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Gas Identification with Tin Oxide Sensor
Array and Self-Organizing Maps:

Adaptive Correction of Sensor Drifts
Santiago Marco, Arturo Ortega, Antonio Pardo, and Josep Samitier

Abstract—Low-cost tin oxide gas sensors are inherently non-
specific. In addition, they have several undesirable characteristics
such as slow response, nonlinearities, and long-term drifts. This
paper shows that the combination of a gas-sensor array to-
gether with self-organizing maps (SOM’s) permit success in gas
classification problems. The system is able to determine the
gas present in an atmosphere with error rates lower than 3%.
Correction of the sensor’s drift with an adaptive SOM has also
been investigated.

Index Terms—Data fusion, drift, gas sensors, neural networks,
pattern recognition, SOM, tin oxide.

I. INTRODUCTION

A NALYSIS of gas atmospheres can be carried out by
means of low-cost tin oxide gas sensors [1]. While the

recognition of the components can be based in highly specific
chemical analysis techniques, it is attractive to combine the
responses of a set of different low-cost, nonspecific sensors
(sensor array) to achieve an ensemble performance, which
outdoes that of the individual sensor. This idea is the ori-
gin of the systems known as electronic noses which try to
imitate the mammalian olfactory system [2]. However, signal
processing strategies and algorithms should be developed in
order to correct nonlinearities, drifts, low selectivity, and other
problems inherent to the actual sensors [3]. This approach can
be considered as a particular application of multisensor data
fusion: the set of techniques which seeks to combine data from
diverse sensors to perform inferences that may not be possible
from a single sensor alone [4]. This rationale is behind many
different applications in military problems [4], remote sensing
[5], or robotics [6].

In electronic noses, data fusion is crucial for success.
Commercial CO gas detectors for domestic applications, based
on a single gas sensor, have a false alarm ratio about 75%
mainly due to alarm triggering by interfering gases because
of the nonspecific characteristic of sensors [7]. Sensor arrays
followed by proper intelligent processing can greatly improve
this poor behavior.

Neural networks are powerful signal processing tools in
this research area [8]–[10]. Due to the sensors nonlinearity,
researchers in gas sensor arrays have focused their work on
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the use of nonlinear data processing systems. There have
been consistently good reports of the application of neural
techniques compared with conventional linear chemometric
techniques. With quantitative analysis in mind, feedforward
neural networks with a backpropagation training algorithm
usually offer better results than multivariate regression analy-
ses [9]. In pattern recognition (gas or odor classification), fuzzy
neural networks [10] and self-organizing maps (SOM’s) [11]
improve linear discrimination techniques. The performance
of gas sensor arrays plus intelligent processing has been
assessed in many different atmospheres and odors. However,
this diversity hinders easy comparison of the achieved results
which are usually dependent on the data processing conditions
which can be suboptimal. In the present work, we show a
thorough study of the practical application of a SOM neural
net for the classification of combustion gases.

II. EXPERIMENTAL

For the identification of combustion gases we have used an
array of six commercial tin-oxide sensors (Figaro Engineer-
ing): TGS822 (1), TGS813 (2), TGS815 (3), TGS812 doped
with Mn (4), TGS812 doped with Cr (5) and TGS812 (6).
The doping method is described elsewhere [12]. The number
indicates the key for the following graphs and tables.

The experimental equipment consists, basically, of the gas
bottles, mass flow controllers (MFC’s), the sensor chamber,
and a computer that controls the experiment. Gases used in
the experiment are dry air diluted solution of methane ({600
to 19 300} 10 ), carbon monoxide ({50 to 1000} 10 ),
carbon dioxide ({700 to 20 000} 10 ), hydrogen ({500 to
15 000} 10 ), and two binary mixtures: hydrogen-carbon
monoxide ({1000 to 10 000} 10 and {50 to 800}
10 , respectively), and methane-carbon monoxide (1000 to
10 000 10 and {50 to 800} 10 , respectively). Gas
concentration in the sensor chamber is adjusted by selecting
the correct flow ratio for different gases while keeping the
total flow constant (200 ml/min). The measurement procedure
consist on two steps: first, 20 min with the test gas and
80 min with dry air for purging purposes. The measurement
sequence is a ramp of increasing concentrations followed by a
decreasing ramp, to test for reproducibility and hysteresis. The
sensor’s conductance is measured every 20 s while keeping
the heating voltage constant to 5 V. More details of the
experimental setup can be found elsewhere [12].
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Fig. 1. (a) Normalized conductance against hydrogen concentration, (b)
Hysteresis cycle for methane (o: sensor TGS813,+: sensor TGS815).

