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Abstract—This paper presents a new method and circuit for the
conversion of binary phase-shift keying (BPSK) signals into am-
plitude shift keying signals. The basic principles of the conversion
method are the superharmonic injection and locking of oscillator
circuits, and interference phenomena. The first one is used to syn-
chronize the oscillators, while the second is used to generate an
amplitude interference pattern that reproduces the original phase
modulation. When combined with an envelope detector, the pro-
posed converter circuit allows the coherent demodulation of BPSK
signals without need of any explicit carrier recovery system. The
time response of the converter circuit to phase changes of the input
signal, as well as the conversion limits, are discussed in detail.

Index Terms—Amplitude shift keying (ASK), bifurcation,
converters, injection-locked oscillator (ILO), phase shift keyings
(PSKs).

I. INTRODUCTION

THE DIGITAL phase shift keying (PSK) of a sinusoidal
signal is one of the most efficient modulation techniques,

both in terms of noise immunity and required bandwidth. Co-
herent demodulation is the preferred procedure to demodulate
PSK signals, especially when optimum error performance is of
particular importance [1]. Coherent demodulation requires the
availability of a local carrier having the same frequency and
phase than the received modulated carrier. However, frequency
and/or phase deviations degrade the detection process and, con-
sequently, the system performance. Therefore, local carrier syn-
chronization is a critical issue in most digital communication
systems. Carrier recovery is accomplished by using synchro-
nization loops [2]–[5]. The most widely used are the squaring
loop and Costas loop, shown in Fig. 1(a) and (b), respectively.
However, synchronization time is usually large, leading to loss
of data at the beginning of a communication or malfunctioning
in burst mode transmissions. Noncoherent demodulation of PSK
signals can overcome this problem, however, noise immunity is
worst and the bit period has to be known [1].

This study proposes an alternative method for the demodula-
tion of binary phase-shift keying (BPSK) signals, which is based
on the use of a coherent BPSK to amplitude shift keying (ASK)
converter [6], as depicted in Fig. 2. A simple envelope detector
cascaded to the converter acts as the final stage of the demod-
ulation system. The operation of the BPSK to ASK converter
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Fig. 1. Block diagram of typical BPSK demodulation schemes using carrier
recovery systems. (a) Squaring loop. (b) Costas loop.

Fig. 2. Block diagram of the proposed BPSK demodulation scheme.

relies on two main principles: the superharmonic injection of
oscillators and interference phenomena. The former is used to
lock the oscillators (in frequency and phase) with the incoming
signal, whereas the later is used to generate an amplitude inter-
ference pattern that reproduces the original phase modulation.
Section II is devoted to the analysis of injection-locked oscilla-
tors (ILOs), whereas Section III covers the conversion mecha-
nism, dynamics, and limitations of the coherent BPSK to ASK
converter.
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Fig. 3. Circuit schematic of a second harmonic ILO.

II. ILOs

Injection is a usual way to synchronize an oscillator with an
incident signal. The injection-locking mechanism, first analyzed
by Van der Pol in 1927 [7], has been investigated by several au-
thors [8]–[11]. When an injected signal is close to the har-
monic of the free running frequency of the oscillator, the en-
semble is known as superharmonic or th harmonic ILO. In
the locked state, superharmonic ILOs act as frequency dividers,
with the dividing factor being the nearest harmonic order of the
ILO to the injected signal. For that reason, these components
are also known as injection-locked frequency dividers (ILFDs)
[12], [13]. The output of a superharmonic ILO or ILFD could be
in any of possible phase states ( being the harmonic order).
This is due to the phase uncertainty introduced by the process
of frequency division. For example, in the case of a second har-
monic ILO, the output frequency is half the frequency of the
injected signal and phase uncertainty is equal to .

In this study, the interest is focused in a particular implemen-
tation of a second harmonic ILO, of which a schematic is shown
in Fig. 3. The circuit is a cross-pair oscillator, whose resonant
tank consists of an inverter transformer and a pair of varactor
diodes. The input port of the injected signal is the center tap
of the transformer. Ideally, under common-mode excitation, the
transformer acts as a short circuit, therefore, the injected signal
is found without distortion at the terminals of the varactors. Due
to the nonlinear behavior of the stored charge dependence up
on the applied voltage, the injected signal, at frequency ,
mixes with the oscillator signal at frequency close to . As
a consequence, a new current component appears, which modi-
fies the characteristics of the resonant tank. In order to quantify
this process, let us consider a second-order approximation for
the stored charge versus applied voltage at the varactors

(1)

where is a constant charge depending on the bias conditions,
is the small-signal capacitance at the bias point, is the

applied voltage, and is a second-order coefficient evaluated at
the bias point of the varactors.

