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We have analyzed a two-dimensional lattice-gas model of cylindrical molecules which can exhibit
four possible orientations. The Hamiltonian of the model contains positional and orientational en-
ergy interaction terms. The ground state of the model has been investigated on the basis of Karl’s
theorem. Monte Carlo simulation results have confirmed the predicted ground state. The model is
able to reproduce, with appropriate values of the Hamiltonian parameters, both, a smectic-
nematic-like transition and a nematic-isotropic-like transition. We have also analyzed the phase di-
agram of the system by mean-field techniques and Monte Carlo simulations. Mean-field calcula-
tions agree well qualitatively with Monte Carlo results but overestimate transition temperatures.

I. INTRODUCTION

A wide variety of physical systems show properties
which may be understood as arising from the interaction
of two or more ordering modes. These coupling effects
lead to phase diagrams displaying a rich variety of struc-
tures. In recent years, many interesting examples have
been found in general fields such as magnetism, supercon-
ductivity, structural transitions, etc.

Different general studies of systems presenting two or-
dering modes have been carried out by means of the Lan-
dau theory' ~3 and have shown that when one of the or-
der parameters vanishes the other one presents some kind
of discontinuity. In the case of magnetic alloys micro-
scopic models based on generalized Ising models have
been formulated.*> These models have been solved using
different kinds of mean-field approximations and the
Monte Carlo simulation technique.

Among the systems that exhibit the above-mentioned
behavior, liquid crystals® present a great deal of interest
for their multiple applications. These complex systems
are basically constituted of rodlike (or disklike) mole-
cules. At low temperatures the system exhibits different
crystalline solid phases. In the smectic phase, at higher
temperatures, the molecules are oriented parallel to a pre-
ferred axis and show some long-range positional order.
For example, for the so-called smectic-4A phase, the
center of mass of the molecules sits on planes perpendicu-
lar to the preferred axis. These planes can move freely
one over the other, and the viscosity is low in the direc-
tion of the planes. In the nematic phase, at still higher
temperatures, the center of mass of the molecules is
placed completely at random, but the system preserves
the long-range orientational order. Finally, when not
only the positional, but also the orientational order disap-
pears, the isotropic liquid is obtained.

Different microscopic models have been formulated for
the study of liquid crystals. On the one hand, the Maier-
Saupe model’ attempts to describe the nematic-isotropic
liquid phase transition. In the original form it has been
solved using mean-field approximations. Lebwohl and
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Lasher apply first the Monte Carlo simulation technique®
to a lattice version of the model. Later, more accurate
simulations® have proved that this model contains basi-
cally the real orientational interaction between the mole-
cules.

On the other hand, the smectic-nematic phase transi-
tion is commonly studied using models of hard cylinders.
The original model was formulated by Onsager, 19 and has
been simulated numerically by molecular dynamics'! and
by the Monte Carlo method. '?

Some models try to explain simultaneously both the
smectic-nematic and the nematic-isotropic transitions.
With this idea, the Maier-Saupe model has been reformu-
lated by McMillan,'* who introduced a short-range posi-
tional interaction in a nonlattice model, which has been
solved in the mean-field approximation. Heilmann and
Lieb have proposed a lattice model with positional and
orientational interactions between the molecules.'* The
model has been studied in two and three dimensions. In
the two-dimensional (2D) case the molecules can only be
oriented in two perpendicular orientations in the square
lattice.

The purpose of this paper is to present a 2D model able
to reproduce these two transitions, and analyze their
properties. The model is based on a lattice-gas model of
cylindric molecules with orientational degrees of freedom
and it represents a first approximation towards the mod-
eling and the complexity displayed by real systems.

The outline of the paper is as follows. In Sec. IT we in-
troduce the model mathematically and study its ground
state. In Sec. III we present the mean-field solution of
the model, and in Sec. IV this solution is compared with
the results obtained using the Monte Carlo method. Fi-
nally, in Sec. V we summarize the conclusions of the
work.

