
644 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 47, NO. 3, JUNE 1998

Nonlinear Inverse Dynamic Models of Gas
Sensing Systems Based on Chemical Sensor

Arrays for Quantitative Measurements
Antonio Pardo, Santiago Marco,Member, IEEE,and Josep Samitier,Associate Member, IEEE

Abstract—Gas sensing systems based on low-cost chemical
sensor arrays are gaining interest for the analysis of multicom-
ponent gas mixtures. These sensors show different problems, e.g.,
nonlinearities and slow time-response, which can be partially
solved by digital signal processing. Our approach is based on
building a nonlinear inverse dynamic system. Results for different
identification techniques, including artificial neural networks and
Wiener series, are compared in terms of measurement accuracy.

Index Terms—Gas sensor arrays, neural networks, nonlinear
system identification, quartz microbalances, Wiener series.

I. INTRODUCTION

I N the past decade, there has been a growing interest in
low-cost chemical sensors for domestic [1], industrial [2],

and environmental [3] areas. However, low-cost devices such
as semiconductor oxide sensors or polymer coated quartz
microbalances present a number of problems which preclude
their use in critical measurements: strong nonlinearities, slow
time response, and nonselectivity, etc. [4]. A partial solution
to these problems can be obtained by digital signal processing
if an array of different sensors is used [5], [6].

Our system basically consists of a chamber where the
chemical sensor array is installed. The mixture concentra-
tion in this chamber can be changed using variable flow
ratios (see Section II). It can be considered as a multi-input
multioutput system (MIMO) where the inputs are the gas
flows ratios of the r-gases injected in the chamber

and the outputs are the sensors re-
sponses where is the number
of sensors in the array. Note that

(1)

where is the flow of gas .
The measurement equipment based on a chemical sensor

array, plus digital signal processing, to be described in this
paper, is going to recover the normalized input flows from the
sensors outputs (Fig. 1).
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If the sensors were linear and in static conditions, the
transformation between the gas inputs and the sensor outputs
would be given by a matrix

(2)

If perfect selective sensors were used, the transformation
matrix would be reduced to diagonal form. However, real
sensors are nonselective so the transformation matrix has to
be inverted. Moreover, because more sensors than gases are
normally used, the inversion is carried out in a least-squares
sense

(3)

Because the response of different sensors can be highly
correlated, this inversion process can be ill-posed. The re-
sulting estimate of the inputs may be highly sensitive to
noise and disturbances affecting the measured sensors outputs.
Nevertheless, in practical applications, the problems become
more severe because sensors are, in addition to nonselective,
nonlinear, and the measurement can take place in nonstatic
conditions.

One of the main issues of previous works in this field
has been the search for efficient nonlinear static multivariate
models of the sensors [7], [8]. Usually, as we have said,
more sensors than gases in the mixture are used and, con-
sequently, the equation system is overdetermined and the
solution is found by a minimization method (for instance,
Levenberg–Marquardt algorithms [9]). In some cases, feed-
forward multilayer perceptrons have been used to find the
inverse solution [10].

We pretend to use chemical sensor arrays as measurement
units even if the system response is slow compared to input
signal changes. In gas dynamic measurements, in contrast with
static conditions, not only the sensor response is important,
but also the time to fill the room where the sensor array is
installed has to be considered. From a practical point of view,
this chamber has necessarily a finite volume, and its dynamics
cannot be neglected if the gas input signals change rapidly.
Our approach is to build a joint model of the gas sensor array
together with the analysis chamber. Because both the sensors
and the chamber behave as low pass filters, the recovery of
the gas inputs from the sensor array output (deconvolution)
is ill-posed [11]. Moreover, this challenge is hindered by the
bad behavior of the sensors: static and dynamic nonlinearities,
and, in some cases, long term drifts.
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Fig. 1. Measuring system with embedded signal processing.

Fig. 2. Error criterion to estimate the inverse models.

