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Improved Multiexponential Transient Spectroscopy
By Iterative Deconvolution

Santiago Marco, Jordi Palacín, and Josep Samitier

Abstract—The analysis of multiexponential decays is chal-
lenging because of their complex nature. When analyzing these
signals, not only the parameters, but also the orders of the
models, have to be estimated. Here, we present an improved
spectroscopic technique specially suited for this purpose. The
proposed algorithm combines an iterative linear filter with an
iterative deconvolution method. A thorough analysis of the noise
effect is presented. The performance is tested with synthetic and
experimental data.

Index Terms—Decays, iterative deconvolution, multiexponential
analysis, thermal transient.

I. INTRODUCTION

M ULTIEXPONENTIAL signals are found in such diverse
areas as nuclear science, chemical kinetics, biomedi-

cine, semiconductors, thermal responses, etc. Many different
methods have been proposed for the analysis of these signals:
nonlinear least-squares fitting [1], the method of moments [2],
linear prediction [3], exponential series method [4], Gardner
transform [5], the Prony algorithm [6], or the Padé-Laplace
transform [7] are some examples. However, we are facing a
still unsolved problem [8]. The underlying difficulty is that
exponential decays, in contrast to pure sinusoids, do not form an
orthogonal basis of functions on the real axis. This fact makes
the estimation process extremely sensitive to experimental
noise and truncation of the measured signal.

The authors have proposed a spectroscopic technique for the
analysis of these kinds of transient signals: multiexponential
transient spectroscopy (METS) [9]. It is important to note that
the spectroscopic nature of the algorithm gives more informa-
tion than other techniques because

i) permits dealing with discrete and continuous time distri-
butions;

ii) shape of the peaks gives information about the adequacy
of the model;

iii) number of peaks gives information about the number of
exponential terms to include in the model.

Moreover, as it will soon follow, the procedure leads to the
natural implementation of iterative deconvolution algorithms
that can improve the separation capabilities of the technique. A
final step based on constrained nonlinear least squares furnishes
the final numerical estimates of the unknown parameters.
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In the following sections, we will present, for the sake of com-
pleteness, the basic theory of the algorithm, an analysis of the
noise influence, details of the discrete-time implementation, the
introduction of an additional nonlinear deconvolution step, and
some application examples with synthetic and experimental sig-
nals. The paper will end with the main conclusions.

II. THEORY

We consider the set of signals generated from a certain time-
constant distribution

(1)

The objective is to recover the underlying . The problem
of exponential analysis is solved by taking the inverse Laplace
transform of the transient. This is only feasible if the analytical
expression of is known. However, this is not the case with
experimental signals. The authors have proposed the following
approach for the solution of (1). The first-order METS signal is
defined

METS (2)

It can be deduced that this signal can be written as a convo-
lution

METS (3)

with , , and ,
, is a peak-shaped kernel, and contains the

information to be recovered. On most occasions this technique
is applied to the analysis of decays arising from a discrete time
constant distribution. In this case, the METS signal will consist
of a finite set of peaks whose shape will be given by the kernel
function, because the METS signal is the convolution of a set
of -Dirac with the kernel function. However, due to the finite
width of the peak, blurring will fuse near time constants in a
single broader peak (Fig. 1). This signal analysis brings up im-
mediate analogies with spectroscopic techniques. In this case
the “instrument impulse response” can be identified with the
kernel function.

The recovery of from the measured METS signal is a
complex deconvolution problem. In the frequency domain, the
kernel function acts as a lowpass filter, removing high frequen-
cies present in . The Fourier transform of can be cal-
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Fig. 1. Blurring effect in first–order METS signals.

culated using the definition and properties of the Gamma func-
tion

(4)

At high frequencies, the noise level might be higher than the
signal, and subsequent attempts to recover have to face
noise amplification that can easily hide the information in the
deconvolved results. Up to this point, this theory is similar to
the Gardner transform method. However, in the latter, deconvo-
lution is accomplished using the Fourier transform

METS
(5)

Since is a lowpass signal, this division enhances the
higher frequency components of METS extremely. This is
essential for resolution increase, but it produces an unwanted
increase of the noise level, as well. Usually, to regularize this
deconvolution, a Gaussian lowpass filter is applied before the
inverse Fourier transform is applied

(6)

where the parameter is used as a regularizing parameter. An
example of this procedure can be found in [10].

Here, we will present an iterative linear deconvolution tech-
nique specially suited for this problem. Additionally, we pro-
pose to apply nonlinear iterative deconvolution techniques that
usually improve the results achieved with linear deconvolution
methods.

The iterative linear filter is given by

METS METS
METS

(7)

Fig. 2. Cumulative frequency response of the METS filter.