II. MODEL

For simplicity we will restrict ourselves to a two-
dimensional square lattice with N sites per side and pa-
rameter a. The scheme we will reproduce with our model
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is presented in Fig. 1. At low temperatures the system
exhibits positional and orientational long-range order
[Fig. 1(a)]. This phase will represent the smectic phase.
At T, the positional order vanishes and the smectic phase
transforms to a nematic one [Fig. 1(b)]. Finally, at a
higher temperature, T,, the orientational order disap-
pears and the isotropic liquid is obtained [Fig. 1(c)]. We
will study also the case T, <T,. This situation would
schematically correspond to the case of the so-called plas-
tic crystals.

In each site i of the lattice (i =1,...,N; N =N, XN;)
we define two variables S; and 6,. S;=+1 when the i/ site
is occupied by a molecule and S;=0 otherwise. 6,
(defined only if S; =1), represents the angular orientation
of a molecule. A particular configuration of the lattice
will be completely specified when the set of variables
{S;,0;} for all the lattice sites is known.

The Hamiltonian of our model is constituted by a posi-
tional interaction term plus an orientational interaction
term:

H=FH,+H,

On the basis of the lattice-gas model, 15 the positional in-
teraction between molecules is chosen as

_—st, I (1)

where the summation is made over all the different
nearest-neighbor (NN) pairs. Taking J> 0, the lattice-gas
model could be reduced to an Ising model and solved ex-
actly.'® This model shows a phase transition from an an-
tiferromagnetic positionally ordered state to a disordered
State.

We will add now an orientational interaction guided by
the Maier-Saupe model.” Originally this is a 3D model
with nonpolar NN interactions. The corresponding
Hamiltonian reads

NN
H,=3K 3 Py(cosf;;) , (2)

hJj
where P,(x)=(3x?—1)/2 and 0;; is the angle between
two NN molecules. This model has a transition between
an orientationally ordered state and a disordered state

(corresponding to the nematic-isotropic transition).

In our case, we will adapt it to two dimensions and we
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FIG. 1. Schematic picture of the behavior of the presented
model that is applicable to liquid crystals. (a) Positional and
orientational ordered phase (smectic). (b) Only positional or-
dered phase (nematic). (c) Completely disordered phase (isotro-
pic).

will assume that only four different orientations are al-
lowed. The rotation symmetry of the continuous angular
model is changed by the discrete symmetry of the invari-
ance group of the octagon.

If we take the vertical direction as a reference, 8; (see
Fig. 2) will take values 0, w/4, 7/2, —mw/4. Also, 0 is re-
duced to 8, —6; as a consequence of the change in the di-
mension of the system. In the original 3D and continu-
ous Maier-Saupe model, the mean value of P,(cosf;;),
(P,(cosh;;)), is used as the order parameter. If we want
to mamtam this, the discretization of the orientations im-
plies changing P, by P(x)=2x2—1. With this change
(P(x)) takes a O value in the disordered state and 1 in
the completely ordered one.

We will use the following notation:

40,
o,=3——, (3)
T
which will take the values 1, 2, 3, and 4 for the different
values of 0; (see Fig. 3). Now P(6,—6;) will be written
as P(o;,0;). At this point we are able to propose the
complete Hamiltonian for our model as follows:

NN
—— |73 5.5,+K, ESSPU )
hj

NNN
+K22$SP0 o) (4)

The first term is a lattice-gas positional interaction, the
second one is a NN orientational interaction, and the
third represents the next-nearest-neighbor (NNN) orien-
tational interactions. The last term has been found to be
necessary for stabilizing a ground state with orientational
and positional order as we will see in Sec. IT A.
We can reduce the number of parameters of the model
using the dimensionless quantities
* ‘7{ * _K_l * __ & * __
Hi=T Ki=7n Ki=7n TP=—7>

where kjp is the Boltzmann constant. With this notation

8i

FIG. 2. Variables defined on the two-dimensional square lat-
tice. S, takes values 1 or O if the i site is occupied or not by a
molecule. 6, is the angular orientation of the molecule.
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FIG. 3. Discretization of the orientations of the molecules.
The number shows the values of o, associated with each direc-
tion.

the energy depends on only two parameters:

;)

1
He = )

NN NN
S S5, +Kt 3 5,5,Plo,0
1) )

NNN
+K3 3 5.S,P(g,0;)
L)

(5)

Note that this energy may be simply written in the form

NNN

. 18, 2
H=2 |3alss+ 3 dss, |, (6)
1) Lj

with aj;=14+K}P(0,,0,) and aj, =K3P(0,,0)).