III. PATTERN RECOGNITION SYSTEM

To succeed in gas classification, it is essential that every
sensor exhibit a different pattern of sensitivities to the possible
gas components. Moreover, the recognizer has to be robust
against the usual problems for these sensors. Fig. 1 shows
an example of their static characteristics: conductance against
concentration for hydrogen. Maximum nonlinearities of the
order of 20% full scale appear and maximum hysteresis of
5% full scale. In addition, we were looking for a fast and
stable recognizer, so our system has to cope with the sensing
dynamics. The sensor array system reacts slowly and takes
some minutes to reach the stationary state. This time is a
combination of the time to fill the chamber and the sensors
time response. In addition, some of them do not achieve a
constant value after a gas step, but show a maximum followed
by a slow decay. All these problems result in a dispersion of
the patterns produced by the feature extractor.

TABLE I
CLASSIFICATION SUCCESS FORDIFFERENT NORMALIZATIONS AND SENSORS

SUBSETS. IN EVERY CELL, SUCCESSPERCENTAGE, ERROR PERCENTAGE, AND

UNCLASSIFIED PERCENTAGE ARE SHOWN. BEST RESULTS ARE REMARKED

Sensor array response may be considered as a vector in an
-dimensional space, where is the number of sensors. For

the maximum success in gas classification, vector points corre-
sponding to different gases have to be located in well-defined
and disjoint clusters. However, as sensor responses depend on
concentration, clusters tend to spread. To eliminate this effect,
it is necessary to use some kind of data normalization. For
linear sensors this is an easy task, for instance

where is the sensor conductance. For nonlinear sensors this
normalization does not cancel completely the concentration
dependence, and there are several other possibilities. Some of
them are listed in Table I. Even after this normalization, the
clusters are far from the ideal situation due to this and other
problems mentioned before: hysteresis, dynamic effects, drifts,
etc. It is necessary to use a pattern recognition engine that
separates the regions of the normalized data space as belonging
to different gas classes. As it is impossible to observe the
separation of the clusters in a six-dimensional space, we
have decided to use principal component analysis [13] for
visualization purposes, reducing the dimensionality to two.
However, it is clear that due to the linearity of this technique,
even clusters that appear confused in the 2-D projection may
be separated by nonlinear techniques. We have chosen the
SOM for this task.

The SOM is an artificial neural net with the ability of
creating a spatially organized representation (maps) of multiple
features from input signals in an unsupervised manner, which
resembles the cortices maps topographically organized in
human brain [14]. The architecture consists of a single layer
(rectangular shape) of neurons whose weights represent their
position in the pattern space. During the training process, a
vector from a training set representing a gas pattern
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is presented to the net, the winning neuron (the closest to
the pattern with a Euclidean metric) and its neighbors (the
neighborhood area) change their position, becoming closer to
the input pattern according to the following learning rule:

where are the weights of the neurons inside the neighbor-
hood area, is the index of the neuron, is the index of the
pattern, is the time step, is the learning rate,
is the neighborhood function, and is the distance between
the neuron and the winner measured over the net using a
Manhattan metric. The learning rate and the neighborhood are
monotonically decreasing functions along the training. When
the training has converged, the net has learned the topology of
the input patterns. In other words, neighbor neurons specialize
in neighbor regions of the input space. Moreover, neurons
cluster in the regions where the probability density function
of the patterns is higher. Finally, it is necessary to have a
supervised step to label the neurons. The training patterns are
presented again to the net and the winning neuron is labeled
with the class of input pattern. If conflicts appear, we have
defined a criteria to solve them. First, the class that more
frequently fires the neuron. If conflicts still persist, the labeling
system decides upon the neighbors’ neurons label. During
operation, the winning neuron determines the class attributed
to the gas.

