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A Singular Poincaré Lemma

Eva Miranda and San Vũ Ngo. c

1 Introduction

The classical Poincaré lemma asserts that a closed 1-form on a smooth manifold is lo-

cally exact. In other words, given m-functions gi on an m-dimensional manifold for

which (∂/∂xi)(gj) = (∂/∂xj)(gi), there exists a smooth F in a neighborhood of each point

such that gi = (∂/∂xi)(F).

Now assume that we have a set of r functions gi and a set of r vector fields Xi with

a singularity at a point p and fulfilling a commutation relation of type Xi(gj) = Xj(gi). We

want to know if a similar expression for gi exists in a neighborhood of p.

In case gi are n functions on the symplectic manifold (R2n,
∑

i dxi ∧ dyi) and

Xi form a basis of a Cartan subalgebra of sp(2n, R), a Poincaré-like lemma exists. This

result was stated by Eliasson in [4]. In [5] Eliasson provided a proof of this statement in

the completely elliptic case. As far as the nonelliptic cases are concerned, no complete

proof of this result is known to the authors of this paper.

The analytical counterpart of this result dates back to the seventies and was

proved by Vey [12]. The transition from the analytical case to the smooth case in cases

other than elliptic entails a nontrivial work with flat functions along certain submani-

folds and, in our opinion, cannot be neglected.

The aim of this paper is to prove a more general singular Poincaré lemma: the one

that would correspond to a set of r functions on a 2n-dimensional manifold with r ≤ n

fulfilling similar commutation relations determined by a basis of a Cartan subalgebra of
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sp(2r, R). In particular, in this way we obtain a complete proof also when r = n in the non-

completely elliptic cases which was missing in the literature. This result has a natural

interpretation in terms of the cohomology associated to the infinitesimal deformation of

completely integrable foliations (see Section 6).

This result has applications in establishing normal forms for completely inte-

grable systems. The statement for r = n was used by Eliasson in [4, 5] to give a symplectic

normal form for nondegenerate singularities of completely integrable systems. The more

general result we prove here could be useful to establish normal forms for more general

singularities of completely integrable systems.

2 The result

All the objects considered in this paper will be C∞ . We are interested in germ-like objects

attached to a point p of a smooth manifold M2n.

We denote by (x1, y1, . . . , xn, yn) a set of coordinates centered at the origin. Con-

sider the standard symplectic form ω =
∑n

i=1 dxi ∧ dyi in a neighborhood of the origin.

Take r ≤ n and consider the embedding ir : R
2r → R

2n defined by ir(x1, y1, . . . , xr, yr) =

(x1, y1, . . . , xr, yr, 0, . . . , 0). Consider ωr =
∑r

i=1 dxi ∧dyi, then i∗r(ω) = ωr; in other words,

this embedding induces an inclusion of Lie groups Sp(2r, R) ⊂ Sp(2n, R). In this way

sp(2r, R) is realized as a subalgebra of sp(2n, R). This particular choice of subalgebra is

implicit throughout the paper.

In this paper we consider singular vector fields which constitute a basis of a

Cartan subalgebra of the Lie algebra sp(2r, R) with r ≤ n. Recall that sp(2m, R) is iso-

morphic to the algebra of quadratic forms in 2m variables, Q(2m, R), via symplectic du-

ality. Thus the above-chosen immersion induces, in turn, an inclusion of subalgebras

Q(2r, R) ⊂ Q(2n, R).

Cartan subalgebras of Q(2r, R) were classified by Williamson in [17].

Theorem 2.1 (Williamson). For any Cartan subalgebra C of Q(2r, R), there are a symplec-

tic system of coordinates (x1, y1, . . . , xr, yr) in R
2r and a basis q1, . . . , qr of C such that

each qi is one of the following:

qi = x2
i + y2

i for 1 ≤ i ≤ ke, (elliptic)

qi = xiyi for ke + 1 ≤ i ≤ ke + kh, (hyperbolic)[
qi = xiyi + xi+1yi+1

qi+1 = xiyi+1 − xi+1yi

]
for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf (focus-focus pair).

(2.1)
�
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Observe that the number of elliptic components ke, hyperbolic components kh,

and focus-focus components kh is therefore an invariant of the algebra C. The triple

(ke, kh, kf) is called the Williamson type of C. Observe that r = ke +kh +2kf. Let q1, . . . , qr

be a Williamson basis of this Cartan subalgebra. We denote by Xi the Hamiltonian vector

field of qi with respect to ω. Those vector fields are a basis of the corresponding Cartan

subalgebra of sp(2r, R). We say that a vector field Xi is hyperbolic (resp., elliptic) if the

corresponding function qi is so. We say that a pair of vector fields Xi, Xi+1 is a focus-

focus pair if Xi and Xi+1 are the Hamiltonian vector fields associated to functions qi and

qi+1 in a focus-focus pair.