A. Ground state

Knowledge of the ground state of the system is neces-
sary if we want, as a first step, to solve the model using
the mean-field theory. We are looking for the
configuration {S;,0,} that minimizes the energy given by
expression (5). The standard minimization method based
on analytical derivation is not impossible but is very com-
plicated. For this reason we have used a different method
based on Karl’s theorem.!” Karl proposed that if the in-
teraction between atoms in a lattice system is symmetric
and is restricted to NN only, the ground state has a

translational symmetry with parameter 2a. With NNN
interactions (as in our case) the theorem is still true if the
interaction is weak enough and probably even if the
NNN is of the same order as the NN interaction and has
the same sign. When interactions are competing (as in an
ANNNI model'®) longer modulated structures could
minimize the energy. Using this result and keeping in
mind its limitations, we have prepared a computer pro-
gram for searching the ground state of the system. The
program tests the 5% possible configurations with 2a
translational symmetry, and evaluates the corresponding
energy. In Fig. 4 we present the phase diagram at T*=0
obtained for the cases J* >0 [Fig. 4(a)] and J* <O [Fig.
4(b)]. For the present work we will restrict our discus-
sion to the case J* > 0.

Looking at Fig. 4(a) we observe that the zone we are
interested in is zone A, since in this zone the particle den-
sity is 0.5 and by increasing the temperature it is reason-
able that a positional disorder appears. In the B and C
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FIG. 4. Phase diagram of the model at T=0 calculated by
using Karl’s theorem. (a) Case J> 0. (b) Case J <0. [In case (b)
K and K} are defined as K,/|J | and K,/|J |.] (c) Struc-
ture of the phases in the different regions.
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zones, the lowest energy state is reached with a particle
density equal to 1, and when working with a lower densi-
ty (0.5, for example) we will find a clustering tendency.
The existence of an energy associated with the boundaries
limiting these clusters enables us to extend slightly the 4
phase into B and C zones.

The role played by the NNN interaction term in the
Hamiltonian is clearly seen when looking at the A phase:
it stabilizes the orientational order at T*=0. It should
be noticed that in the top-left and bottom-right qua-
drants, Karl’s theorem is not applicable; however, the
states A, B, and C represented in Fig. 4(a) have been cor-
roborated by means of Monte Carlo simulations as we
will discuss in Sec. IV.

Finally, it is worth noting the existence of a high de-
generation of the ground state concerning the zone we
are dealing with (the 4 zone). On the one hand, there is
a symmetry in exchanging the occupied sublattice with
the empty one, and on the other hand, there are four pos-
sible orientations, all with the same energy.
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III. MEAN-FIELD SOLUTION

In order to obtain the solution of the model, on the
basis of the mean-field approximation, we will introduce
the notation based on the occupation numbers. Once the
ground state is known, we can divide the system into two
sublattices which will be called + (occupied) and —
(nonoccupied). Then, we define N} and N as the num-
ber of particles with orientation o, in the + or — sublat-
tice, respectively. It is clear that these quantities must
verify:

4
> (NJ,N;)=N

p

(7

o=1

where N, =cN is the number of particles and c is the den-
sity. As we are interested in a ground-state-type A4, we
will take ¢=0.5. ‘

The mean-field approximation is applied by substitut-
ing the NN or NNN interaction effects on a molecule in
the i site, respectively, by

24, e e .
N > NJ if site i is in the — sublattice
o
Esz 2q,
NN N > N, if site i is in the + sublattice ,
a
2q, e .
N > NS (Po,,0) if site i is in the — sublattice
o
ESIP(al’U_I): qu
NN N > N, P(o,,0) if site i is in the + sublattice ,
24, _ P .
N > N;P(o,,0) ifiisin the — sublattice
o
NNN

where ¥y represents the sum over the g; NN of site i,
and ¥ nnn the corresponding sum over the g, NNN. In
our case g, =¢, =4.