The recovery of the gas inputs from the sensors output
(measurement problem) corresponds to the search for an
inverse dynamical model (inverse filter). In fact, this is a
general measurement problem: the measurement instrument,
or sensor, always distorts the waveform to be measured. In
addition, this measured signal is contaminated by noise [12].
In this case, the objective of digital signal processing is to
recover the original signals (gas-inputs) from the noisy and
distorted observations.

Several procedures can be applied to recover the gas inputs
from the sensor signals. A first method is to obtain, first, a
forward model of the system and then invert this model. In
the estimation of the forward model, the difference between
the sensors output and the model predicted output is used as
an error criterion. Nevertheless, the inversion of the model
is a difficult task if we consider system’s nonlinearities. The
problems to build a forward model of the sensor array as a
nonlinear dynamic system have been considered in a previous
work by the authors [13], [14]. In the present work, we
rather try to identify the inverse system and then apply as
error criterion the difference between the real inputs and the
estimated ones (Fig. 2). This is possible because our test
system permits to control the inputs to the system and, in
consequence, they are known.

Section II introduces the sensors object of this study and
the measurement equipment. Section III describes the different
kinds of test signals used and Section IV describes the different
model structures used to build the inverse system and it
presents a comparative analysis. Finally in Section V we draw
some conclusions.

II. SENSORS AND TEST EQUIPMENT

Four polymer coated quartz microbalances with a funda-
mental frequency of 10 MHz were used to detect a binary
mixture of volatile organic compounds: octane and toluene.
The reagents were purchased as pro-analysis standards from
Merck and Fluka. Each crystal was inserted in an oscillator
circuit. Deposition on, or removal from, the crystal surface
of analyte molecules induce a frequency shift. Stationary-
phase gas materials for gas chromatography were deposited
on the crystal surface in order to exploit the sensing effect.
The following polymers were utilized [15] (acronymous and
producer indicated in parenthesis):

1) Polydimethylsiloxane (PDMS, Wacker-Chemie).
2) Poly(cyanopropyl)methylsoloxane (PCPMS, Hüsls-

Petrarch).
3) Poly(aminopropylcarboxylic acid)methylsiloxane

(PAPMS, 10% amino groups, University of Tübingen).
4) Poly[2-carboxy (D-valine--butylamide) propyl]-

methylsiloxane (Chirasil-Val, 10% valine groups,
University of Tübingen).

A computer controlled scanner allowed the sequential mon-
itoring of each output frequency using a Hewlett-Packard
5334B frequency counter. The sensor array was mounted
inside a 200 ml brass chamber with a large heat capacity. The
temperature was fixed at 303.00.1 K by allowing a liquid of
constant temperature to flow through the outer part of the brass
block. The thermostat used was a microprocessor-controlled
Julabo FP30MH instrument. Test vapors were generated from
cooled bubblers using synthetic air as carrier gas and then
diluted to known concentrations by computer-driven mass flow
controllers. All vapors were mixed and temperature stabilized
before entering the chamber. The total gas flow was constant
with a value of 400 ml/min. The flow of octane and toluene
into the chamber are expressed in the rest of the paper as the
ratio of gas flow to the total flow.

III. EXPERIMENTS

In order to characterize the behavior of the system, we
decided to apply as input signals, step sequences of varying
amplitude for both gases independently. The excitation (diluted
toluene-octane flowing through the chamber) and purging
(synthetic dry air flowing through the chamber) phases had
the same length: 20 min. The setpoints correspond directly
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(a)

(b)

Fig. 3. (a) Static characteristic of sensor 2 (PCPMS) against concentration
of octane. Straight line is plotted to emphasize nonlinearity. (b) Rise time (�)
while filling the chamber and fall time (�) while purging the chamber for
sensor 2 (PCPMS) against concentration of octane.

to concentrations in the range 0–15 000 ppm (increment 1000
ppm). The objective of this part was twofold: to estimate the
settling times and to measure the static input/output charac-
teristic. The responses of PCPMS sensor can be observed in
Fig. 3.