In the local coordinates specified above, the vector fields Xi take the following

forms:

(i) Xi is an elliptic vector field,

Xi = 2

(
− yi

∂

∂xi
+ xi

∂

∂yi

)
; (2.2)

(ii) Xi is a hyperbolic vector field,

Xi = −xi
∂

∂xi
+ yi

∂

∂yi
; (2.3)

(iii) Xi, Xi+1 is a focus-focus pair,

Xi = −xi
∂

∂xi
+ yi

∂

∂yi
− xi+1

∂

∂xi+1
+ yi+1

∂

∂yi+1
,

Xi+1 = −xi
∂

∂xi+1
+ yi+1

∂

∂yi
+ xi+1

∂

∂xi
− yi

∂

∂yi+1
.

(2.4)

With all this notation at hand we can now state the result proven in this paper.

Theorem 2.2. Let g1, . . . , gr be a set of germs of smooth functions on (R2n, 0) with r ≤ n,

fulfilling the following commutation relations:

Xi

(
gj

)
= Xj

(
gi

)
, ∀i, j ∈ {1, . . . , r}, (2.5)

where the Xi’s are the vector fields defined above. Then there exists a germ of smooth
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function G and r germs of smooth functions fi such that

(1) Xj(fi) = 0, for all i, j ∈ {1, . . . , r};

(2) gi = fi + Xi(G), for all i ∈ {1, . . . , r}. �

3 Preliminaries

In this section, we recall some basic facts which are proved elsewhere and which will be

used in the proof. Here and in the rest of the paper the symbol Xi always refers to the

Hamiltonian vector field associated to the quadratic function qi, as precised above.

3.1 A special decomposition for elliptic vector fields

Assume Xi is an elliptic vector field. That is, it is the vector field associated to an elliptic

qi = x2
i + y2

i . The following result was proved by Eliasson in [4] when n = 1.

Proposition 3.1. Let g be a smooth function; then there exist differentiable functions g1

and g2 such that

g = g1

(
x1, y1, . . . , x2

i + y2
i , . . . , xn, yn

)
+ Xi

(
g2

)
. (3.1)

Moreover,

(1) g1 is uniquely defined and satisfies Xj(g1) = 0 whenever Xj(g) = 0;

(2) g2 can be chosen such that Xj(g2) = 0 whenever Xj(g) = 0. �

Remark 3.2. There are explicit formulas for the functions g1 and g2 claimed above. Let

φt be the flow of the vector field Xi; we define

g1

(
x1, y1, . . . , xn, yn

)
=

1

π

∫π

0

g
(
φt

(
x1, y1, . . . , xn, yn

))
dt,

g2

(
x1, y1, . . . , xn, yn

)
=

1

π

∫π

0

(
tg

(
φt

(
x1, y1, . . . , xn, yn

))
− g1

(
x1, y1, . . . , xn, yn

))
dt.

(3.2)

3.2 A special decomposition for hyperbolic vector fields

In this section we assume the vector field Xi corresponds to a hyperbolic function qi =

xiyi. As a matter of notation, Si stands for the set Si = {xi = 0, yi = 0} ⊂ R
2n. When we
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refer to an (xi, yi)-flat function f along Si we mean that

∂k+lf

∂xk
i ∂yl

i |Si

= 0. (3.3)

The first result is a decomposition result for smooth functions.

Proposition 3.3. Given a smooth function g there exist smooth functions g1 and g2 such

that

g = g1

(
x1, y1, . . . , xiyi, . . . , xn, yn

)
+ Xi

(
g2

)
. (3.4)

Moreover, g1 and g2 can be chosen such that Xj(g1) = Xj(g2) = 0 whenever Xj(g) = 0 for

some j �= i. �

This proposition was proven by the first author of this paper in [9] (Proposition

2.2.2).

The main strategy of the proof is first to find a decomposition of this type in terms

of (xi, yi)-jets and then solve the similar problem for (xi, yi)-flat functions along Si. Main

ingredients in the proof of the proposition above are the following lemmas which will be

also used in the proof of the theorem in this paper. The proof of the following two lemmas

is also contained in [9] (resp., Lemmas 2.2.1 and 2.2.2).

Lemma 3.4. Let g be a smooth function; the equation Xi(f) = g admits a formal solution

along the subspace Si if and only if

∂2kg

∂xk
i ∂yk

i |Si

= 0. (3.5)
�

Lemma 3.5. Let g be an (xi, yi)-flat function along the subspace Si; then there exists a

smooth function f for which Xi(f) = g. �

Remark 3.6. (1) We point out that when n = 1 the decomposition claimed in Proposition

3.3 had been formerly given by Guillemin and Schaeffer [8], by Colin de Verdière and Vey

in [3], and by Eliasson in [4].