We now assume that

P(o,0')=P(0,3)P(3,0'), (8)

which is an approximation commonly used in solving the
Maier-Saupe model.®!* Note that we have supposed that
at T*=0, the molecules are in the + sublattice and
oriented in direction 3. We also assume that directions 2
and 4 are completely equivalent since there is no reason
for this symmetry to be broken. Under these conditions

N =N}, Ny =N . 9)

With these variables we are able to define the order pa-
rameters of our system. It is easy to see that we need five
order parameters in order to characterize the phases

q e e .
—N—2 > NfP(oi,o) if i isin the + sublattice ,

r

occurring in the present model. We have chosen them as
follows:

SNs—3IN;
g g
P Np 4
m{=3N}IP(3,0)=(N{ —N})/N

p

m

my =(N$ —N3$)/N, , (10)
mi =(Ny —N{)/N, ,

my =(Ny —N7)/N, .

The first one, m,, describes the positional order, and
the rest are orientational order parameters. This set of
orientational order parameters will be denoted by m,,
and the complete set of order parameters (m,,m,) by m.



According to the ground state studied before, at
T*=0, m,=1 (or —1if the sublattice — is the occupied
one), m " =m 3 =1 (if the direction of the molecules is 3),
and the remaining order parameters vanish, whereas in
the completely disordered state, all the order parameters
vanish.

With these order parameters, in the mean-field approx-
imation the energy of the system takes the form

E*=(1—m})+4Kim{m; +2K3(m{P+m %) . (D

It is worth noting that in the mean-field approximation
there is no interaction between the orientational order
parameters and the positional one. All coupling effects,
will come from the entropy S*, evaluated as

|

F*(

p’

38 LATTICE-GAS MODEL OF ORIENTABLE MOLECULES: ...

5395
S*=InWw , (12)
where
N,!
W(N},N; )= ;
H(Nj!) IVP-ZN;L !
N !
X L (13)

| § ) [NP—EN; ]! '

S* can be expressed as a function of the order parame-
ters using (7), (9), and (10). Then the free energy
F*=FE*—T*S* is written as

mi,mf,m,my)=(1—m})+4kimm; +2K3(m{>+m?)

+T*(;[3(1+m,)=3m{ +2m 3 IIn{{[$(1+m,)=3m | +2m ] ]}

+3[3(04+m)+m i 2m IIn{{[3(14+m,)+m —2m 3 ]}

+4 s +m)+m{ +2mF In{{[+(1+m,)+m | +2m; ]}

++(1—=my)In[$(1—m,)])

+ T*(the same but m, ——m

Now F* must be minimized with respect to the five or-
der parameters in order to obtain the equilibrium
configuration at each temperature. We have used two
methods. On the one hand, we have solved numerically
the set of five nonlinear coupled equations which are ob-
tained from

oF —0, oF -0, oF -0,

om, am om

aF* aF* (15)
20, H—=o.

om; amy

In fact, this set of five equations reduces to three because
two of them can be reduced to

mi(1+m,)+2m{ P=2m; (1+m,),
(16)
my(1—m,)+2(m; P=2m; (1—m,) .

On the other hand, we have directly minimized F* by
means of a computational program that uses the SIMPLEX
method to find the absolute minimum of a given function.
This method finds the stable solution directly. With the
first method the stability must be studied with the second
derivatives of F*.

Let us comment on some simple solutions.

(a) m=(0,0,0,0,0). This solution is always an extreme
of the function F*, for all the possible values of the pa-
rameters KT and K73, but it is only stable at high temper-
atures as we will see later.

(b) m=(m,,0,0,0,0). If we restrict ourselves to these
kinds of solutions, Egs. (15) can be easily simplified to the
following expression:

p,ml*—>mf,m§*—+m{). (14)
r
2m 14+m
exp L= £, (17
T* l—mp

By expanding in series both sides of this equation, for
m,,—»O, we can find the temperature T, at which m,
vanishes while m,=0. For all possible values of K} and

3, TS =1. This is obviously the mean-field transition
temperature of the 2D lattice-gas model with only NN
interactions.