IV. GAS CLASSIFIER DEFINITION AND TEST

Although the architecture of the gas classifier has been
outlined in the previous section, several details need further
work: selection of the best neural net size, selection of the best
data normalization, study of the dynamic effects, and methods
of drift counteraction. We are going to describe first how the
SOM training and recognizer test has been done.

As is usual in these kinds of problems, the data set is divided
in two parts. The first part is used to train the net, and the
second part is used to test the net. Training patterns were
chosen from different pulse concentrations and at different
time points of the pulse response. A larger number of patterns
have been selected from the extremes of the concentration
range and from the initial part of the dynamic response to
give a larger weight to thea priori more difficult cases.
The validation patterns have been obtained among different
concentrations and time points.

During the classifier test, we have often found that a subset
of sensors provides better results than the full set. In addition,
this subset can be different depending on the chosen data
normalization. The underlying reason can be seen looking
at the patterns produced by each gas. From PCA plots, the
main difficulties for classification are the detection of CO in
the presence of CH, the detection of CO in the presence
of H ,, and the detection of COthat is confused with air.
We compare the patterns produced by these combinations and
select those sensors whose outputs are maximally different. For
instance, in Fig. 2 we show the patterns for CO and CHCO
corresponding to normalization 1. It can be observed that if

Fig. 2. Polar representation of the patterns for CH4 (solid) and CH4+CO
(dashed).

Fig. 3. Pattern (dots) and neuron distribution (symbols) in the PCA projec-
tion after the SOM training. Normalization N1 and sensors: 23 456.

the presence of CO has to be detected in an atmosphere of
CH , sensor six has to be included in the array.

After training an 8 8 map with 210 patterns (produced
by the sensor subset 23 456 with normalization 1) the position
of patterns and neurons are shown in Fig. 3 as a PCA
projection. The results have been obtained with 315 patterns
and are presented in Table I. Each cell within the table
presents percentage of recognition, the classifier errors, and
unclassified samples. These unclassified samples corresponds
to the activation of neurons without an assigned label. In the
best case, normalization N1 sensors 23456, success of 98.7%
is achieved compared to 95.6% if all the sensors are used. The
usual system errors are the undetection of CO in the presence
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TABLE II
CLASSIFICATION SUCCESSDEPENDENCE ONNETWORK SIZE. SUCCESS, ERROR,

AND UNCLASSIFICATION PERCENTAGE ARESHOWN. BESTRESULTS AREREMARKED

TABLE III
CLASSIFICATION SUCCESSDEPENDENCE ON THETRAINING

SET SIZE. SUCCESS, ERROR, AND UNCLASSIFIED

PERCENTAGE ARE SHOWN. BEST RESULTS ARE REMARKED

of hydrogen or methane, and the usual unclassification is the
nonrecognition of air. Table I evidences the importance of
choosing the right sensors and normalization procedure.

To assure the goodness of the SOM, we tested the net size
and the influence of the training and validation data set size.
It is known that the number of neurons needed increases with
the complexity of the pattern set statistics. From Table II we
observe that the maximum in classification success is obtained
for an 8 8 net. It may be inferred that there is an optimum
number of neurons and it is unnecessary to increase the net
size, as 64 neurons are enough to retain the statistics of the
input space.

About the training set size: one may expect that the effi-
ciency of the SOM may improve with an increasing number of
training patterns, but as shown in Table III, there is minimum
number for succeeding. Furthermore, one additional goal is to
reduce the training set as much as possible due to the high cost
of the calibration data set. Regarding the validation set size, the
increase from 315 to 525 patterns does not show significative
changes. On the other hand, we have tested the influence of
the sensor’s hysteresis on the system performance. This test
has been carried out adding 25% of measurements from the
decreasing concentration ramp in the validation set, resulting in
minor differences (98.9% compared with the previous 98.7%).
These results confirm the robustness of the recognizer.