After this initial testing procedure, two experiments were
designed and carried out to identify the inverse model. In both
experiments the flows into the chamber were varied randomly
by changing the setpoints of the mass-flow controllers. (If the
volume of the chamber were zero, the setpoints would define
immediately the gas concentration that the array would sense).
Every minute both setpoints were simultaneously changed.
Sensor signals were recorded also every-minute with 0.1
Hz resolution. Considering the setpoints values as a discrete
sequence, both experiments are described as follows:

(a)

(b)

Fig. 4. “Big net” fully-connected multilayer perceptron and final architecture
after pruning.
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TABLE I
OPTIMUM FIR MODELS: MEASUREMENT DELAY, MODEL ORDER, AND RELATIVE MEAN SQUARE ERROR

Experiment 1 white Gaussian sequences (400 samples) for
both gases with mean values equal to 1000
ppm and standard deviations of 360 ppm;

Experiment 2 white Gaussian sequences (400 samples) for
both gases with mean values equal to 6500
ppm, and standard deviations of 2800 ppm.

These experiments permit the identification of the inverse
system in two different conditions: around two different oper-
ation points: 1000 and 6500 ppm and with small (exp. 1) and
large deviations (exp. 2), respectively.

IV. I NVERSE MODELLING RESULTS AND DISCUSSION

The system dynamics is a combination of the time to
fill and purge the test chamber and the sensor dynamics.
Unfortunately, both components can not be separated clearly.
Taking into account the chamber volume and the total flow, the
chamber response can be modeled as a first order linear system
with a time constant of about 30 s. However, from Fig. 3 we
can observe that the rising and falling times are not constant
but depend on the concentration. For high concentrations, the
stationary response has not been reached even after 20 min.
It can also be observed that when the chamber is filled the
sensor responses are slower than when it is purged. Moreover,
the step response of different sensors is different. All these
considerations indicate that the observed dynamics can not
be attributed exclusively to the chamber. On the contrary it
can be deduced that the sensor dynamics have an important
contribution to the dynamic behavior of the complete system.
On the other hand, from the step responses we observe that
the static response is also nonlinear, specially for octane. For
the different sensors the terminal based nonlinearities in the
static characteristic are in the range of 7–15% of the full scale
output.

Despite this fact, and as a starting point in our modeling
procedure, we decided to find a suitable linear parametric
inverse model. From the 400 samples long available se-
quences, 300 points were used for estimation, and 100 points
for validation purposes. Among the different possibilities
we chose a MIMO finite impulse response (FIR) model,
mainly because of the low expected noise in the output signal
(laboratory conditions) and because this model is linear in the
parameters permitting the estimation in a one step least-square
procedure. No significative improvement was obtained by
the addition of poles (auto-regressive with exogenous (ARX)
inputs models). The inverse FIR model describes the system

by the following:

(4)

where is a polynomial in the delay operator and
(The delay operator is defined by:

and are the output (setpoints), the
input (sensor responses) and the residual term respectively.

is the measurement delay, that indicates the time we have
to wait to have the most reliable measurement of the gas
inputs. It is necessary to wait 1–3 min for future outputs of the
sensors to deduce the current injected gas flows. The optimum
FIR models are shown in Table I. As an error criterion we
have used the power of the prediction error residuals in
the validation set. For convenience, and to easily compare
experiments 1 and 2, we have normalized the power of the
residuals to the power of the input signals (gas concentrations),
relative mean square error (RMSE)

(5)

where is the actual concentration, is the measured
concentration with the inverse model and is the mean
concentration value. Subindexdenotes the gas.

RMSE for experiments 1 and 2 in the validation set is
shown in Table I. In this table, by order we denote the number
of samples for every sensor which are inputs to the model,
in other words, the order of the polynomial plus one.
Clearly, FIR models performed much better when the input
concentrations had only a standard deviation of 360 ppm. It
indicates that for small excursions of the inputs, the nonlinear
behavior could be accurately represented by a local linear
approximation.