(¢) m=(0,m,). In this case we can also easily find the
variation of the order parameters with temperature. Tak-
ing into account Egs. (16), we need to solve only two
equations. If we do not consider degenerated
configurations, there are two possible solutions: (1)
m{ =mi and 2) m{ =—m. In this case it is also
possible to find the temperature 7, at which the orienta-
tional order parameters vanish while m,=0. A straight-
forward calculation leads to

T)=—(KT+K3) (18)
for solution (1) and
T)=K} —-K3 (19)

for solution (2).

In the general case it is not possible to find the transi-
tion temperatures analytically. In Figs. 5-8 we have
represented the four possible solutions calculated by the
method of directly minimizing F*. In the cases m,=0
and m, =0, the transition temperatures 7, and T, corre-
spond well with those calculated analytically at points (b)
and (c). We have only represented m,, m ", and m, asa

function of temperature. In Fig. 9 we indicate the region
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FIG. 5. Evolution of the order parameters vs temperature in
the A, zone (Fig. 9). The values have been calculated by solv-
ing numerically the mean-field equations (15) with K{ = —0.4
and K¥=—10. (O, m,; ® m{; O, my.) T, and T, are the
positional and orientational transition temperatures, respective-
ly. This case corresponds to the behavior of a liquid crystal
with T, < T,. (The lines are guides to the eye.)

06 07 08 09 0 71*

FIG. 6. Evolution of the order parameters vs temperature in
the A, zone (Fig. 9). The values have been calculated by solv-
ing numerically the mean-field equations (15) with K} =—0.2
and K¥=-0.6. (O, m,; ® my; O, m;.) T, and T, are the
positional and orientational transition temperatures, respective-
ly. This case corresponds to the behavior of a plastic crystal
with T, > T,. (The lines are guides to the eye.)

FIG. 7. Evolution of the order parameters vs temperature in
the 4, zone (Fig. 9). The values have been calculated by solv-
ing numerically the mean-field equations (15) with K { =0.4 and
Ky=—10. (O, m,;® m{;0,m;.) T, and T, are the posi-
tional and orientational transition temperatures, respectively.
(The lines are guides to the eye.)
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FIG. 8. Evolution of the order parameters vs temperature in
the A; zone (Fig. 9). The values have been calculated by solv-
ing numerically the mean-field equations (15) with K { =0.2 and
K}=-06. (0, m,;® m;;0,mi.) T, and T, are the posi-
tional and orientational transition temperatures, respectively.
(The lines are guides to the eye.)

FIG. 9. Detail of the T=0 phase diagram [Fig. 4(a)] showing
the regions where the four different mean-field solutions of Figs.
5-8 have been found. All the regions correspond to the same
ground state but have different evolutions with rising tempera-
ture.

El
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FIG. 10. Plot of the energy E* vs temperature T* showing
the two transitions 7, and T,. The values have been obtained
by solving numerically the mean-field equations with
K{=-—04and K¥ =—0.1. (The line is a guide to the eye.)
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where each one of the four solutions 4, 4,, A3, and 4,
is stable. It is worth noting that in the border lines 4 -
A, and A5-Ay, T, equals T,

In the A4, region the system behaves as a liquid crystal,
while in the A, region it behaves as a plastic crystal. In
the A; and A4, zones the order parameters show, respec-
tively, the same evolution with temperature as in regions
A, and A4,, but with m | negative.

We note that when one of the two possible modes
(orientational or positional) vanishes, the remaining order
parameters show a slower decay with increasing tempera-
ture. This effect has also been found in general studies of
systems with coupled order parameters, using the Landau
theory.>

Now we will focus our attention on the study of the 4,
region, since it reproduces qualitatively the behavior ex-
hibited by liquid crystals. In Figs. 10 and 11 we have
represented, respectively, the energy and the specific heat
as a function of the temperature. It is clear that the
specific heat shows two singularities associated with both
the smectic-nematic and nematic-isotropic phase transi-
tions. Theoretical studies on these transitions'® and ex-
perimental results?® show that the smectic-nematic transi-
tion is continuous and the nematic-isotropic is first order.

Due to the numerical method used to obtain the order
parameters as a function of temperature it is difficult to
decide if the energy curve presents some discrete jumps
or not. Consequently there is a difficulty in knowing the
order of the transitions. In our 2D model we have con-
sidered molecules with a discrete number of orientations
so, a priori, it will not exhibit the same transition behav-
ior as real systems. However, it seems clear that the
smectic-nematic transition has a continuous character.
The order of the nematic-isotropic transition is less evi-
dent but also seems to be continuous or at least weakly
first order.