According to (1), the current passing through the varactors
is given by

(2)

In a first approximation, the applied voltage is the addition
of the injected signal and the fundamental component of the
oscillation signal , which can be expressed as follows:

(3)

where is the voltage amplitude of the fundamental compo-
nent of the oscillator, is the voltage amplitude of the injected
signal, is the frequency in the locked state, and and

are the corresponding phases. Note that the time dependence
of takes into account the evolution of the oscillator fre-
quency from the free-running state to the locked state (i.e., at

, , with being the oscillator’s
free-running frequency).

Provided that at any time , i.e.,
, by substituting in (2) and after some calculation

to evaluate the mixing terms, one can obtain the following ex-
pression for the current at the fundamental frequency passing
through the varactors:

(4)
where angle is given by

(5)

The first term in (4) is the displacement current related to the
capacitance of the varactors. The second term is an in-phase cur-
rent, which can be positive (i.e., dissipative) or negative (i.e., re-
generative) depending on the value of angle . This current
is responsible for the oscillation rise in parametric analog fre-
quency dividers [12].

According to (4), the capacitance of the varactors in the
locked state is given by

(6)

changes depending on the amplitude of the injected signal
and angle . Therefore, it implies a change in the oscil-

lator frequency, which is reflected in and, through (5), also
back in . The differential equation governing the dynamics
of this process can be obtained through the instantaneous oscil-
lation frequency

(7)

where is half the inductance of the inverter transformer
working in differential mode. Taking into account that

, , and (i.e.,
), one finally obtains

(8)

Equation (8) explains the dynamic of the locking process
through the evolution of over time. It establishes the steady-
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Fig. 4. Graphical representation of the stability analysis of (8) in the steady
state.

Fig. 5. Steady-state solution of (8) versus varactors bias shift.

state condition, locking range, locking sensitivity, and dynamic
behavior.

A. Steady-State Solution

In the steady state, the value of is 0. Thus, the solu-
tions of (8) are two fixed values of angle

(9)

and

(10)

As is schematically depicted in Fig. 4, any perturbation around
will be automatically compensated. Consequently, is

stable. On the contrary, any perturbation around will be
amplified, indicating that it is an unstable value.

According to (9), the second harmonic ILO shown in Fig. 3
can be used as a continuous phase modulator [14]. In the locked
state, the output frequency of the second harmonic ILO is al-
ways half the injected frequency. A change in the varactors bias
conditions then produces a phase shift instead of a frequency
shift. This fact can be observed in Fig. 5, where angle has
been plotted against the varactor’s bias shift. To evaluate , ,
and , the depletion capacitance formula of a p–n junction has
been used. Moreover, the zero of the bias shift scale corresponds
to the bias value at which (i.e., ).

A quasi-linear behavior is observed for small values of the
varactors bias shift. Note that the maximum and minimum
achievable values of are and , respectively, which,
according to (5), leads maximum and minimum output phase

of and .

B. Locking Range and Locking Sensitivity

The locking range of the second harmonic ILO can easily be
obtained from (9). The argument of the function must be
kept from 1 to 1, thus,

(11)

A similar expression has been previously reported by other au-
thors [12]. It should be noted that, in contrast with the fun-
damental locking analysis [8], [9] the second harmonic injec-
tion-locking leads to a locking range not dependent on the res-
onator quality factor. This is due to the fact that injection at the
second harmonic does not force the oscillator to oscillate out of
its natural or resonant frequency, but actually it changes this fre-
quency.

Equation (11) also establishes a relationship between the fre-
quency shift and the minimum injected power re-
quired for locking. According to (11), one can expect

(12)

That is to say, the locking sensitivity varies as the relative fre-
quency shift to the square.

C. Dynamic Behavior

To analyze the dynamic behavior of the locking process, we
need to solve (8). Depending on the boundary conditions, we
can consider several cases as follows.

1) Phase Locking: In this case, (i.e., ) and
(8) reduces to

(13)

Its solution can be written as

(14)

where denotes the initial condition of the phase for The
time is given by

(15)

Fig. 6 shows the transient responses of for different
values of as a function of the normalized time . In this
particular case, regardless of the injected power, the phase
locking always takes place. According to (14), (15), and Fig. 6,
the input power only determines the speed at which equilibrium
conditions are reached, i.e., the higher the power, the faster the
response. Consequently, provided the injection time is long
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Fig. 6. Time-dependent solution of (8) in the case of phase locking.