(2) The recipe for solving the equation specified in the lemma above in the case

n = 1 was given by Eliasson in [4]. The recipe for the general case follows the same guide-

lines. It is given by the following formula:

f
(
x1, y1, . . . , xn, yn

)
= −

∫Ti(x1,y1,...,xn,yn)

0

g
(
φt

(
x1, y1, . . . , xn, yn

))
dt, (3.6)
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where Ti is the function

Ti

(
x1, y1, . . . , xn, yn

)
=




1

2
ln

xi

yi
xiyi > 0,

1

2
ln

−xi

yi
xiyi < 0,

(3.7)

and φt(x1, y1, . . . , xn, yn) is the flow of the vector field Xi. Observe that f is defined outside

the set Ω = Ω1 ∪ Ω2, where Ω1 and Ω2 are the sets Ω1 = {(x1, y1, . . . , xn, yn), xi = 0} and

Ω2 = {(x1, y1, . . . , xn, yn), yi = 0}. In [9] it is proven that f admits a smooth continuation

in the whole neighborhood considered and that it is a solution of the equation Xi(f) = g.

(3) From the formula specified above one deduces that if Xj(g) = 0 for j �= i then

Xj(f) = 0.

(4) In contrast to the uniqueness of the function g1 in the decomposition obtained

in Proposition 3.1 for elliptic vector fields, the function g1 specified in the decomposition

is not unique. In fact, if g1 and h1 are two functions fitting in the decomposition their

difference is an (xi, yi)-flat function along Si. In order to check this, observe g1 − h1 =

Xi(h2 − g2), where h2 is a function such that g = h1 + Xi(h2). Now, on the one hand, the

Taylor expansion of g1−h1 in the xi, yi variables has the form
∑

j cj(ži)(xi ·yi)j but, on the

other hand, the Taylor expansion of Xi(h2 − g2) has the form
∑

jk cjk(ži)x
j
iy

k
i with j �= k,

and since the equality g1 −h1 = Xi(h2 −g2) holds, we deduce that g1 −h1 is an (xi, yi)-flat

function along Si.

(5) We show the last point of the proposition. The first step in the proof of the

proposition was to take care of the formal Taylor series in (xi, yi). Then it is easy to see

that one can always choose Borel resummations of these formal expansions which are

annihilated by Xj (j �= i) whenever g is.

Finally we integrate the flat function using formula (3.6), on which one can check

directly that f is invariant by the flow of Xj (j �= i) whenever g is, at least in a neighbor-

hood of any point where the formula is well defined. In other words Xj(g) = 0 implies

Xj(f) = 0 at these points and hence everywhere by continuity.

4 A special decomposition for focus-focus vector fields

The aim of this section is to prove the analogue of Propositions 3.1 and 3.3 for a focus-

focus pair. But before stating and proving this result we need some preliminary material

concerning the integration of equations of type X(f) = g in a neighborhood of a hyper-

bolic zero (in the sense of Sternberg) of the vector field X. As we will see, the resolution

of such an equation is closely related to the problem of finding the desired decomposition

for focus-focus pairs.
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4.1 Digression: two theorems of Guillemin and Schaeffer

A point is called a hyperbolic zero of a vector field X if the vector field vanishes at this

point and all the eigenvalues of the matrix associated to the linear part of X have nonzero

real part.

According to Sternberg’s linearization theorem a vector field can be linearized in

a neighborhood of a hyperbolic zero.

The following two theorems are concerned with the integration of equations of

type X(f) = g in a neighborhood of a hyperbolic zero.

Theorem 4.1 (see [8, Section 4, Theorem 2]). Let V be a linear vector field on R
n with a

hyperbolic zero at the origin and let c be a fixed constant. Then given a smooth function

g flat at the origin, there exists a smooth function defined in a neighborhood of the origin

which is flat at the origin and such that

V(f) + cf = g. (4.1)
�

The theorem that follows is used in the proof of Theorem 4.1. We recall it here

because we will need it in order to show the smoothness of some constructions used in

the next subsection. This theorem uses a trick previously used by Nelson [10] in his proof

of Sternberg’s linearization theorem.