Concerning dynamic effects, one possible goal in pattern
recognition is to achieve reliable results as fast as possible. In
order to study the influence of time response in the success
classification percentage, what we have done is to select
patterns from different time points of the sensor responses
and perform the validation on them. The selected patterns
are classified in three groups: times lower than 3 min, times
between 3 and 7 min, and times greater than 7 min (time
referred to the rising edge of the concentration step). While
the best results (normalization 1, sensors 23 456) have been
obtained with times between 3 and 7 min (Table IV), it is
remarkable that for times lower than 3 min, only a minor

TABLE IV
CLASSIFICATION SUCCESSALONG TIMES. SUCCESS, ERROR, UNCLASSIFIED

PERCENTAGE ARE SHOWN. BEST RESULTS ARE REMARKED

decrease of classification performance has been found despite
the system dynamics. Moreover, short term decays min)
of the sensor response have also a minor influence.

V. LONG-TERM DRIFT COMPENSATION

Chemical sensors tend to show significant variations over
long time periods when exposed to identical atmospheres.
These drifts are due to the aging of the sensors, poisoning
effects, and perhaps fluctuations in the sensor temperature
due to environmental changes (usually sensors are operated
without any control on the internal temperature). These long-
term drifts produce dispersion in the patterns, and it can
eventually change the cluster distribution in the data space,
making useless the internal representation reached by the
SOM net during the training phase. Compensation of these
unpredictable drifts have only recently received some attention
from the scientific community [15], [16]. To compensate the
cluster’s movement due to sensor drifts, we propose to keep the
SOM learning during the normal operation phase. However,
during the operation, the learning rate has to be kept to a
very low value, and in this phase the neighborhood extension
has been reduced to zero: only the winning neuron adapts its
weights. This is similar to the proposal in [15], but while
in this paper the authors use only a neuron by gas class,
we allow an arbitrary number within the SOM size and
depending on the gas statistics. This added flexibility permits
us to cope with more complex pattern distributions in the data
space. Otherwise, with only one neuron per class, the cluster
appearance is controlled by the used metric, while in our case
it can be arbitrary.

The efficiency of this proposal has been tested against sim-
ulated drifts. They have been modeled as: ,
where is the sensor output before the drift experiment, and

has been chosen randomly for every sensor within the
interval ( 0.4, 0.4). These extreme values are in order of the
expected drifts for four year’s operation according Japanese
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Fig. 4. Classification success against drift percentage.

gas sensor manufacturer FIS [17]. is the maximum
number of time steps considered for the drift experiment: 6720.
The learning rate was kept to 0.01. This value has to chosen
as a tradeoff to permit adaptation but prevent the system from
being oscillation prone. The system is tested for classification
success after and with 168
patterns.

First at all, we have studied the robustness of the SOM
against these drifts when no adaptation is allowed: that is,
with the static system. As expected, the success percentage
declines, but it still remains higher than 80% for drifts up to
20%. In comparison, the adaptive net shows almost no success
loss up to the same percentage and even then a less steep
decay. Fig. 4 shows the comparison between both nets for a
gas problem composed of four pure gases and two mixtures.
The final decay is due to confusion in the data space among
the different clusters. However, the final assessment of the
success of our proposal has to wait till it is tested against real
sensor’s drift data.

VI. CONCLUSIONS

From the presented results, we have succeeded in finding
a method which is able to classify the gas with a very low
error rate (<3%). This method is very robust against sensor
nonlinearities, time effects, and drifts. However, error rate
depends on the normalized, selected subset of sensors to form
the array and net size. We have shown with an example how
the best sensor subset can be selected. Concerning time effects,
we have observed that 100% classification success is achieved
in the time window (3–7 min) since gas injection, although
very good results can also be obtained for times lower than 3
min or longer than 7 min. The system is able to distinguish
between air and COdespite the low sensitivity to this gas
of semiconductor sensors. Finally, an adaptive SOM has been
proposed as a solution for the correction of long-term sensor
drifts.
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