Calculating the temperatures 7,7 and 7, for different
values of the parameters K| and K5 we obtain the phase
diagram of the system. In Figs. 12 and 13 some sections
of this diagram are plotted. We have also represented the
corresponding analytical expressions for the temperatures
Ty and T, previously obtained, with dashed and solid

To

3
, e &

10 12 14

0.0

FIG. 11. Numerical derivative of E* (Fig. 10), showing the
evolution of the specific heat vs temperature in the mean-field
approximation. T, and T, correspond to the smectic-nematic
and nematic-isotropic transition temperatures, respectively.
(The line is a guide to the eye, and vertical units are arbitrary.)
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FIG. 12. Sections of the phase diagram calculated by mean-
field approximation. The 7, (®) and T, (O) are plotted for
different values of K5 with K = —0.6 (a) and K{ = —0.2 (b).
The thick solid and the thick dashed lines are the 7, and T, cal-
culated analytically and the thin lines are guides to the eye. (PC
means a plastic-crystal phase with long-range positional order
but not long-range orientational order.)

lines, respectively. As can be seen in the figures there is a
good agreement between both numerical and analytical
methods. We note that when K3 is very negative the nu-
merical minimization of F* is very difficult due to the
logarithmic divergence of some terms in F*, and the cor-
responding points in the phase diagrams are obtained
with a poor resolution.

IV. MONTE CARLO SIMULATION

A numerical simulation of our system is necessary in
order to improve the mean-field solution. In most sys-
tems Monte Carlo simulation allows us to understand as-
pects neglected by the mean-field theory. With this idea,
we have designed a Monte Carlo simulation program for
our model, with the usual method proposed by Metropo-
lis et al.?!

The Monte Carlo simulation of a physical system can
be performed using different dynamics. The two princi-
pal ones are Glauber dynamics,?? used when the order
parameter is not conserved, and Kawaski dynamics,?
which apply to the case of a system with conserved order
parameter. The simulation of our system imposes
changes keeping the number of molecules N, constant,
but leaving the number of molecules in a certain orienta-
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FIG. 13. Sections of the phase diagram calculated by mean-field theory. The T, (®) and T, (O) are plotted for different values of
KT with K§ = —0.6 (a) and K5 = —1.2 (b). The thick solid and the thick dashed lines are the T, and T, temperatures calculated
analytically and the thin lines are guides to the eye. Mean-field equations with large values of K3 and K | are difficult to solve due to
logarithmic divergence in F*. (PC means a plastic-crystal phase with long-range positional order but not long-range orientational or-

der.)

tion (N ,N, ) to be variable. This suggests the use of
mixing of the two dynamics, exchanging pairs of particles
and simply changing their orientation.

Glauber dynamics is faster than Kawasaki dynamics.
The use of both simultaneously implies that the mecha-
nism that changes the orientation of the particles is faster
than the mechanism that interchanges particles. In fact,
this is not a bad hypothesis for our system. We have not
studied the relaxation to equilibrium of our system, but of
course this would be a very interesting thing to do in or-
der to analyze the competition of both dynamics.

Our simulations have been carried out on lattices with
30X 30 or 4040 sites with periodic boundary condi-
tions. Usual runs of 3000-5000 Monte Carlo steps
(MCS’s) (1 MCS=1 orientational change attempt per site
and 1 positional interchange attempt per site) have been
performed. The proposed changes are accepted or not by
using an exponential transition probability.?* The calcu-
lation of the numerical values of the variables of interest
has been done by averaging over 1000 equilibrium
configurations and in some cases (order parameters) we
have also averaged over six different runs with different
random number generator seeds.