Because our previous work [14] on forward nonlinear
modeling permitted us to find models with less than 1%
prediction errors in a extended concentration range (exp. 2),
we expected that moving to nonlinear models will improve the
measurement accuracy. Among nonlinear models, two main
model structures were tested: Wiener series expansions [16]
and artificial neural networks (ANN) [17].

Among neural networks, feedforward multilayer percep-
trons, generalized radial basis functions (RBF) [17] and Elman
recurrent networks [18] have been evaluated as models for the
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TABLE II
COMPARISON BETWEEN THE PERFORMANCE OFDIFFERENT INVERSE NONLINEAR MODELS

Fig. 5. Measurement error by RBF nets against the number of neurons in the hidden layer. “�” Estimation zone, toluene; “�” Validation zone, toluene;
“+” Estimation zone, octane; “�” Validation zone, octane.

inverse system. For the calibration of nonlinear sensors with
ANN we should mention the constructive methods for building
neural networks, which have been discussed in [19] and
[20]. These methods permit the interpolation of an arbitrary
function from a set of input–output pairs. Nonlinearities are
concentrated in the input layer, and weight adjustment is
carried out in a single pass over the calibration data. Moreover,
the procedure also provides the optimum calibration points.
However, this procedure produces large nets when applied
to multi-input systems. Its application to the identification of
multi-input dynamic inverse systems its not presented here. It
deserves further work.

Two independent ANN have been built, trained and tested:
one for every gas. Minimum RMSE in the validation zone

has again been chosen as criterion to select the number and
connectivity of neurons. Moreover, we have checked that the
estimated models fulfill the validation criteria proposed by
Billings for nonlinear systems [21].

One of the main problems with feedforward nets is the
selection of the appropriate number of neurons and their
connectivity. The number of inputs corresponds to the number
of sensors (four) times the model order, which has been kept
equal to the order of the optimum FIR model. That is, 12
input neurons for toluene and 16 input neurons for octane. In
addition we have to determine the number of neurons in the
hidden layer. To cope with this problem, two different paths
have been followed. The first procedure has been to train the
nets with an increasing number of neurons in the hidden layer.
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(a) (b)

Fig. 6. Comparison between real and measured concentrations using Wiener Kernels. The error is also displayed. Measurement points: dots, model
prediction: solid line, error: dashed line.

Fig. 7. Final summary of the better accuracy obtained for the different model architectures tested.

A maximum of seven neurons has been considered. Then we
choose the feedforward net which provides lower RMSE (see
Table II). A second strategy has been to build a “big net,”
keeping in mind that we have to prevent overfitting. A “big
net” is a multilayer perceptron with a number of free weights
larger than the number of patterns in the estimation zone (for
instance we tried 16-19-1 for octane with just 300 patterns
for estimation). In order to prevent overfitting we stopped the
training procedure when the error in the validation zone started
to increase. Results in Fig. 4 show that while the error in
the estimation zone was small, the net has bad generalization

capability resulting in high errors in the validation zone. In
the search for better performance by reducing the size of the
net we have used a magnitude based pruning algorithm [17].
However, the obtained results were not satisfactory. A partially
connected net with a reduced number of neurons presents a
slight increase in the prediction error in the validation zone. As
it can be observed from the comparison of Fig. 4 and Table II,
this second procedure does not improve the results achieved
with smaller but fully connected networks (first approach).

Two (one for toluene and another one for octane) general-
ized RBF neural nets with weighted inputs and common spread
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parameter for all the neurons have been used, and trained with
an orthogonal least-squares (OLS) learning algorithm [22].
These nets present the optimum results with less neurons than
input patterns. Fig. 5 shows the evolution of the error in the
validation zone against the number of neurons in the hidden
layer showing an optimum point at 80 neurons. Compared to
feedforward nets trained with the back-propagation algorithm
(or faster alternatives as the Levenberg–Mardquardt method
[23]) the used OLS has the advantage that always converges to
the same point. In contrast, feedforward nets need to be trained
several times, with different starting conditions, in order to
be sure that the algorithm has not been trapped in a local
minimum. Even one training session with the OLS algorithm
is much faster than the Levenberg–Mardquardt method to train
the feedforward perceptron.