Fig. 7. Time-dependent solution of (8) in the case of phase and frequency
locking.

enough, any signal at frequency (for instance noise) can
lock the oscillator and change its output phase.

2) Phase and Frequency Locking: This case corresponds
to the double condition and

. The solution of (8) is now given by

(16)

where

(17)

and

(18)

The upper sign applies when (i.e., ),
and the lower sign when (i.e., ).

Fig. 7 shows an example of the transient response of for
different values of as a function of normalized time . In
this example, angle . It is clearly observed in Fig. 7
that angle acts as an attractor of the dynamic phase trajecto-
ries while angle acts as a scatterer. As in previous case 1),
the injected power determines the speed at which the equilib-
rium conditions are reached. However, now a minimum injected

Fig. 8. Time-dependent solution of (8) in the locking threshold.

power is required to assure locking. This situation will be ana-
lyzed in the next case.

3) Locking Threshold: This case corresponds to the condi-
tion , i.e., . Here, (8) can
be expressed as follows:

(19)

The minus sign applies when and the plus sign ap-
plies when . Under these conditions, the solution of
(19) is given by

(20)

where

(21)

Once again, in these equations, the upper sign applies when
(i.e., ), and the lower sign applies when
(i.e., ).

The transient response of for different values of as a
function of normalized time is shown in Fig. 8. In this case,

is equal to . At the locking threshold, the injected power
is the minimum required to assure locking. Under these condi-
tions, the ILO is very unstable. Consequently, any perturbation
at the input (for instance, noise) can unlock the oscillator.

4) Unlocking: In this case, .
Consequently, at any time , and locking does not
occurs, i.e., the injected power is not big enough to assure the
locking of the oscillator. Under these conditions, the solution of
(8) is given by

(22)

where

(23)
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Fig. 9. Time-dependent solution of (8) in the unlocked state. The continuous
line corresponds to � = 2 and the dashed line corresponds to � = 1:25.

Fig. 10. Schematic representation of voltage waveforms at varactors leads.
The thick line corresponds to the fundamental component and the thin line
corresponds to the injected signal. (a) and (b) identify the two possible states
due to the phase uncertainty. Marker squares have been inserted to highlight that
the same phase relationship between the fundamental component and injected
signal is observed in both cases.

and

(24)

The minus sign applies when and the plus sign ap-
plies when .

Fig. 9 depicts the dynamics of as a function of the nor-
malized time for two values of parameter . The continuous
line corresponds to and the dashed line corresponds to

. For comparative purposes, both curves have the same
initial conditions . It can be observed that shows a peri-
odic behavior of which the period depends on the parameter.
As approaches 1, the period increases and becomes infinity
for . This limit situation corresponds to the previous
analysis case of the locking threshold.

III. BPSK TO ASK CONVERSION

A. Conversion Mechanism

Let us consider a second harmonic ILO injected by a refer-
ence signal. Frequency and power of the injected signal are such
as to assure both frequency and phase locking of the oscillator.
According to (5), there are two possible values of the output
phase that verify the locking conditions, which differ in .
This is schematically depicted in Fig. 10.

Fig. 11. Schematic representation of the voltage waveforms evolution at
varactors leads when the phase of the injected signal changes in �. The dashed
line corresponds to the fundamental voltage waveform just at the time when the
input phase changes. This waveform can evolve in two ways to again reach the
steady-state conditions: (a) by decreasing the waveform phase in �=2 or (b) by
increasing the waveform phase in the same amount.

Fig. 12. Schematic representation of the evolution of angle � when the input
phase changes in �. Label (a) identifies the case when the steady-state value
� > 0 and (b) the case � < 0.

Now let us assume that the phase of the injected signal
changes in . The locking phase conditions are no longer satis-
fied, thus, the output phase of the ILO changes to again reach
the steady state. As is shown in Fig. 11, the change in the output
phase could be either or indistinctly.

According to our previous analysis of the ILO’s dynamics,
when the phase of the input signal changes in , the angle
changes from it steady-state value to . Depending on
whether the value of is positive (i.e., ) or negative
(i.e., ), the transient of back to the steady-state
conditions will consist in an increase or a decrease

, respectively. This situation is shown in Fig. 12.
Taking into account (5), an increment leads to an increment
of the output phase of the oscillator . Hence, the
response of a phase change of the BPSK input signal is a change
of the phase of the oscillator output when
or when .