Theorem 4.2 (see [8, Section 4, Theorem 4]). Let U(t) be a group of linear transforma-

tions acting on R
n. Let N be a subspace of R

n invariant under U(t) and let E be the sub-

space of R
n consisting of all x in R

n such that

lim
t→∞

∥∥U(t)(x) − N
∥∥ = 0. (4.2)

Let g be a compactly supported function on R
n which is flat along N. Set

f(x, s) = −

∫s

0

ectg
(
U(t)(x)

)
dt. (4.3)

Then, for all multi-indices α, lims→∞ Dαf(x, s) converges absolutely for all x ∈ E and is a

smooth function of x. Moreover, this limit is flat along N. �

Observe that the vector field Xi in a focus-focus pair Xi, Xi+1 has a hyperbolic

zero (in the sense of Sternberg) on the set {xj = cj, yj = dj, j �= i, j �= i + 1} for fixed

constants cj and dj.
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4.2 Our proposition for focus-focus pairs

When i is the index of a focus-focus component, we denote by Si the set Si = {xi = 0, yi =

0, xi+1 = 0, yi+1 = 0}. We state and prove the decomposition result for focus-focus pairs.

Proposition 4.3. Let qi, qi+1 be a focus-focus pair,

qi = xiyi + xi+1yi+1,

qi+1 = xiyi+1 − xi+1yi,
(4.4)

and let g1 and g2 be two functions satisfying the commutation relation

Xi

(
g2

)
= Xi+1

(
g1

)
. (4.5)

Then there exist smooth functions f1, f2, and F such that

Xj

(
fk

)
= 0, j ∈ {i, i + 1}, k ∈ {1, 2}, (4.6)

such that

g1 = f1 + Xi(F),

g2 = f2 + Xi+1(F).
(4.7)

Moreover,

(1) f2 is uniquely defined and satisfies Xj(f2) = 0 whenever Xj(g2) = 0 for some j;

(2) f1 is uniquely defined modulo functions that are zj-flat along Sj and satisfy

(4.6);

(3) F and f1 can be chosen such that Xj(F) = Xj(f1) = 0 whenever Xj(g1)=Xj(g2)=0

for some j �= i. �

Remark 4.4. In the case n = 2 the proposition above was proven by Eliasson [4].

Proof. Here again the proof is a mild extension of Eliasson’s. Without loss of general-

ity, one can assume that i = 1. The flow of X2 defines an S1-action which will be used in

the proof. We can visualize this S1-action easily using complex coordinates z1 = x1 +

ix2 and z2 = y1 + iy2, so that q1 + iq2 = z1z2. The flow of q2 is the S1-action given

by (z1, z2) �→ e−it(z1, z2) whereas the flow of q1 is the hyperbolic dynamics given by

(z1, z2) �→ (e−tz1, etz2) (both flows act trivially on the remaining coordinates). When we

say that a function H is S1-invariant for this action we mean that X2(H) = 0.
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As in the proof of Eliasson, we will first integrate along this S1-action and then

along the hyperbolic flow in an S1-invariant way. Instead of using the formula of Elias-

son (which consists in integrating from a transversal hyperplane through the origin), we

will embed everything in R
2n in order to apply the parametric versions of Theorems 4.1

and 4.2.

The proof consists of three steps.

(1) Integrating along the S1-action. Let ϕ2,t be the flow of q2. As in the elliptic

case (Proposition 3.1) we define

F2 =
1

2π

∫2π

0

(θ − 1)g2 ◦ ϕ2,θ dθ (4.8)

and one obtains easily, by differentiating F2 ◦ ϕ2,t at t = 0, that

X2

(
F2

)
= g2 − f2, (4.9)

where

f2 =
1

2π

∫2π

0

g2

(
ϕ2,θ

)
dθ, (4.10)

which is obviously S1-invariant. Notice that if f2 is any S1-invariant function satisfying

equation (4.9) then by integrating along the S1 flow f2 is necessarily of the form given by

(4.10). Hence such an f2 is indeed unique.

If we check that X1(f2) = 0, then we can write g2 = f2 + X2(F2), with f2 satisfying

X1(f2) = 0 and X2(f2) = 0. That is to say, these functions g2 and f2 solve the second

equation stated in the proposition.

One can check this directly on formula (4.10), using the commutation relation

X1(g2) = X2(g1) and the fact that the flows of X1 and X2 commute; from equation (4.9)

one can also write

0 = X1

(
f2

)
+ X2

(
X1

(
F2

)
− g1

)
, (4.11)

where X2(X1(f2)) = 0. This equation can be seen as a decomposition for the zero function.

Using the uniqueness of the S1-invariant function in this decomposition we obtain

X1

(
f2

)
= 0, X2

(
X1

(
F2

)
− g1

)
= 0. (4.12)

In particular, this also yields that the function g̃1 = g1 − X1(F2) is S1-invariant.
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(2) Formal resolution of the system. In order to solve the initial system we need

to find a smooth function f1 such that X1(f1) = 0 and X2(f1) = 0 and a smooth function F1

solving the system

X1

(
F1

)
= g̃1 − f1,

X2

(
F1

)
= 0.

