
954 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 4, APRIL 2008

Gallium–Indium–Zinc-Oxide-Based Thin-Film
Transistors: Influence of the Source/Drain Material

Pedro Barquinha, Anna M. Vilà, Gonçalo Gonçalves, Luís Pereira,
Rodrigo Martins, Joan R. Morante, and Elvira Fortunato

Abstract—During the last years, oxide semiconductors have
shown that they will have a key role in the future of electronics.
In fact, several research groups have already presented working
devices with remarkable electrical and optical properties based on
these materials, mainly thin-film transistors (TFTs). Most of these
TFTs use indium–tin oxide (ITO) as the material for source/drain
electrodes. This paper focuses on the investigation of different
materials to replace ITO in inverted–staggered TFTs based on
gallium–indium–zinc oxide (GIZO) semiconductor. The analyzed
electrode materials were indium–zinc oxide, Ti, Al, Mo, and Ti/Au,
with each of these materials used in two different kinds of devices:
one was annealed after GIZO channel deposition but prior to
source/drain deposition, and the other was annealed at the end
of device production. The results show an improvement on the
electrical properties when the annealing is performed at the end
(for instance, with Ti/Au electrodes, mobility rises from 19 to
25 cm2/V · s, and turn-on voltage drops from 4 to 2 V). Using
time-of-flight secondary ion mass spectrometry (TOF-SIMS), we
could confirm that some diffusion exists in the source/drain
electrodes/semiconductor interface, which is in close agreement
with the obtained electrical properties. In addition to TOF-SIMS
results for relevant elements, electrical characterization is pre-
sented for each kind of device, including the extraction of source/
drain series resistances and TFT intrinsic parameters, such as µi

(intrinsic mobility) and VTi (intrinsic threshold voltage).

Index Terms—Amorphous oxide semiconductors, contact resis-
tance, RF magnetron sputtering, thin-film transistors (TFTs).

I. INTRODUCTION

THE THIN-FILM transistor (TFT) industry is still tightly
connected to the silicon technology, and it will most likely

remain that way during the next years. However, new research
areas have been opened with the appearance of the first semi-
conductor oxide-based transistors in 1996 by Prins et al. [1].
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At that time, little attention was given to the semiconductor
material (Sb-doped SnO2), but in 2003–2004, the “big boom”
happened with the presentation of several oxide semiconductor
TFTs based on ZnO [2]–[5] or ZnO compound materials [6]
with remarkable electrical properties, which are comparable
to or even better than amorphous silicon (a-Si) TFTs. Once
these devices were reported, several ideas appeared concerning
their application, with the main driving force related to the next
generation of flexible and transparent devices processed at low
temperatures, namely for display applications. In fact, from that
time until today, several reports have been presented concerning
(fully) transparent transistors with reduced processing temper-
atures and/or enhanced electrical properties in comparison with
the first ZnO TFTs [7]–[9]. The key point that allowed this
evolution was the exploitation of new multicomponent oxide
semiconductors based on heavy-metal cations, e.g., zinc–tin
oxide (ZTO) [8], indium–zinc oxide (IZO) [7], [9], [10], and
gallium–indium–zinc oxide (GIZO) [11], which have excellent
electrical properties in spite of their amorphous structure, some-
thing that is unusual for conventional covalent semiconductors
[10]. As the field of oxide-based TFTs is still fairly recent,
details about this technology need to be studied for a better
understanding of the physics behind it, as it happens with the
contact resistance issues, which are already widely explored in
a-Si [12], [13] and organic-based TFTs [14]–[17]. The contact
resistance is known to be a bottleneck factor on the performance
of these devices, which is responsible for limiting, among other
parameters, the transconductance (hence, the channel mobility),
particularly in low-dimensional devices. Jackson et al. [18],
using capacitance–voltage (C–V ) measurements, reported that
the Al/ZTO contact resistance was in the range of 100 kΩ,
causing significant on-current degradation. This paper aims to
provide an overview of the importance of the contact resistance
on GIZO-based TFTs using different source/drain electrode
materials (e.g., IZO, Ti, Al, Mo, and Ti/Au) and devices with
different channel lengths.