Let us now consider the circuit shown in Fig. 13. A BPSK
signal of frequency is injected to both ILOs, e.g., using a
power splitter. The total injected power is assumed to be enough
to assure frequency and phase locking of both oscillators. The
varactors of are biased so that the free-running frequency

. The varactors of are also biased so that
. Finally, the outputs of both and are combined

together using a power combiner.
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Fig. 13. Circuit block diagram of the proposed BPSK to ASK converter.

As starting point for our analysis of the BPSK to ASK con-
version, and without loss of generality, we can assume that the
output phase of the first oscillator is the solution of (5) with

(i.e., the steady-state value of for the first oscil-
lator) and , i.e.,

(25)

Analogously,

(26)

where is the output phase and is the steady-state value
of for . Under these conditions, the outputs of both
oscillators and can be expressed as

(27)

This situation is described in the phasor diagram of Fig. 14(a).
At the output of the power combiner, they will mainly construc-
tively interfere leading to maximum output amplitude

(28)

If the phase of the BPSK input signal changes in , the output
phase of changes in , while the output
phase of changes in . Similarly to
(27), the outputs are given by

(29)

However, both outputs will now mainly destructively interfere,
leading to minimum amplitude at the output of the power
combiner

(30)

Fig. 14. Phasor diagram of the BPSK to ASK converter circuit. Label (a) corre-
sponds to an arbitrary initial condition for which the superposition of the outputs
O andO give a maximum and (b)–(d) correspond to successive changes in �
of the input phase.

Fig. 15. Output waveform of the converter circuit of Fig. 13 in response to
successive changes in � of the input phase. Labels (a)–(d) correspond to the
equivalent phasor states in Fig. 14.

as shown in Fig. 14(b). Further changes in of the phase of
the BPSK input signal will cause consecutive switches between
minimum and maximum output amplitudes following the se-
quence given in Fig. 14(c), (d), (a), and (b) and so on. Hence,
the resulting interference pattern reproduces the phase changes
of the injected BPSK signal. In others words, the circuit diagram
of Fig. 13 effectively down converts the BPSK input signal at
frequency into an ASK output signal at frequency .

It is noteworthy that frequencies and delimit a conver-
sion channel. Only locking frequencies inside the range

correspond to BPSK input signals, which are prop-
erly converted into ASK signals. Locking frequencies outside
this range will cause phase changes at the output of both oscilla-
tors of ( and ) or (
and ) when the input phase changes in . Conse-
quently, no interference pattern will be generated.

B. Bit Rate Estimation

Fig. 15 shows an example of the output waveform of the con-
verter circuit of Fig. 13 as a function of the normalized time .
The time-domain output signals of both oscillators have been
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Fig. 16. Continuous closed lines are the contours of constant normalized
transient time. Dashed lines are the contours of constant normalized conversion
channel. Both set of curves are represented in the (� ;�� ) plane.

computed using an arbitrary carrier frequency and the ana-
lytical expressions of the phase behavior (14) to (24). This figure
shows the resulting interference pattern in response to consecu-
tive phase changes of the BPSK input signal. Here, input phase
changes take place every ten normalized time units. After each
input phase change, a transient response of the output can be
observed lasting approximately five normalized time units. For
a better understanding, letter labels in this figure correspond to
the different steady states of Fig. 14.

It is noteworthy that the conversion dynamics of the new con-
verter circuit is significantly different than that of the classical
demodulators based on synchronization loops. In the new ap-
proach, the BPSK to ASK converter does not lock to recover
the carrier and then demodulates, but relocks for every single bit
(i.e., phase change of the input signal). Consequently, the new
demodulation scheme will be very useful in burst mode com-
munication where the classical approach fails due to the usually
large locking time.

The transient response of the converter circuit will be one of
the limiting factors of the maximum achievable bit rate. Only
BPSK signals having a bit rate can be properly down-
converted into ASK signals, with being the total transient
time. Using normalized time units, the transient time only
depends on the steady-state values and . Fig. 16 shows the
projection of constant contours (continuous lines) on the
plane . Transient times have been evaluated as the
required time to achieve 95% of the total output phase change
after a sudden input phase change of .

