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Suboptimal Filtering and Nonlinear Time
Scale Transformation for the Analysis of

Multiexponential Decays
Jordi Palacín, Santiago Marco, and Josep Samitier

Abstract—Multiexponential decays may contain time-constants
differing in several orders of magnitudes. In such cases, uniform
sampling results in very long records featuring a high degree of
oversampling at the final part of the transient. Here, we analyze a
nonlinear time scale transformation to reduce the total number of
samples with minimum signal distortion, achieving an important
reduction of the computational cost of subsequent analyses. We
propose a time-varying filter whose length is optimized for min-
imum mean square error.

Index Terms—Data reduction, Gardner transform, multiexpo-
nential decay, noise, nonuniform sampling, transients.

I. INTRODUCTION

T HE ANALYSIS of multiexponential decays appears in
many areas of scientific or technical interest: analysis

of deep levels in semiconductors [1], thermal responses [2],
fluorescence spectroscopy [3], etc. A recent review confirms
the impact of this family of signals and reviews the variety
of analysis methods [4]. In many cases, the transient signal
under study may contain time-constants differing in several
orders of magnitudes. In some applications such as deep
level spectroscopy or thermal analysis, as many as eight time
decades are recorded. With linear sampling, the transient would
contain 10 points. Such a huge number of points represent an
incredible computational burden, and they are the consequence
of a high degree of oversampling in the final time decades.
Decaying signals are in fact nonstationary, and their bandwidth
decreases with time. In qualitative terms, the “instantaneous
bandwidth” of a deterministic signal is related to its derivatives.
It is commonly accepted that in the regions of maximum
curvature the required bandwidth is maximum. However, for
exponential decays all derivatives decay with time, and so also
the required bandwidth. In consequence, it is not necessary to
keep a very high sampling rate to capture the fastest time-con-
stants occurring at the initial part of the transient to analyze the
slowest time-constant that appears at the final part.
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Fig. 1. Multiexponential decay.x(t) = exp(�t=0:01) + exp(�t=1:0):
(a) linear time scale and (b) logarithmic time scale.

In different application areas, researchers usually prefer a log-
arithmic representation (Fig. 1) of the time scale which shows
up more clearly the presence of fast time constants which appear
hidden in a linear time scale plot. In fact, several algorithms,
based on the work of Gardneret al. [5], have been proposed
which directly operate in this transformed time scale [4], [6].
This is because after the time transformation every exponential
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term presents the same signal shape whatever the time constant
is. In other words, an increase (decrease) in the time-constant
only represents a right (left) shift. In other words, the trans-
formed signal can be expressed as a convolution [5]. The authors
have already analyzed in previous works how to take advantage
of this invariance [7].

Our purpose in this work is to analyze how to perform this
time scale transformation from linear sampling in the time scale
to equidistant samples in the logarithm of time for minimum
signal distortion in the presence of additive white noise.

II. PROCEDURE

As already mentioned in the previous section, our aim is to
carry out a data reduction algorithm that maps the linear time
scale to a logarithmic time scale. We will consider first the effect
of such transformation in a single exponential

(1)

A point to discuss concerns the adequate sampling rate in the
transformed time domain. In the following we will talk about
pseudo-frequency and pseudo-spectrum because the indepen-
dent variable is no longer time, but the logarithm of time. It can
be seen that the pseudo-frequency spectrum of an exponential in
the transformed domain is clearly low pass. It can be calculated
analytically, and it is related to the Gamma function evaluated
along the imaginary axis

(2)

It may be observed that the pseudo-spectrum amplitude
does not depend on the time constant value, because a change
in the time constant only represents a shift in position in the
transformed domain. A few points per decade are necessary
to adequately represent the signal, although the algorithm
presented later on permits the calculation of the signal in the
transformed domain for a large range of sampling rates (in the
transformed domain). Our experience indicates that sampling
rates exceeding ten to fifteen points per decade produce
high-frequency pseudo-spectral bands where the noise content
is more intense that the signal power. However, a rigorous
analysis of this problem will be published elsewhere [8].

New samples are equidistant in the logarithm of time

(3)

where is the initial time, and is the number of points per
decade. Note that to represent eight time decades we will need
only 80–120 points as compared with 10.