II. EXPERIMENTAL DETAILS

The TFTs were produced using heavily doped (NA ≈
1017 cm−3) p-type silicon substrates (2.5 × 2.5 cm) coated
with 100-nm-thick thermally grown SiO2, which acted as the
gate dielectric. Si was simultaneously used as the substrate
and the common gate of the devices. A Ti (15 nm)/Au
(135 nm) film was deposited by electron beam (e-beam)
evaporation on the backside of Si (after etching the backside
SiO2 with a buffered HF solution) to form the gate electrode.
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Fig. 1. Transfer characteristics of GIZO-based TFTs with Ti/Au source/drain
electrodes annealed before (TFT A, open circles) and after (TFT B, closed
circles) the deposition of Ti/Au. Inset shows the output characteristics of TFT
B and TFT A (for high VGS), in which it is visible that for the same VGS and
VDS, IDS is higher in TFT B. Devices with W/L = 50/50 µm.

A 50-nm-thick GIZO layer (the semiconductor) was then
deposited by RF magnetron sputtering at room temperature in a
Pfeiffer Vacuum Classic 500 system. A 3-in-diameter ceramic
target from LTS was used at 15 cm from the substrate, at a
base pressure of 5 × 10−4 Pa, an oxygen partial pressure of
4 × 10−2 Pa, a processing pressure (Ar + O2) of 7 × 10−1 Pa,
and an RF power of 75 W. Different source/drain
electrodes—Ti, Al, Mo, and Ti/Au, all 200 nm thick—were
e-beam evaporated at a rate of 2 Å/s on top of GIZO to
evaluate the influence of the various electrode materials on
the electrical properties of the TFTs. In addition to these
metals, IZO (200 nm) deposited by RF magnetron sputtering
was also tested as a source/drain electrode material. The
details concerning IZO can be found elsewhere [7]. Both the
semiconductor and the source/drain layers were patterned
by liftoff, and the produced transistors had a fixed width W
of 50 µm, whereas the length L was changed between 50
and 5 µm. Two different kinds of transistors were produced
with each source/drain material: one (TFT A) was annealed
after GIZO but prior to source/drain deposition; the other
(TFT B) was annealed at the end of device production.
Annealing was performed in a Barnstead Thermolyne F21130
tubular furnace, with a constant flow of nitrogen, at 250 ◦C
for 1 h.

III. RESULTS AND DISCUSSION

Fig. 1 shows the transfer and output characteristics of GIZO-
based TFTs with Ti/Au source/drain electrodes, which are
annealed at two different processing stages—before (TFT A)
and after (TFT B) source/drain deposition. The data reveal a
general improvement on the electrical properties of device B, as
traduced by an enhancement on the maximum IDS, i.e., IDSmax

(0.08 against 0.05 mA), and the field-effect mobility µFE (24.5
against 18.8 cm2/V · s, as calculated by the transconductance
with VDS = 1 V) and a slightly lower threshold voltage VT

(12.8 against 14.6 V). The on/off ratio remained essentially the
same, i.e., around 6 × 107. This enhancement could be related
to some changes in the interface between the source/drain and

Fig. 2. Depth profile obtained by TOF-SIMS for the Ti/Au/GIZO/SiO2

interfaces. (a) TFT A. (b) TFT B.

Fig. 3. Transfer characteristics of GIZO-based TFTs with different
source/drain electrodes: IZO, Ti, Mo, and Ti/Au. Inset shows magnification
for high VDS of the output characteristics of the same devices. Devices with
W/L = 50/50 µm.

the semiconductor, such as a decrease of the barrier associated
with the contact of materials with different workfunctions [19].
Indeed, by the results obtained using time-of-flight secondary
ion mass spectrometry (TOF-SIMS) (Fig. 2), one can clearly
see that TFT B data reveal a broader intersection between
Au and Ti (the two metals that compose the source/drain
electrodes and that obviously have an influence on the contact’s
electrical performance, where Ti is the adhesion layer) and Ti
and GIZO than for TFT A. These broad intersections are related
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TABLE I
COMPARISON OF THE ELECTRICAL PROPERTIES OF GIZO-BASED TFTs WITH DIFFERENT

SOURCE/DRAIN ELECTRODES. DEVICES WITH W/L = 50/50 µm

to the diffusion of the constituent materials and, thus, with the
formation of transition regions between the electrodes and the
semiconductor that should improve the electrical characteris-
tics. This evolution of properties from device A to B is more
drastic with Ti or Ti/Au electrodes and barely noticeable with
Mo electrodes. From all the tested source/drain materials, IZO
is the one that presents fewer changes from A to B, presumably
because it should be very similar to GIZO in terms of structure.
In fact, TOF-SIMS data of TFT A and TFT B with GIZO/IZO
do not reveal any evidence of changes at the interfaces. The
remaining analysis throughout this paper will be done for B
devices.