In Fig. 16, there are dashed curves corresponding to constant
values of . Taking into account that

, it can be seen that these curves also correspond to
constant values of the conversion channel width . In
fact, according to (9), one can obtain

(31)

For a given injected power, the maximum value of
is achieved for . Substituting this condition

Fig. 17. Normalized bit rate as a function of the normalized channel width.

in (31), the following expression is obtained for the maximum
conversion channel width:

(32)

By combining (31) and (32), one finally obtains the following
expression for the normalized channel width:

(33)

According to data in Fig. 16, for a given conversion channel
width, the minimum transient response is observed when

. Under such condition, the locking frequency is cen-
tered between and . Moreover, the absolute minimum of
the transient time is found to be approximately 3.6 normalized
time units for .

Fig. 17 shows the normalized bit rate as a function of the
normalized channel width. It is noteworthy that a maximum
bit rate of approximately is achieved for a conver-
sion channel width equal to the 55%–60% of the maximum
value . Equivalently, for a given conversion channel width

, the maximum achievable bit rate will be approxi-
mately provided the converter is operating under
optimal conditions.

C. Conversion Dynamics

The above discussion of the conversion dynamics has been
done considering a steep phase change of the BPSK input signal.
However, this phase change usually takes place during a certain
transition time .Among the multiplepossible trajectories going
from one symbol to the other of a BPSK signal, we have consider
in detail three simple cases, which are shown in Fig. 18. The first
one, labeled , corresponds to a constant decrease of the injected
amplitude, a phase change of when the amplitude reaches zero,
and a constant amplitude increase up to the initial value. This
trajectory is the result of the multiplication of a carrier signal with
a quasi-step function from 1 to 1 or vice versa having a certain
rise or fall time, respectively. The second trajectory, labeled
, corresponds to a continuous phase increase in during the

transition time, keeping constant the signal amplitude. Finally,
the third trajectory corresponds to a constant signal amplitude
and a continuous phase decrease in during the same time.

We next analyze these three cases through the evaluation of
in Fig. 13, i.e., the one with the condition .
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Fig. 18. Simple trajectories in the constellation diagram between both symbols
of a BPSK signal.

1) Case : The study of the dynamic behavior of the con-
verter in response to a phase change of the BPSK signals must
be carried out considering three different stages. First, the am-
plitude of the injected signal decreases from its initial value
to zero during a normalized time . Second, the phase of the
injected signal suddenly changes in and the amplitude in-
creases from zero to the initial value , also during a time .
Finally, the converter system evolves until an equilibrium con-
dition is reached once again.

Assuming a linear decrease of the injected amplitude, the dy-
namics of the first stage is governed by the following differential
equation:

(34)
where is the fall time. The domain of integration is and
the initial condition is .

For the second stage, the differential equation to be solved is
given by

(35)
being the integration domain and the initial conditions

.
Finally, the differential equation for the third stage is given

by (8), which can be rewritten as

(36)

with an integration domain and the initial condition
.

Once the solutions for the three stages are known, the output
phase change of the converter can be evaluated. Ac-
cording to (5), one obtains

(37)

Fig. 19. Plot of output phase ��(t) as a function of the normalized time for
different values of the transit time � . The insert shows the BPSK waveform
corresponding to the trajectory labeled “a” in Fig. 18.

Equations (34) and (35) have been solved numerically,
whereas the solution of (36) is given by (16)–(18). The same
procedure can be applied for solving the output phase of ,
the one with . From the symmetry of the problem,
similar expressions will be found.

Fig. 19 shows the global solution of in the case
and for several values of the normalized transit time
. The inset in this figure illustrates the generation

procedure of the input BPSK signal. It should be noted that
the output phase change shows a bifurcation behavior
depending on the normalized transit time . If is smaller
than the bifurcation time (in the example shown in Fig. 19,

), then the output phase shift is , as
expected when (i.e., ). On the contrary,
if the transit time is injected, amplitude increases above the
locking threshold. On the contrary, for a long time interval of
the oscillators in the free-running state, a wrong final output
phase will be reached.

Further increase of the transit time reveals the existence of
additional bifurcation times, which delimits zones of right and
wrong behavior of the converter. Accordingly, the first bifurca-
tion time must be understood as the maximum acceptable fall
and/or rise time of the trapezoidal waveform used to generate
the BPSK signal. Bifurcation phenomena in harmonic-injected
dividers have been analyzed by other authors [15]. However,
the analysis has been carried out taking into account only the
injected power and not the input phase change dynamics.

