are
representing the linear operator by means of its density, denoted

. That density is a 2 2 matrix; we will represent the
matrix element as where . If we denote
by , the components of , the vector

can be represented also by its coordinates
where

(11)

The vector represents the vectorial density of the gra-
dient, because when integrated over the MSM it turns out the
value .

Thetranslational invarianceis a usual requirement in image
statistics, meaning that there is not a preferred place in which
objects could be expected to be found at natural scenes. Its ex-
perimental extent is limited due to the finite size of images. In
terms of the integral representation, (10), it implies that the op-
erator density is in fact a function of , that is

(12)

In fact this equation can be simplified to a scalar equivalent: the
left hand side is a gradient (perhaps in a distributional sense, as
the contrast is discontinuous), so its curl vanishes: .
This property is translated to the reconstructor, in the way

(13)

which implies

(14)

that is, is the gradient of a vector. So (12) can be simply
expressed as

(15)

The above equation can be rewritten in a very useful form
defining the field as

(16)

where stands for the density of the proper Hausdorff
measure restricted to the set (a delta function over the lines
defining ). In this way, (15) becomes a convolution, because
now the integration is performed over all the space and no longer
over the lines of the MSM (the restriction is indeed still present,
but now it is introduced by the field ), that is

(17)

where stands for the convolution operator. So, the reconstruc-
tion formula is elegantly expressed in the Fourier space as

(18)

which is an integral equation equivalent to (15); let us notice that
“ ” means the scalar product of the complex vectors. Recall that
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now the boundary conditions are contained in the vector field
, which depends on the particular image to be reconstructed.

The reconstructor is defined by the complex vector field .
It is thus natural to require the reconstructor to beisotropic,

as the particularities of the image are already contained in
and we think that is an universal propagator. This implies that

(19)

where stands for the modulus of the propagator. Because
of the isotropy, can only be a function of the modulusof
the frequency vector.

To define completely the propagator, we recall a well estab-
lished property of natural images, namely the scaling of their
power spectrum (see [9]), which is

(20)

where is a nonuniversal, small exponent which depends on the
particular image ensemble considered (see for instance [22]).
The simplest possible is then given by , that is

(21)

where by we denote the imaginary unit, . The mod-
ulus of the Fourier transform of the contrast is then given by

, where has a weak
dependence on and varies from one image to another. Hence,
according to the definition of the power spectrum

(22)

so the term gives rise to the factor while the factor
introduces the particular anisotropies of the image and

would give rise to the weak dependencein (20). So finally
(21) defines our propagator and the reconstruction formula,
(18), reads

(23)

Practical application of (23) on discretized images is quite
simple. The procedure is as follows.

1) The singularity exponents at each point on the
image are computed as in [1].

2) From the distribution of singularity exponents the value
of the most singular exponent is calculated as the
average of the 1% and 5% quantils. The dispersion
around this value is conventionally fixed (0.2 is usually
a good choice).

3) We define the density function as 1 if the exponent
associated to the point can be considered as the

most singular one (i.e., )
and 0 otherwise (i.e., or

).
4) We compute the gradient and we obtain the essential

vector field as (that is, it equals

Fig. 2. Left: Reconstructing manifold for Lena’s image. It was taken as the
set of points with exponenth = �0:5� 0:2. Right: Reconstruction of Lena’s
image from its reconstructing manifold (PSNR: 24.52 dB).

the gradient over the MSM and it vanishes outside the
MSM)

5) The bidimensional vector field is Fourier trans-
formed to obtain the complex bidimensional vector field

6) The scalar product with the frequency vector
is computed:

7) The complex number so obtained is multiplied by the
imaginary unit and divided by
to obtain . An anti-Fourier transform provides the re-
constructed .

The reconstruction formula has a very interesting property:
no matter the image considered, (23) allows reconstructing the
correct provided that the set (which defines ) is large
enough: if is taken as the whole image, and (23)
turns out to be a trivial identity. The question is if natural images
allows reconstruction considering a rather sparse set: the
MSM.

V. EXPERIMENTAL PERFORMANCE

The experimental application of the reconstruction formula is
very simple. First, the singularity exponents are computed
for each point in the image analyzed. Then, the least exponent

is found and the associated MSM is isolated. To compute
the field , we compute the gradient ; according to (16)
equals over the MSM and zero outside. The application of
the reconstruction formula, (23), in the Fourier space is then
straightforward.

In Fig. 2 we show the field which was obtained from a
coarse version of the MSM. It is rather unclear which should
be the appropriate quantization noise in and we have
taken the one which allows a reasonable reconstruction out of
the MSM; the central value , however, is well determined: it
is fixed by the 1%–5% quantils average described in Section II.
It could be argued that in fact there is no a sparse MSM capable
of reconstructing via the reconstruction formula, but a collec-
tion of sets of increasing size obviously reconstruct better and
better. However the problem seems to be the quality of the edge
detection. In Fig. 3 the error image for Lena’s picture is shown.
The error image is defined as the difference between the orig-
inal contrast and the one generated reconstructing from the
MSM, . This error image seems rather fuzzy and the only
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Fig. 3. Left: Error image for Lena’s picture. This image can also be generated
from the complementary of the reconstructing manifold. The level of contrast
of this image has been linearly increased to enhance the details. Right: Ratio
power spectrum of the error image—power spectrum of the image, for Lena’s
image (continuous line) and its average over the 512� 512 central patches
of 1000 random van Hateren’s images (dashed), in semi-log plot. The power
spectra were radially averaged. The error concentrates in the higher and the
lower frequencies.

recognizable features are, precisely, the edges that were not pre-
viously detected.