Disappointing results (see also Table II) were obtained with
the Elman networks. This networks do not need a tapped
delay input chain because the neuron themselves present a
dynamic behavior by virtue of the inclusion of delay elements
and recurrent connections. This is the reason way the order
in Table II is fixed to 1. This really means that we rely in
the internal recurrent connections to generate the dynamical
behavior of the system. In our experiments the obtained results
do not improve in a significant manner the results obtained by
linear methods.

Finally, we consider Wiener series expansions as a method
for nonlinear system modeling. The mathematical expression,
up to second order, can be written as

(6)

where, is the first-order kernel, are the second-

order self-kernels and are the second-order cross-
kernels. is the cross-power between signals and

and are the mean values of and is the
measurement delay.

Although Wiener series expansions are essentially a non-
parametric model structure, models with finite memory can be
estimated by least-squares [23]. This is a much more efficient
method than the estimation by cross-correlation techniques
[24] which need very long records for accurate estimation,
especially for multi-input systems [25], [14]. Our proce-
dure consist of two steps: first a rough estimation by cross-
correlation and second a selection of the samples of the kernels
which are going to be estimated by least-squares. Several
manual iterations were necessary to find the best models but
fortunately the estimation was fast. Using this procedure the
order of the model was selected and in addition we discovered

that only the diagonal terms of the second order kernels
(self- and cross-kernels) were significant. This resulted in a
smaller model. The best results are shown in Table II. Fig. 6
shows a very good agreement in the injected flows of toluene
and octane, real and estimated by Wiener Kernels, and the
measurement error for every gas.

As a summary, Fig. 7 plots the measurement errors achieved
with every model structure considered in the work. The
obtained results with the static calibration are also shown
for reference. From the results, we observe that among the
different model structures, the best ones are Wiener Kernels
and Generalized RBF neural networks that show similar per-
formances. Feedforward has good results but not as good as we
expected and Elman nets showed RMSE values close to those
offered by linear models (compare Tables I and II). The errors
for the two best models are under 1% RMSE. We consider
that this error is inherent to the experiment and it is due to
the mass flow controllers that feature an accuracy of 1% full
scale (180 ppm).

From the complete results it is clear that multilayer per-
ceptrons, either fully or partially connected, do not improve
the performance of the Wiener Kernel. In consequence, it
seems worthless to use perceptrons when a faster method is
available. From our experience, this could be the case when
systems exhibit only mild nonlinearities and a limited number
of input patterns are available. Probably, when working with
more nonlinear systems, the truncation of the Wiener series to
second order terms will not be enough and, in these conditions
superior performance of the perceptrons could be expected.

V. CONCLUSION

Polymer coated quartz microbalance sensor arrays permit
the analysis of multicomponent gas mixtures in dynamic
conditions were static models result in measurement errors.
Sensor problems including nonlinearities and dynamic effects
can be solved with proper digital signal processing of the
sensor signals. Our proposal, the identification of nonlinear
inverse models has proved to be a valuable tool. The measuring
system consisting of a chemical sensor array plus digital signal
processing (inverse model) has been able to extract which were
the gas flows into the chamber with a very small error near
the experimental limit of the system. The ill-possedness of the
inverse problem has been solved by straight identification of
the inverse system from available experimentation (estimation
zone). Among the different model structures tested, the authors
prefer Wiener kernels because of its small errors and fast
estimation. Among ANN, generalized RBF neural networks
can also be used providing better results than multilayer
perceptrons in similar conditions. Rather poor results were
obtained with Elman networks.
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