2) Cases and : In these cases, we have to take into ac-
count two different stages to analyze the dynamics of the con-
verter in response to a phase change of the BPSK signals. First,
the phase of the injected signal increases or decreases linearly in

during a certain transit time (factor 2 is included for com-
parative purposes with the previous case). Second, the converter
system evolves until an equilibrium condition is again reached.

According to (5)–(7), the dynamics of the first stage is gov-
erned by the differential equations

(38)

that can be rewritten as

(39)
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Fig. 20. Plot of output phase �(t) as a function of the normalized time for
different values of the transit time � . The insert shows the BPSK waveform
corresponding to the trajectory labeled “b” in Fig. 18.

with being an equivalent injection frequency, which is given
by

(40)

The integration domain of (39) is , and the initial con-
dition is and (this last value can be ar-
bitrarily assigned). Depending on the value of , the solution
will be one of those described in Section II-C.

According to the previous discussion, the transit between
symbols of the BPSK signal has to be interpreted just as a
change in the injection frequency from to .

For the second stage, the equation to solve is given by (8),
which, in this case, can be expressed as

(41)

with the integration domain being and the initial con-
dition being .

Finally, the converter’s output phase change is given
by

(42)

The plus sign applies when the phase on the input signal in-
creases from 0 to , while the minus sign applies when the phase
decreases from 0 to .

Figs. 20 and 21 depict for and several values
of the normalized transit time , assuming a linear vari-
ation of from 0 to , respectively. In both cases, the inset
illustrates the generation procedure of the input BPSK signal. In
the first case, shown in Fig. 20, the locking frequency increases
by an amount equal to during the transit time, whereas in
the second case in Fig. 21, the locking frequency decreases by
the same amount. It is important to note that the bifurcation be-
havior is only observed in the second case.

To understand these results, we have to take into account that
trajectories and are equivalent when the transit time is very
short. In that case, the injected oscillators only react to the final
value of phase , which is the same in both cases. This can be
observed in both Figs. 20 and 21 as an output phase change in

Fig. 21. Plot of output phase as a function of the normalized time for
different values of the transit time � . The insert shows the BPSK waveform
corresponding to the trajectory labeled “c” in Fig. 18.

Fig. 22. Normalized bifurcation time as a function of angle � for trajectories
labeled “a” and “c” in Fig. 18.

, as expected when (i.e., ). On the con-
trary, if the transit time is long enough, the injected oscillators
follow the input phase changes and then the final value of the
output phase will depend on the input phase trajectory. In case
, and no bifurcation appears. However, in case ,

and the bifurcation behavior is observed. Opposite
results would be obtained for because (i.e.,

) is considered. In any case, the bifurcation time must be
considered the maximum acceptable transit time between sym-
bols of the BPSK input signal.

To conclude, Fig. 22 shows the normalized bifurcation time
as a function of angle for trajectories and . Note the impor-
tant differences in behavior related to the different nature of the
bifurcation phenomena. BPSK signals generated using a schema
in accordance with trajectory will be better demodulated using
strong injected oscillators (i.e., small values of ). On the con-
trary, BPSK signals generated according to trajectories or
will be better demodulated using weak injected oscillators.

IV. CONCLUSION

A new method and circuit to convert BPSK signals into ASK
signals based on the use of second harmonic ILOs has been pre-
sented.

First, the second harmonic ILOs have been analyzed in de-
tail. Their dynamics in response to phase changes of the injected
signal has been studied exhaustively. Hence, an analytical ex-
pression, describing the oscillator response to phase changes of
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the BPSK input signal, has been obtained for all possible locking
conditions.

Second, the conversion mechanism, based on frequency and
phase synchronization and interference phenomena, has been
studied in detail. As a result, the existence of a conversion
channel, controlled by external bias, has been pointed out.
Moreover, the out-of-channel rejection of the converter has
been discussed in detail.

In addition, the dynamics of the conversion mechanism has
also been extensively analyzed. The maximum achievable mod-
ulation bit rate has been studied as a function of the locking con-
ditions of the converter. From this study, the optimum operating
conditions of the converter have been derived, and a relation-
ship between the conversion channel width and the maximum
bit rate has been established.

Finally, the limitations of the conversion process related to
the characteristics of the BPSK signal (i.e., nonnull transit time
from one symbol to another) have been considered. Three rel-
evant cases have been studied exhaustively and, as a result, the
existence of a bifurcation behavior of the converter response has
been evidenced. From this, maximum acceptable transit times
between symbols of the input BPSK signal have been obtained.
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