(4.13)

Once this system has been solved, the desired function F solving the initial system can

be written as F = F1 + F2.

In order to solve this system we will first find a formal solution using formal

power series and in a further step we will take care of the remaining flat functions along

S1.

We first solve the system in formal power series in (z1, z2), which is fairly easy.

It amounts to solving the first equation assuming that all terms in the series commute

with q2 (we can do this because X2(g̃1) = 0). As in the hyperbolic case, the formal series

for f1 is unique and is of the form
∑

ck,�(ž)qk
1q�

2, where ž = (x3, y3, . . . , xn, yn). Now we

can use a Borel resummation in the variables (q1, q2) for f1 and an S1-invariant Borel

resummation for F1, which ensures that the system is reduced to the situation where the

right-hand side of the first equation of (4.13) is a function g1 which is S1-invariant and

flat at {z1 = z2 = 0}. These Borel resummations can be chosen uniform in the ž variables.

(3) Solving the equation X1(F1) = g1 for an S1-invariant function which is flat

along S1. We could finish the proof by invoking a similar formula as for the hyperbolic

case (Lemma 3.5). But checking the smoothness in all variables is not so obvious; we

present here a small variant which uses Theorems 4.1 and 4.2 stated in the preceding

subsection and which are contained in [8].

The strategy is exactly the same as in [8], with the additional requirement

of keeping track of the S1-symmetry. We give below the arguments for the sake of

completeness.

First of all, using an S1-invariant cutoff function in R
2n, one can assume that g1

is compactly supported while still commuting with X2. Again, we denote this new func-

tion by g1. It is clear that if one solves the corresponding system (4.13) in R
2n, the as-

sociated germs for F1 and f1 will solve the initial local problem. Let ϕ1,t be the flow of

q1. The matrix associated to the linear vector fields X1 has two positive and two negative

eigenvalues.

We first apply Theorem 4.2 with parameters xj, yj, j �= 1 and j �= 2 with N = S1,

E = E+ = {z1 = 0}, and U(t) = ϕ1,−t. As explained in the proof of [8, Section 4, The-

orem 2] this allows to solve the equation to infinite order on the (2n − 2)-dimensional

invariant subspace E+ = {z1 = 0}. Observe that the formula provided in the statement of
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Theorem 4.2 shows that if the function g depends smoothly on the parameters xj and yj

for j �= 1 and j �= 2 then the function f does also depend smoothly on these parameters

because ϕ1,−t leaves the set S1 fixed.

Therefore, using an S1-invariant Borel resummation, we are then reduced to the

case where g1 is flat on E+ and S1-invariant, and we terminate by a second application of

Theorem 4.2 with parameters xj, yj, j �= 1 and j �= 2 with N = E+ and E = R
2n. That is, the

function F1 is given by the formula

F1 = −

∫∞
0

g1 ◦ ϕ1,t dt. (4.14)

Again this function F1 is smooth in all the variables since g1 is smooth in all the

variables. Using this formula we see that X2(F1) = 0 because ϕ1,t and ϕ2,θ commute.

The justification of the last claim of the proposition goes as before, by examining

the explicit formulae and the Borel resummations. The claimed uniqueness of f1 modulo

zj-flat functions along Sj is a direct consequence of the uniqueness of the formal solution

in the zj variables. Of course, one can also check it by an a posteriori argument as we did

in Remark 3.6. �

5 The proof of Theorem 2.2

Consider s = ke + kh + kf. As we observed in Section 2, we have r = ke + kh + 2kf. Ob-

serve also that r = s if there are no focus-focus components. We prove the theorem using

induction on s for a fixed n.

In order to simplify the statements involving focus-focus pairs, we introduce

some more notation. Let the vector fields Y1, Y2, . . . , Ys be such that Yj = Xj for elliptic

or hyperbolic cases (i.e., for j ≤ ke + kh) while Yj = Xσ(j) +
√

−1Xσ(j)+1 for focus-focus

pairs (i.e., j > ke +kh and σ(j) := 2j−ke −kh −1). Similarly we define γj to be gj for elliptic

or hyperbolic indices, and γj = gσ(j) +
√

−1gσ(j)+1 for focus-focus indices.

For any j ≤ s, let Cj be the space of all germs of complex functions f ∈ C∞ (R2n, 0)

such that Yj(f) = Yj(f) = 0, and Fs =
⋂

j≤s Cj.

With these notations, the system we wish to solve has the form γj = fj + Yj(G)

(for all j ∈ {1, . . . , s}) for germs of smooth functions G and fj, where fj ∈ Fs and G and fj,

j ≤ kh + ke, are real-valued. The commutation relations are Yi(γj) = Yj(γi) and Yi(γj) =

Yj(γi) (of course the second one is redundant except when both Yi and Yj are complex).