This “decimation” in time must be accompanied by low-pass
filtering to avoid aliasing of the superimposed noise that has, in
general, a much wider spectrum. Note that this process resem-
bles, but it is not the same as, the usual sampling rate conversion

by a rational factor for which a complete theory is available [9].
In addition, the actual time points do not coincide with
the original sampling times, so we must necessarily interpolate.
Thus, the procedure will consist of: first, filtering for the min-
imum square error followed by linear interpolation to calculate
the signal value at the points. Note that the new time instants

do not depend on the filtering method chosen.
Concerning the filtering step, we will propose three different

approaches. The first one is an heuristic method, and it is con-
sidered as the baseline algorithm. The second is based in an op-
timum filter introduced by Papoulis [10]. The third procedure is
a time-varying filter, the length of which is optimized for min-
imum mean square error.

A. Heuristic Method

The heuristic method is as follows: new time points are gen-
erated in the logarithmic time scale. Typically the sampling rate
in this transformed domain is chosen to be between 10 and
20 points per decade. In the computation of each new sample

we use all original samples (samples) within the in-
terval ( ) where . More-
over, the filter length increases linearly with time, and con-
sequently the cutoff frequency decreases linearly

(4)

where “ ” is the sample index in the linear domain. To cal-
culate the new sample we use polynomial linear or quadratic
interpolators, obtained after least squares fitting of the points
within the interval to a straight line or parabola, respectively.
This polynomial filtering can be considered as a generaliza-
tion of the Savitzky–Golay SG-FIR filters [11], which provide
linear phase, and maximum noise rejection ratio subjected to the
condition of frequency flatness at DC. The main difference is:
since the new sample does not coincide with the original, the
filter coefficients may vary slightly depending on the parameter

which represents the fractional position of the
new sample within the original time sampling period. In this
way, we can write the filter operation as

(5)

with and, , and
the filter coefficients that are linear or parabolic functions of

if we are considering first- or second-order Savitzky–Golay
filters, respectively. Their closed forms are not written here due
to space constraints.

The first consequence of the above procedure is that the noise
signal becomes nonstationary and its variance decreases with
time. Very important noise reduction is achieved in the final
time-decades because of the very low cutoff frequency of the
interpolating filter, which is a consequence of the huge number
of points within the interval. From this point of view the process
is very advantageous because it provides simultaneously signif-
icant data reduction and reduces the noise content.

However, at this point we must consider the signal distortion
that can arise after this time-varying filtering and “decimation.”
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Fig. 2. Estimated influence of the exponential time-constant location (� =
0.001 s, 0.01 s, 0.1 s, 1 s) in the error power: Noise power=10 .

Fig. 3. Estimated influence of the noise power (� = 10 ; 10 ; 10 ) in
the error power for a fixed exponential time constant:� = 0:1 s.

As real exponentials are not bandlimited signals, any filtering
may induce some degree of signal distortion and, in fact, this is
the case. Figs. 2 and 3 show the mean square error which appears
when filtering a single exponential decay with the first-order
modified S–G filter according to the above procedure. In Fig. 2,
we observe the distortion depending on the time constant value:
maximum distortion appears in the vicinity of the time constant
value. In Fig. 3, we may observe that this distortion is more
apparent for low noise levels.

B. Papoulis Filter

Up to now, we have seen the limitations imposed by the first
procedure. To introduce our second proposal, we wonder if the
filter length evolution along the transient is optimal. Papoulis
[10] has obtained the optimal filter length when filtering a de-
terministic signal embedded in white noise, and he has found

Fig. 4. Time constant spectrum: exact (o) and estimated (�) choosing three
exponentials per decade.x(t) = 1 � exp(�t=0:008) + 0:5 � exp(�t=0:03),
� = 10 , F = 10 kHz.

that it depends on the noise content and on the second deriva-
tive of the noise signal

(6)

where
original signal;
filtered signal;
optimal filter length;
linear sampling period;
noise variance;
second derivative of the underlying noise-free tran-
sient.

The practical application of this method in our case has a
problem: the second derivative has to be estimated. It is well
known that differentiation of noisy signals is a risky signal
processing operation [12]–[14]. A variety of methods have
been proposed in the literature. Among them we have obtained
the best results by double differentiation of a signal model
obtained by fitting an exponential series [3] to our original data
(ESM). Such series contain three exponentials per decade at
fixed logarithmically distributed times. Only the amplitudes are
estimated by linear least squares. The obtained fitting is very
good, and the residuals are white. Fig. 4 shows the goodness
of the fitting, and Fig. 5 compares the real and estimated
amplitudes for a biexponential decay. Despite the very good
time response, we still suffer from unacceptable errors in the
estimation of the second derivative at the initial part of the
transient (Fig. 6). These errors are undoubtedly related to the
inadequacy of the model used. Poor estimation of the second
derivative will lead to erroneous filter lengths that will provide
either distortion or insufficient noise rejection. Because of that
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Fig. 5. Signal approximation by the ESM (hard line) and original noise
corrupted signal (soft line).x(t) = 1 � exp(�t=0:008)+0:5 � exp(�t=0:03),
� = 10 , F = 10 kHz.