A comparison between the various source/drain materials is
shown in Fig. 3 for devices with W/L = 50/50 µm. The data
show some differences on the transfer characteristics, mainly
the turn-on voltage Von, which is considerably more negative
for Mo source/drain electrodes. This could be related to the
results obtained by TOF-SIMS, where no clear evidence of
interfacial layer was observed for Mo/GIZO. On the contrary,
since an interfacial layer is formed when Ti (or Ti/Au) elec-
trodes are used, presumably TiOx (note that Ti has a small free
energy of oxidation), this could be pushing Von toward more
positive values. We are currently working to experimentally
clarify this point. Off-current variations can be attributed to
device processing nonuniformity and measurement error, as
revealed by the characterization of different devices processed
under the same conditions in different runs.

The inset of Fig. 3 shows magnification of output charac-
teristics, where it can be seen that Mo and Ti/Au allow higher
IDSmax than IZO and Ti source/drain electrodes. This suggests
that the first two contacts have a higher efficiency of injection
than the last two contacts. Note that for high VDS (when the
TFT is getting closer to or is in the saturation mode), most of
that voltage is dropped near the source (i.e., injecting contact)
than near the drain [15], [17]. Thus, a highly efficient contact
is necessary to attain good electrical properties. The previous
statement obviously assumes that the contacts are associated
with some resistances, as will be later explored.

The electrical properties of the TFTs with different
source/drain electrodes are listed in Table I and are in agree-
ment with the previous statements. In fact, mobility is higher
for Ti/Au and Mo contacts, both in linear (µFE) and saturation
(µsat) regimes. Note that µsat is always lower than µFE,
which can be attributed to the increased scattering effects in
the channel due to the higher VDS used to determine µsat.
Concerning VT and on/off ratio, no significant differences are
found between all the electrodes, with the obtained values
around 12.5–13.7 V and 6 × 107 − 2 × 108, respectively.

Fig. 4. Total TFT-ON resistance as a function of L and VGS for a GIZO-based
TFT with Mo source/drain electrodes. The experimental points are determined
by the reciprocal of the slope (i.e., ON resistance) of the output characteristics
for VDS < 1.5 V.

To evaluate the performance of different materials, the con-
tact resistance and intrinsic semiconductor parameters were
studied. For a low VDS, the total TFT-ON resistance RT can
be written as [20]

RT =
VDS

IDS
= rchL + RS + RD (1)

where rch is the channel resistance per channel-length unit, and
RS and RD are the series resistances associated with the source
and drain, respectively. Using the basic transistor equation from
the gradual channel approximation, rch is given by [20]

rch =
L

µiCoxW (VGS − VTi)
(2)

where µi and VTi are the intrinsic semiconductor mobility
and threshold voltage, respectively, representing the conduction
channel without the influence of the contact series resistance.
The determination of these parameters involves the determi-
nation and plotting of RT (at low VDS, i.e., in linear regime)
for different VGS and L, then fitting the experimental values
with linear curves for each VGS (Fig. 4). The intercept with the
y-axis of each fitting gives RS + RD, whereas rch is given by
the slope, as evidenced by (1). Plotting the reciprocal of rch as
a function of VGS and fitting the results with a linear curve, µi

(slope) and VTi (x-axis interception) can be obtained according
to (2).

The obtained intrinsic parameters are shown in Fig. 5, to-
gether with the evolution of µFE and VT with L. Concerning
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Fig. 5. Evolution of peak µFE (closed boxes) and VT (open circles) with L for GIZO-based TFTs with different source/drain electrodes: IZO, Ti, Mo, and
Ti/Au. For Ti and Ti/Au, µFE versus L is also presented for µFE determined at VGS = 15 V (closed triangles). The intrinsic parameters µi and VTi are also
presented for each device.

the intrinsic parameters, namely µi and VTi, no considerable
changes were verified among the tested material, which is an
expectable result since the model takes into account that part
of the applied VGS is dropped by the source/drain contact
resistances.