Suppose throughout the rest of the proof that r < n. For any subindex i corre-

sponding to an elliptic or hyperbolic vector field Yi, we denote zi = (xi, yi) and ži =

(z1, . . . , ži, . . . , zn). For any subindex j corresponding to a focus-focus pair Yj, we denote
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zj = (xi, yi, xi+1, yi+1) and žj = (z1, . . . , žj, . . . , zn) (with i = σ(j)). We denote by Sj the set

Sj = {zj = 0}.

This being said, one notices that there is no more need to keep the vector fields Yj

in a particular order, which is of course most convenient for the induction process.

Sublemma 5.1. Let Z be a (real or complex) vector field on R
2n acting trivially on the

variables (z1, . . . , zs). Let j ≤ s. Let f be a smooth real-valued function on R
2n such that

(1) f ∈ Fs;

(2) Z(f) is flat along Sj.

Then there exists a smooth real-valued function f̃ ∈ Fr such that

(1) Z(f̃) = 0;

(2) f − f̃ is flat along Sj. �

Proof. Consider the Taylor expansion of f in zj. Because Yj(f) = 0 this expansion is a for-

mal series in qj (in the case of an elliptic or hyperbolic Yj) or in qi, qi+1 (in the case of a

focus-focus Yj, with i = σ(j)). Moreover, the coefficients of this expansion are functions

of žj that are annihilated by Xj, j ≤ r, j �= i, and Z. Hence, using a suitable Borel resum-

mation, one can come up with a smooth f̃ satisfying the requirements of our statement.

�

5.1 Case s = 1

(1) The Cartan subalgebra has Williamson type (1, 0, 0) or (0, 1, 0). In this case there is

only one function. Propositions 3.1 (in case Xi is elliptic) and 3.3 (in case Xi is hyperbolic)

guarantee that the theorem holds.

(2) The Cartan subalgebra has Williamson type (0, 0, 1). In this case there are two

functions g1 and g2 fulfilling the conditions specified in Proposition 4.3, and the propo-

sition guarantees that the theorem holds.

5.2 Passing from s to s + 1

By hypothesis we can construct G and f1, . . . , fs such that

∀j ≤ s, γj = fj + Yj(G), (5.1)

with fj ∈ Fr, for all j ≤ r. Observe that when we pass from s to s + 1 we are adding

a real vector field if the Williamson type changes from (ke, kh, kf) to (ke + 1, kh, kf) or

from (ke, kh, kf) to (ke, kh + 1, kf). In the case where we increase by one the number of
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focus-focus components we are adding a complex vector field. The proof will go in two

steps. First we modify the existing fj and G in such a way that the new fj’s, j ≤ s, are in

Fs+1. The final step is to look for a new G of the form G̃ = G+K which leads to the system

Y1(K) = · · ·=Ys(K) = 0, γ̃s+1 = fs+1 + Ys+1(K), (5.2)

with Yj(γ̃s+1) = Yj(γ̃s+1) = 0, for all j ≤ s.

(1) We consider the commutation relations

Ys+1

(
γj

)
= Yj

(
γs+1

)
, Ys+1

(
γj

)
= Yj

(
γs+1

)
. (5.3)

We distinguish three subcases.

(a) The vector field Yj is elliptic: from the uniqueness of the function g1 of the

decomposition in Proposition 3.1 (possibly applied to the real and imaginary parts of

Ys+1) this condition tells us that Ys+1(fj) = 0. Therefore, in this case, no modification of

fj is required and fj ∈ Fs+1.

(b) The vector field Yj is hyperbolic: by applying Lemma 3.4 we deduce that the zj-

jet of Ys+1(fj) is zero. We can write Ys+1(fj) = αj, where αj is a zj-flat function along Sj. We

can now apply Sublemma 5.1 to obtain the decomposition fj = f̃j + φj, where f̃j ∈ Fs+1

and φj ∈ Fs is a zj-flat function. We may apply Lemma 3.5 to the function φj to find a

function ϕj satisfying Yj(ϕj) = φj. According to Proposition 3.3, this function ϕj can be

chosen such that Yj(ϕj) = 0 for j �= i and j ≤ s. Hence, for this γj, we can write

γj = f̃j + Yj

(
ϕj + G

)
. (5.4)

(c) The vector field Yj is a focus-focus complex vector field. The commutation con-

ditions also read as follows:

Ys+1

(
�γj

)
= �

(
Yj

)(
γs+1

)
,

Ys+1

(
�γj

)
= �

(
Yj

)(
γs+1

)
.