Fig. 6. Exact second derivative of the original signal (dot line), and the
second derivative obtained with the signal model (solid line).x(t) =
1 � exp(�t=0:008)+ 0:5 � exp(�t=0:03),� = 10 , F = 10 kHz.

we have devised a method which avoids the calculation of the
instantaneous second derivative of the transient.

Even when the second derivative is known, (6) is only valid
when (see the original demonstration for further
details [10]), where is the sampling period and is one of
the time constants of the analyzed transient.

C. Suboptimal Method

In this method, we carry out first a varying time filtering in
the linear domain. Transformation to the logarithmic scale is
performed after filtering by a simple linear interpolator.

The error can be theoretically evaluated with

(7)

where is the noise content, and is the noise-free mul-
tiexponential decay. We suppose now that a multiexponential
model of the signal is available, which can be obtained as it has
been previously outlined

(8)

where
filter impulse response;
amplitudes;

.
Then, the error power can be estimated for a general case. Note
that we consider a centered filter for zero group delay

(9)

where

(10)

Expression (9) shows that the error has two contributions:
distortion and filtered noise.

Also, when an estimation of the noise and the exponentials
contained in the signal is available, (9) can be used to find the
optimum length of the filter in each point to achieve the min-
imum error power in the filtered signal. We have minimized the
above expression in the case of a moving average filter (length

, filter coefficients )

(11)

An algorithm based on golden section search and parabolic
interpolation [15] is used to find the local minima corresponding
to the optimum filter length . The computational burden of this
iterative minimization is highly reduced if the last value found
is provided as the initial value in the next time step.

This kind of filter provides the maximum noise rejection
ratio. Moreover for the large filter lengths obtained at the end
of the transient, it is not practical to try to optimize the filter
coefficients, because huge matrices should be inverted. Note
that the optimum length depends on the sample index “,” so
we obtain again a time-varying filter as expected due to the
signal characteristics. The proposed filtering method is optimal,
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Fig. 7. Comparison between the optimal filter length (dot line), the suboptimal
(solid line), and the heuristic method (dashed line).x(t) = 1�exp(�t=0:008)+
0:5 � exp(�t=0:03), � = 10 , F = 10 kHz.

Fig. 8. Error power of the optimal (dot line), the suboptimal (solid line),
and the heuristic method (dashed line).x(t) = 1 � exp(�t=0:008) + 0:5 �
exp(�t=0:03),� = 10 , F = 10 kHz.

within the class of uniform moving average filters of variable
length, when the exact signal model of the transient is available
(labeled optimal filtering in the figures). It is only suboptimal
when an estimated model of the transient is used.

Finally, we would like to remark that due to the final linear
interpolation step, it is not necessary to filter the complete tran-
sient but only those samples needed for the final interpolation.
This reduces drastically the number of floating point operations
needed to complete the algorithm.

D. Discussion

Results in Figs. 7 and 8 show the evolution of the filter length
and the mean square error with time. The heuristic, the optimal
and the suboptimal methods are compared. The estimated signal
model is obtained as it has been previously outlined (Exponen-
tial Series Method) for the second derivative estimation. It can

be seen that, despite the signal model parameters being clearly
far from reality, the predicted filter length with the estimated
model (suboptimal) is almost identical to the exact result (op-
timal). This very good result is obtained with the same signal
model that produced problems in the second derivative estima-
tion. Moreover, the results clearly outperform the mean square
errors obtained with the heuristic method: the noise rejection is
larger and distortion peaks are avoided. The large increase in the
error at the final part of the transient is a border effect.

III. CONCLUSIONS

It is not practical to work with linear sampled multiexponen-
tial signals containing time-constants differing in several orders
of magnitudes. A procedure has been proposed to achieve a dra-
matic data reduction and noise reduction based on a moving av-
erage filter, the length of which is optimized for the minimum
mean square error. However, a previous estimation of a signal
model and noise level is needed. This estimation is based on
the linear least squares of an exponential series with three terms
per decade. Despite the fact that the signal model parameters
could be quite far from reality, very good time agreement is ob-
tained and the filter length prediction is almost optimal, pro-
viding maximum noise rejection with minimum distortion.
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