In all the devices, µFE follows the same trend as L, i.e.,
it decreases for small channel lengths. Two aspects are worth
noticing here. 1) The µi values match quite well with the µFE

values of devices with a long channel (50 µm); this means
that, in this case, RS and RD should not be of significant
influence. 2) As L decreases, the relative influence of RS and
RD in RT increases (RS and RD are independent of L, but the
product rch × L decreases); thus, a larger voltage is dropped at
the contact resistances for smaller L, thus lowering µFE [17].
In particular, this means that the real voltages (both VDS and
VGS) applied inside the device, after passing the electrodes, are
diminished as L decreases. This relative effect of the resistances
is clearly seen in Fig. 6, where both RC = RS + RD and
rch × L for various L are plotted as a function of VGS.

For all the materials, both rch × L and RC are VGS depen-
dent, i.e., they decrease for larger VGS. This can be justified
by the increase of the carrier concentration as VGS increases,
both in the channel (the field effect phenomenon) and outside
the channel defined by the lithographic mask (i.e., outside the
space defined by L), since source/drain to gate overlaps exist
[13], [14]. In the present case, since the gate electrode covers
all the substrate, this overlap is maximized.

As shown in Fig. 6, as L increases, the contribution of RC

to RT decreases, agreeing quite well with the data depicted
in Fig. 5. For instance, if long and short devices (L = 50 and
5 µm) are considered, different evolutions of µFE are observed:

For L = 50 µm, since the RC contribution to RT is negligi-
ble throughout the range of the studied VGS, µFE will mostly

depend on rch, which is low for devices where the source/drain
electrodes are based on Ti/Au and Mo and high for those based
on IZO and Ti. Thus, µFE increases in the following order of
the materials used for the source/drain electrodes, i.e., IZO,
Ti, Mo, and Ti/Au, as shown in Table I. Now, even if one
does not calculate the peak value of µFE (note that until now,
only this value was presented, with the peak located around
VGS = 25 − 30 V) but rather µFE for a smaller VGS, e.g.,
15 V, where RC is higher, the order presented for µFE is still
preserved since rch continues to be much higher than RC .

For L = 5 µm, RC is comparable to or even higher than
rch × L throughout the VGS range; thus, both RC and rch × L
are significant to RT . For VGS = 30 V, the µFE order for
the different materials previously listed remains essentially
the same. However, for µFE determined at VGS = 15 V, the
situation is quite different since RC is dominant in RT for all
the materials except Ti. Thus, in this case, µFE increases in
another order, i.e., Ti/Au, IZO, Mo, and Ti.

Taking into account the aforementioned conditions, we can
now go back to Fig. 5 and plot the evolution of µFE with L
at VGS = 15 V. The results show, as expected, only a very
small variation of µFE with L for Ti, whereas for Ti/Au, a
clear increase of µFE with L is observed. This reinforces the
idea that RC has a strong effect on the electrical properties of
the TFTs.

Finally, it remains unclear what happens when Al is used
for the source/drain electrode. In this case, we always noticed
severe current crowding in the output characteristics at low
VDS, which is independent of when the annealing treatment
is performed (before or after depositing the electrodes). Thus,
it seems that a considerable barrier is formed between Al and
GIZO, which makes it impossible to do any reliable characteri-
zation in the linear regime.
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Fig. 6. Evolution of RC (contact resistance) and rch × L (channel resistance) for different values of L (5, 15, and 25 µm) with VGS for GIZO-based TFTs with
different source/drain electrodes: IZO, Ti, Mo, and Ti/Au

IV. CONCLUSION

The role of the contact resistance was analyzed in GIZO-
based TFTs with different source/drain electrodes. The influ-
ence of the annealing step, before or after the deposition of
source/drain electrodes, was studied and led to the conclusion
that devices with improved electrical properties are generally
obtained for the last case. Concerning the different source/drain
materials, Ti/Au led to the highest µFE, whereas VT and on/off
ratio were similar for all the tested materials. Evolution of µFE

and VT with L revealed no significant variation of VT , but a
pronounced decrease of µFE for lower L was observed, which
was ascribed to the higher relative influence of the contact
resistance on the total resistance of short-channel devices. For
high VGS, when RC started to saturate at a minimum value,
RC was found to be in the range of 10 (Ti) to 20 (Ti/Au) kΩ,
with these values around one order of magnitude lower than the
100 kΩ presented by Jackson et al. for ZTO-based TFTs with
Al contacts. A more detailed analysis of the contact resistance
issues and their role in all device performances is underway by
the present working team, which aims to improve the overall
device performance, including the transport mechanism that
takes place between the source/drain and the channel region.
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