(5.5)

From the second equation and the uniqueness of the function f2 obtained in Proposition

4.3 we obtain Ys+1(�fj) = 0, so we only need to modify �fj. Now, since �(Yj)(�fj) = 0 and
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�(Yj)(�fj) = 0, we can invoke the uniqueness up to a flat function of the function f1 in

the decomposition claimed in Proposition 4.3 applied to the first equality to deduce that

Ys+1(�fj) is zj-flat along Sj. Hence, by Sublemma 5.1 applied to Z = Ys+1, we can write

�fj = hj + φj, where hj is a real function in Fs+1 and φj ∈ Fs is a real zj-flat function

along Sj; therefore, as in the proof of Proposition 4.3, we can integrate φj to a function ϕj

satisfying �Yj(ϕj) = φj. Hence

γj = f̃j + Yj

(
G + ϕj

)
, (5.6)

with f̃j = fj − φj ∈ Fs+1.

(2) After considering all these cases we may write

gj = f̃j + Yj

(
ϕj + G

)
, ∀j ≤ s, (5.7)

where ϕj ∈ Fs is a real function equal to the zero function for subindices corresponding

to elliptic Yj. Now define G̃ =
∑

i ϕi + G. This function satisfies

Yj(G̃) = Yj

(
ϕj + G

)
, ∀j ≤ s. (5.8)

Finally, to prove the theorem, it suffices to find a real function K and fs+1 ∈ Fs+1 such

that

γj = f̃j + Yj

(
G̃ + K

)
, for j ≤ s,

γs+1 = fs+1 + Ys+1

(
G̃ + K

)
.

(5.9)

But consider γ̃s+1 := γs+1 − Ys+1(G̃). The commutation relations yield

Yj

(
γ̃s+1

)
= Yj

(
γ̃s+1

)
= 0 (5.10)

for j ≤ s, and we still have (in case s + 1 is a focus-focus index)

Ys+1

(
γ̃s+1

)
= Ys+1

(
γ̃s+1

)
. (5.11)
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Thus our system becomes

0 = Yj(K), for j ≤ s,

γ̃s+1 = fs+1 + Ys+1(K),
(5.12)

and since γ̃s+1 ∈ Fs (equation (5.10)), it is solved by an application of Proposition 3.1,

3.3, or 4.3, depending on the type of Ys+1 (notice that the relation (5.11) is precisely

the commutation relation required in the focus-focus case). This ends the proof of the

theorem.

6 Deformations of completely integrable systems

Theorem 2.2 has a natural interpretation in terms of infinitesimal deformations of inte-

grable systems near nondegenerate singularities. This was stated without proof in [16].

We recall briefly the appropriate setting.

A completely integrable system on a symplectic manifold M of dimension 2n is

the data of n functions f1, . . . , fn which commute pairwise for the symplectic Poisson

bracket {fi, fj} = 0 and whose differentials are almost everywhere linearly independent.

When we are interested in geometric properties of such systems, the main object

under consideration is the (singular) Lagrangian foliation given by the level sets of the

momentum map f = (f1, . . . , fn). We introduce the notation f for the linear span (over R)

of f1, . . . , fn. It is an n-dimensional vector space. It is also an abelian Poisson subalgebra

of the Poisson algebra X = (C∞ , {·, ·}). Let Cf = {h ∈ X, {f, h} = 0} be the set of functions

that commute with all fi. By the Jacobi identity, Cf is a Lie subalgebra of X. The fact that

df1 ∧ · · ·∧dfn �= 0 almost everywhere implies that Cf is actually abelian. From now on, we

are given a point m ∈ M and everything is localized at m; in particular, X is the algebra

of germs of smooth functions at m.

Definition 6.1. Two completely integrable systems f = 〈f1, . . . , fn〉 and g = 〈g1, . . . , gn〉
are equivalent (near m) if and only if

Cf = Cg. (6.1)

Geometrically speaking, f is equivalent to g if and only if the functions fi are

constant along the leaves of the g-foliation (or vice versa).

We wish to describe infinitesimal deformations of integrable systems modulo

this equivalence relation. For this we fix an integrable system f and introduce a defor-

mation complex as follows. Let L0 � R
n be the typical commutative Lie algebra of
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dimension n. L0 acts on X by the adjoint representation

L0 × X  (�, g) �−→ {
f(�), g

} ∈ X. (6.2)

Hence X is an L0-module, in the Lie algebra sense, and we can introduce the correspond-

ing Chevalley-Eilenberg complex [1]: for q ∈ N, Cq(L0, X) = Hom(L∧q
0 , X) is the space of

alternating q-linear maps from L0 to X (regarded merely as real vector spaces), with the

convention C0(L0, X) = X. The associated differential is denoted by df. Following [1] for

a 0-cochain g ∈ X, the 1-cochain df(g) is df(g)(l) = {f(l), g}, l ∈ L0, and for a k-cochain φ,

the (k + 1)-cochain df(φ) is

df(φ)
(
l1, . . . , lk+1

)
=

1

k + 1

k+1∑
i=1

(−1)i+1
{
f
(
li

)
, φ

(
ľi

)}
, li ∈ L0, (6.3)

where ľi = (l1, . . . , ľi, . . . , lk+1).