The cumulative application of this filter acts as a high-pass
filter. Fig. 2 shows the evolution of the filter frequency response.
As increases, more weight is given to the high-frequency con-
tent of the signal.

One of the most interesting features of this iterative filter is
that it preserves the METS signal as a new convolution of
with a sharper kernel signal.

METS (8)

where

(9)

is the Gamma function. All the kernels have unity area.
The shape of these kernels can be observed in Fig. 3. Time res-
olution increases as the user computes higher order METS sig-
nals. This can be observed in the simulation example (Fig. 4),
where the signals appear after normalization and time shift. The
analyzed signals consist of four time constants whose ampli-
tudes can be observed in the ninth-order METS signal. An ad-
ditional advantage of the convolution preservation feature is the
possibility to discard spurious peaks with reduced width that can
not be due to new time constants.

As it can be observed in Fig. 3, the peak becomes higher and
narrower. The maximum value is

(10)

Note that, although not apparent in the figure, the peak suf-
fers a controlled shift toward higher times. This is not a problem,
since the METS signal can be shifted ‘ ’ to the left for in-
terpretation purposes or visual representation. However, a side
consequence of such a behavior is that the maximum METS
order, which can be calculated, is given by the length of the ac-
quired transient divided by the longer time constant present in
the signal.
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Fig. 3. Time-shifted kernels.

Fig. 4. METS order 1, 3, 6, and 9 of a noiseless transient signal.

Fig. 5. Evolution of the noise gain against the METS order for 10, 20, 30, and
40 points per decade.

Using the Stirling formula [11], it can be deduced that the
integral breadth, for high-order METS signals, is . This
is an approximation of the time resolution attainable at a certain
METS order. This slow decrease in the kernel width indicates

that it would not be worthwhile to compute high orders because
the resolution gain would not compensate the noise increase.

Because of the convolution preservation property of the
present approach, at any time it is possible to use other
deconvolution algorithms such as, for instance, Jansson’s
deconvolution [12].

III. T HEORETICAL NOISE ANALYSIS

The ultimate time resolution in exponential analysis is
noise limited. Within the presented framework, deconvolution
increases the noise content and hinders the separation of
close time constants. A detailed study by Bertero [13] on
the eigenfunctions and eigenvalues of the Laplace transform
(which were previously obtained by Whirter and Pike [14]) has
shown the following: The closest distance between exponential
decay rates that can be resolved in exponential analysis when
the signal is observed in an infinite domain [0, +] is given by

SNR (11)

where the SNR is defined as the transient amplitude divided by
the noise standard deviation. The authors have also studied the
resolution limits, in particular cases, based on the Cramér–Rao
theorem [15]. However, a thorough comparison of both ap-
proaches has not yet been performed. According to (11) the
evolution of the theoretical resolution limit against the SNR
may be observed in Fig. 7. As expected, the higher the SNR
the better the resolution. For very low noise content (SNR
10 ), this ratio saturates to about 1.22, while for moderate
noise content (SNR10 ), it still gives a 2.45 limit.

A simple approach to the study of the effects of noise in our
method is to suppose that the signal contains additive white
noise in the transformed domain . Although the real
situation is more complex, this simple analysis enlightens the
main effects. Our linear deconvolution approach amplifies high-
frequency noise, imposing a practical limit to the maximum
order that can be computed before the degradation of the SNR
prevents further interpretation of the results. Fig. 5 shows the
noise gain depending on the METS order and the number of
points per decade. In light of the results some conclusions can
be drawn.

ii) The noise gain is quite high.
iii) It increases with the METS order, due to the iterative

application of a differentiation step.
iv) The noise increase is more important as the number of

points per decade increases.
It can also be observed that the noise gain tends to saturate as the
order increases, probably due to the 1/n factor in the differen-
tiation term. This saturation appears at higher orders for higher
sampling rates in the transformed domain.

It may appear that given a certain noise floor, Fig. 5 permits
estimating which is the highest order attainable and in conse-
quence the time resolution, the only condition being that the
SNR remains high enough. However, these arguments disre-
gard the presence of distortion. The METS signals, although of
a lowpass nature, are not strictly bandlimited, and, in fact, the
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Fig. 6. Spectrum of the METS order 1, 2, 4, 8, 16, and 25.

high-frequency contents increase with the order. The analytical
expression of the spectrum (see Fig. 6) is given by

(12)

At this point, it is perhaps curious to realize that the applica-
tion of the METS algorithm, when observed in the frequency do-
main, corresponds to the application of the Pochhammer symbol
property of the Gamma function [11].

To avoid distortion, the sampling rate in the transformed do-
main has to be high enough so as to permit a correct differenti-
ation of the signal. For instance, for SNR of 10and ten points
per decade, the METS order cannot increase indefinitely, be-
cause, at a certain point, distortion impedes further resolution
enhancement.