The performance of the reconstruction over Lena’s image
seems good, but the quality is probably lowered by the (un-
known) filters applied on that particular image. This is reason-
able because filtering damages the natural propagation of light,
thus the reconstruction is likely to work much better on non-
processed natural images. In this spirit we repeated the process
with other, non—filtered images (see Fig. 4 for several exam-
ples). The general performance is good, although if one border
is lost (at the time of edge detection) so it is all the structure
associated to it, which seems quite reasonable. This problem
could have also to do with fluctuations in the multifractal struc-
ture [21].

The quality of the reconstruction thus varies largely from one
place to the other in the image: at those places in the neighbor-
hood of a lost edge the differences between the reconstructed
contrast and the original one, , are large; at the
places contained inside of a well defined object, the differences
are small. To give a reasonable measure of this inhomogeneus
error we computed the ratio of the power spectrum of the error
image to the power spectrum of the original contrast; the result
is shown in Fig. 3. It seems that the error is inhomogenously
distributed across the frequencies, being more important at
lower and higher frequencies. This fact could correspond to
raylight spreading effects caused by the loss of some edges
(lower frequencies) and the loss of the edges itself (higher
frequencies).

VI. COMPUTATION STATISTICS

We ran all our programs over a DEC WorkStation at 500 MHz
working under UNIX and always for 512 512 images. All the
programs are written in C but they are not optimized. The pro-
grams used to isolate the fractal components (the MSM in par-
ticular) took 27 s to produce the output files, with a peak of
memory use of 13 Mb. The computation of the reconstruction
data (the vector field ) took 10 s and 9 Mb of memory usage.
The reconstruction out the vector field took an insignificant
amount of time, under 3 s and a memory usage of 9 Mb.

Fig. 4. First row: (from left to right) 512� 512 patches from Hans van
Hateren’s images imk01964.imc, imk04089.imc and imk03322.imc. Second
row: their most singular manifolds (h = �0:5 � 0:15). Third row: Their
reconstructions (PSNRs: 31.30, 31.79, and 27.03 dB, respectively).

The MSMs were recorded as two-color images (e.g., black
for the MSM, white for its complementary). A measure of the
complexity of the MSM was given by its density, that is, the
number of points belonging to the MSM with respect to the total
number of points. We will call that density “edge density.” The
edge densities range from 10% for simple images to 40% for
very complicated images, the values ranging from 25 to 30%
being typical. According to the mentioned values of density,
a naif coding of the vector is then almost not useful from
the point of view of compression, as this vector involves two
numbers (two coordinates) for location of the MSM (however,
the vector varies smoothly along the edges and it is almost
perpendicular to them; two facts we will use to devise better
codings in next works)

The PSNRs of the reconstructions ranged from 20 to 40 dB,
the range 27–35 dB being typical. This value is not obviously
related to those of the edge densities, being observed low edge
density images with excellent PSNRs and high edge density im-
ages with poor PSNRs. We concluded that the quality of the re-
construction is apparently independent of the edge density.

VII. D ISCUSSION

This description of the image out of the MSM seems to be,
at least, a reasonable first order approximation. There are three
possible interpretations for the observed deviations and so three
possible ways to correct them.

1) The reconstruction formula is correct and the deviations
are due to lack of accuracy in the computation of the
MSM the computation of the MSM should be im-
proved.

2) The reconstruction formula is correct, the MSM is cor-
rectly computed, but the MSM alone does not describe
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completely the image the other informative structures
should be identified.

3) The reconstruction formula is not correct, but the MSM
contains all the relevant information an improved re-
constructor should be proposed.

The first possibility implies that better techniques of edge de-
tection should be devised to take all the potential out of this
technique. The second possibility would probably mean a devi-
ation from the Log-Poisson model, which is contradictory with
the present experimental evidence (see [1], [12]), unless those
deviations are very small but significant in the context of each
image. The third possibility could be interesting to start a new
program.

VIII. C ONCLUSIONS

In this paper we have reviewed the multifractal formalism
applied to real world natural images, which allows to split the
image into a collection of fractal sets. These fractal components
can be described using just one of them, namely the Most Sin-
gular Manifold (MSM). We have proposed a propagator to re-
construct the whole image using the gradient over the MSM. We
have discussed the validity of this method and its quality over
real data. Besides, we have proposed three different ways to im-
prove the performance.

The relevance of the MSM as the most informative set in the
image (already proposed in [1]) emphasizes the role of the con-
tours and the objects in natural images, which could be con-
nected to other coding algorithms [5] and with biological ob-
servations [2], [3].

The possible applications of the method presented here go
from coding schemes for real world images to image processing
and analysis.
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