Now, since L0 acts trivially on Cf, the quotient Lie algebra X/Cf is an L0-module

and we can define the corresponding Chevalley-Eilenberg complex: for q∈N,Cq(L0, X/Cf)=

Hom(L∧q
0 , X/Cf), with differential denoted by d̄f.

Finally we define the deformation complex C•(f) as follows:

0 −→ X/Cf
d̄f−−→ C1

(
L0, X/Cf

) ∂f−−→ C2
(
L0, X

) df−−→ C3
(
L0, X

) df−−→ · · · , (6.4)

where ∂f is defined by the following diagram, where all small triangles are commutative

(Ck(L0,Cf) is always in the kernel of df):

0 X
df

π

C1
(
L0, X

) df

π

C2
(
L0, X

) df

π

· · ·

0 X/Cf
d̄f

∂f

C1
(
L0, X/Cf

)
d̄f

∂f

C2
(
L0, X/Cf

)
d̄f

∂f

· · ·

(6.5)

For all cochain complexes, cocycles and coboundaries are denoted the standard way:

Zq(·) and Bq(·). In the analytic category a similar deformation complex was introduced

recently by Garay and van Straten (see [6, 7]) and (for the first degrees) by Stolovitch [11].

The equivalence used in the analytic category is much easier to handle due to the absence

of flat functions.
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Definition 6.2. Z1(f) is the space of infinitesimal deformations of f modulo equivalence.

If we fix a basis (e1, . . . , en) of L0, a cocycle α ∈ Z1(f) is just a set of functions

g1 = α(e1), . . . , gn = α(en) (defined modulo Cf) such that

∀i, j,
{
gi, fj

}
=

{
gj, fi

}
. (6.6)

It is an infinitesimal deformation of f in the sense that, modulo ε2,

{
fi + εgi, fj + εgj

} ≡ 0. (6.7)

A special type of infinitesimal deformations of f is obtained by the infinitesimal

action of the group G of local symplectomorphisms: given a function h ∈ X, one can de-

fine the deformation cocycle α ∈ Z1(f) by

L0  � �−→ α(�) =
{
h, f(�)

}
mod Cf. (6.8)

In other words, the set of all such cocyles, with h varying in X, is the orbit of f under the

adjoint action on Z1(f) of the Lie algebra of G. From equation (6.8) one immediately sees

that this orbit is exactly B1(f).

In the particular case that ω is the Darboux symplectic form ω0 =
∑n

i=1 dxi ∧dyi

and f = (q1, . . . , qn) is a Williamson basis as specified in Theorem 2.1,we can reformulate

the statement of Theorem 2.2 in cohomological terms.

Namely, in this case, since {fi, f} = Xi(f), we can write Cq = {f ∈ X, Xi(f) = 0, ∀i}.

Let α be a 1-cocycle, the cocycle condition specified in formula (6.6) reads as Xj(gi) =

Xi(gj), where gi = α(ei). But this is nothing but the commutation hypothesis of Theorem

2.2; therefore, there exists a function G such that gi = fi + Xi(G). Using formula (6.8) and

the definition of gi this shows that α is a coboundary. In other words, what Theorem 2.2

shows in cohomological terms is that any α ∈ Z1(f) is indeed a coboundary. And this

proves the following reformulation of Theorem 2.2.

Theorem 6.3. Let q1, . . . , qn be a standard basis (in the sense of Williamson) of a Cartan

subalgebra of Q(2n, R). Then the corresponding completely integrable system q in R
2n is

C∞ -infinitesimally stable at m = 0, that is,

H1(q) = 0. (6.9)
�

Remark 6.4. Our proof actually shows that the result is also true when we include a

smooth dependence on parameters in the definition of the deformation complex.
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This theorem should have important applications in semiclassical analysis,

where we consider pseudodifferential operators with C∞ symbols depending on a small

parameter h̄. One can define a similar deformation complex for pseudodifferential op-

erators, where the deformation is understood with respect to the parameter h̄. Then, in

many situations, the vanishing of the classical H1 implies the vanishing of the pseudo-

differential H1. See [16] for general remarks, and [2, 14] for applications in simple cases

where the vanishing of the pseudodifferential H1 was checked explicitly.
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