IV. DISCRETETIME IMPLEMENTATION AND NOISEFILTERING

For the digital implementation of the above algorithm, a very
critical step is the transformation from a uniformly sampled
transient in time to a uniform sampling in the logarithm of time.
Such transformation is carried out together with low-pass fil-
tering. We have to consider that, usually, the experiment needs
several time decades to be explored (five to eight decades are
common numbers depending on the application). Because the
usual hardware for digital signal acquisition only permits uni-
form time sampling, and to prevent a large amount of data from
collapsing our signal processing system, usually signal acquisi-
tion is done in several sections with a progressive reduction of
the sampling rate. From this nonuniform signal sampling, we
interpolate the signal values at times

(13)

where
desired number of points per decade;
minimum sampling period in the time domain;
sampling frequency in the transformed time domain.

For minimum noise plus distortion, the authors have proposed
an optimum filter of varying length. This filter is described in
detail in [16]. A consequence of this procedure is that the noise

Fig. 7. Evolution of the resolution limit against the SNR: theoretical limit
(continuous line), METS with 40 points per decade (circle), METS with 10
points per decade (triangle), and Jansson with 10 points per decade (square).

in the filtered METS signal becomes nonstationary with a vari-
ance that decreases with the inverse of time. This is why the
noise analysis approach of the previous section can be regarded
only as an approximation.

For the calculation of the derivative we use a simple centered
two-point difference [9]

(14)

Of course, more elaborate differentiators can be used [17],
but this is well suited to the application because of its minimum
length which minimizes border effects at the beginning and final
part of the transient. In addition, it also attenuates the high-fre-
quency gain of a perfect differentiator. However, it will intro-
duce distortion earlier because it does not differentiate the whole
frequency range.

The evolution of the time resolution of the METS analysis,
depending on the signal-to-noise ratio and the points per decade
of the signal, may be observed in Fig. 7. This numerical exper-
iment has been carried out with a biexponential signal where
both components have the same amplitude. As we have already
mentioned, the optimum filter described in [16], induces a non-
stationary noise in the METS. To avoid the influence of this
effect, synthetic Gaussian white noise of different power has
been added before the METS analysis. No filtering, only linear
interpolation, has been carried out in the nonlinear time scale
transformation. In this case we obtain an upper limit of the time
resolution that can be improved by filtering. As expected the
ultimate resolution limit, achieved with the METS, follows the
same trend given by the theoretical limit but at higher decay
rate ratios. Moreover, this degradation is more evident at the
lower SNR due to the noise amplification produced by the linear
filter. It may be observed that the resolution limit depends on
the number of points per decade selected from the initial tran-
sient. For the higher noise content, an increase in the number
of points per decade produces worse results in agreement with
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Fig. 8. Evolution of the resolution against the position of the time constant.
 =

p
� � =t .

Fig. 6. The signal energy becomes concentrated in the lower fre-
quency range where the METS filter has very small gain, while
the high-frequency noise is greatly amplified. For the low noise
content, the opposite behavior is observed: the higher the sam-
pling frequency, the better the resolution. For very low noise, the
maximum resolution achieved for ten points per decade is dis-
tortion limited. A higher sampling frequency (for instance, 40
points per decade) allows further improvement in this region.

We have already mentioned that the noise content becomes
nonstationary and decreases with time. As a consequence, the
time resolution depends on the position of the time constant;
more specifically, on the ratio between the time constant and the
initial sampling period t0. Results may be observed in Fig. 8.
The higher the ratio of the time constant to sampling period,
the lower the noise content at the time constant position and the
better the resolution. This effect is more evident at lower SNR.

V. ADDITIONAL ITERATIVE DECONVOLUTION

As we have already mentioned, the proposed procedure pre-
serves the signal as a convolution, so we can use alternative de-
convolution schemes intending to improve the resolution. Al-
though a great variety of deconvolution methods have been re-
ported in the literature, we will restrict ourselves in this work to
the application of the Jansson’s method.

The Jansson’s method is a constrained, nonlinear deconvolu-
tion method growing from an evolution of previous linear de-
convolution techniques coming from the work of Van Cittert.
Its rationale comes from the fact that linear methods sometimes
end up in nonphysical results. An example of such a case is the
analysis of a thermal one-port system. In this case, only positive
amplitudes have physical meaning [18]. By forcing the solution
to be physically feasible, the overall performance improves. Not
only negative peaks can be prevented, but by proper choice of
the relaxation factor, the maximum peak amplitude is also lim-
ited. In such cases the Jansson’s method can be written as

METS (15)

( stands for convolution) where the relaxation factor including
the above constraints is given by

(16)

" " is a parameter which can be adjusted typically by trial and
error, although it is related to the eigenvalues of the impulse
response on the Toeplitz matrix form. We have used values be-
tween 0.02 and 0.002.

First, we present two synthetic examples to illustrate the per-
formances of this technique. The analyzed transients consist of
several exponential terms with added Gaussian noise with vari-
ance 10 (SNR 10 ). The sampling frequency is 10 kHz,
and the total length of the transient is 10 s. The Jansson’s method
has been applied with= 0.02, and the total number of iterations
is 15 000. The obtained results can be seen in Table I. In both
examples, peaks separated up to 1.6 octaves (ratio 3) are identi-
fied as distinct time constants. However, the obtained peaks are
not perfect unity impulses; they present a finite width. To mea-
sure the amplitude, we have used the integral amplitude given
by the sum of the samples within every peak. Time constants
have been estimated from the peak maximum. However, at this
stage, neither the positions nor the amplitudes are accurate. This
fact has induced in our analysis procedure a final constrained
nonlinear least squares fit of the first-order METS signal to es-
timate the unknown parameters, relying on the deconvolution
only for model order determination and for initial values of the
parameters. In Table I, see the important increases in the ac-
curacy obtained in this final step. Concerning the evolution of
the time resolution against the SNR, we have observed that the
Jansson method provides only a small improvement compared
to the METS method (see Fig. 7). However, visual inspection of
the deconvolution results is easier to interpret. When time res-
olution is feasible, the Jansson deconvolution provides clearly
distinct peaks, while METS provides only a shallow minimum
in between.

Here we present the analysis of some experimental results
obtained when studying the behavior of thermal microactuators.
In thermal systems, the usual way to characterize the system
dynamics is the analysis of the thermal response to a step in
the applied power. The so-called transient thermal impedance is
given by

(17)

where
recorded temperature;
reference temperature (usually ambient);
amplitude of the power step.

This signal consists of a superposition of exponential decays, so
that the recovery of the amplitudes and time constants provides
the complete information on the thermal transfer function

(18)

In this particular case, the device under study was a thermo-
pneumatic micropump [15]. To study the thermal behavior, a
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TABLE I
ESTIMATION RESULTS OFTWO SYNTHETIC DATA EXAMPLES AND ONE THERMAL TRANSIENT FROMEXPERIMENTAL DATA

Fig. 9. Jansson method (solid line) applied to experimental data (thermal
transient) compared with METS order eight (dashed lines).

negative power step (1 W) was applied to the heating resistor,
and the temperature of the device was monitored from the same
resistance that was previously calibrated as a temperature de-
tector. The transient had total amplitude of 107C, and the noise
floor was about 0.1C.

Fig. 9 shows the results obtained with the METS and the
Jansson method. With the METS order eight of this transient
signal, one time constant has been identified, but there is a wide
peak clearly formed by various time constants that are beyond
the practical limits of the METS. Applying the Jansson method,
two hidden time constants are now identified. So, as indicated
in Fig. 7, the Jansson method (applied to the METS order one)
is an improvement of the METS algorithm that avoids visual in-
terpretation of the results because the time constants are clearly
identified by narrower peaks. The result of the nonlinear fit is
observed in Fig. 10, while the estimated amplitudes and time
constants appear at the bottom of Table I.

Although our method shows time-resolutions similar to the
Gardner transform [10], [19], [20], it is very difficult to present
a consistent comparison. It should be taken into account that
there are many factors which affect, in a diverse manner, the
performances of the methods. Among them, we can find the
noise level, the presence of an offset, the number of exponential
components, the ratio of their amplitudes and time constants,

Fig. 10. First-order METS signal fitted with 3 exponential terms (thermal
transient).

the ratio between the sampling time and the time constants,
and, finally, the ratio between the total measurement time and
the slowest component. A rigorous comparison of the methods
requires that all the methods are tested in the same conditions
and, moreover, the analyzed transients should cover a wide
range of the above parameters. Although some comparisons are
present in the literature, in agreement with [8], no one fulfills
the above conditions, and a more exhaustive comparison with
other methods is beyond the scope of this work.

VI. CONCLUSION

In this paper, we have presented a linear method for the anal-
ysis of multicomponent exponential transients. This method,
combined with iterative nonlinear deconvolution methods, per-
mits the identification of the model order and provides useful
initial values of the signal parameters. We have studied the time
resolution of our proposal for different SNR, and it has been
compared with the theoretical limit. Obviously, the obtained
time resolution is worse than the theoretical limit. However, it
is similar or even slightly better than results obtained by the
Gardner transform method. The shape preservation character-
istic of the proposed algorithm permits the final estimation of
the parameters that is carried out by nonlinear fitting of the
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METS signal. A more complete analysis of the metrological per-
formances of this technique needs further work.
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