In most cases we have performed two kinds of evolu-
tions to equilibrium: first, starting with a complete or-
dered structure until reaching the equilibrium state at a
given temperature, and second, starting with a disordered
state. In both cases the final values of the different calcu-
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FIG. 14. Plot of [E*—E*(T =0)]/E*(T =0) at low tem-
peratures calculated by Monte Carlo simulations from an initial
state with orientational and positional order [phase 4 in Fig.
4(c)]. For K =-025 (@), —0.50 (A), —0.75 (V), and —1.0
(O) the initial state seems to be the most stable, while for
greater K{ [—1.5 (A) and —2.0 (W)], the energy decays to a
most ordered state formed by clusters of B phase [Fig. 4(c)]. All
the curves are calculated on the line K¥ =K ¥ /v2. The 4
ground-state phase seems to be stable slightly far away from the
border line between 4 and B phases represented in Fig. 4(a).
The simulations have been carried out on a 30X 30 lattice and
averaging over 1000 MCS’s.
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lated quantities agreed quite well.

First of all, we have performed Monte Carlo runs at
low temperature in order to obtain the ground state of
the system. The structure predicted using Karl’s
theorem in zone A (Fig. 4) has not only been confirmed,
but even extended a little into the B zone. As discussed
in Sec. II, the main reason for this change is certainly the
extra energy associated with the boundaries of the clus-
ters in the B zone when the particle density is 0.5, as in
our case.

In Fig. 14 we have represented [E*—E*(T*=0)]/
E*(T*=0) at low T* for different values of K} and with

3 =K7{/V'2. These values of E* have been obtained
starting with a configuration corresponding to the
theoretical ground state obtained from Karl’s theorem,
and reaching equilibrium at a given temperature. When

I < —1 the metastable state at very low temperatures
decays to a state of lower energy: clusters of the B phase
are formed. With KT > —1 this effect does not occur
since the A phase is in the most stable structure. In this
particular case (K3 =K} /V'2) the theoretical limit be-
tween A and B phases calculated by using Karl’s theorem
is reached at K} = —0.739, but the A phase seems to be
stable until K = —1.0.

In Fig. 15 we show the section of the phase diagram
along the line K3 =K} /V'2 and we compare it with the
corresponding phase diagram obtained with the mean-
field approximation. The general aspect of both are the
same, but the transition temperatures are lower in the
Monte Carlo calculations.

This is, in fact, the usual result when comparing

FIG. 15. Section of the phase diagram calculated by Monte
Carlo (MC) simulations compared with the mean-field (MF)
solution. The section is made over the line K¥ =K ¥ /V2. (+,
T, calculated by MF; 0, T, calculated by MF; @, T, calculated
by MC; and O, T, calculated by MC.) The solid lines are the
analytical solutions from Eqs. (15) and the dashed lines are
guides to the eye. Both phase diagrams are qualitatively equal;
however, MC calculations give lower transition temperatures.
The simulations have been carried out on a 30X 30 lattice and
averaging over 1000 MCS’s after reaching equilibrium.
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FIG. 16. Evolution of the order parameters calculated by
Monte Carlo simulations with K = —0.8 and K5 = —0.4. (e,
m,; O, mi; B, m;.) The lines are guides to the eye. The
simulations have been carried out on a 40X40 lattice and
averaging over 1000 MCS’s after reaching equilibrium and over
six different runs with different random generator seeds. This
behavior corresponds to a liquid crystal with T, (orientational
transition temperature) greater than 7T, (positional transition
temperature).

08 il

FIG. 17. Evolution of the energy E* calculated by Monte
Carlo simulations in the same conditions as in Fig. 16. The
smectic-nematic transition (T,) and the nematic-isotropic tran-
sition (T,) are little masked by the finite-size effects. The inset
shows the detail of the orientational transition. (The error bars
in the inset show the standard deviation of the values.)
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mean-field and exact results, since mean field neglects the
effect of the short-range order. Small ordered clusters of
particles will lower the energy and consequently the criti-
cal temperatures.

We have also studied the evolution of the order param-
eters and the energy with temperature in the liquid-
crystal region (zone A4, in Fig. 9). We have focused our
study at the point K} =—0.8 and K5 =—0.4 of the
phase diagram. In Figs. 16 and 17 we show the order pa-
rameters and the energy as a function of T*.

As can be seen from the energy plot the discontinuity
at the nematic-isotropic transition is very weak. Prob-
ably, this is mainly due to finite-size effects.

The Monte Carlo results confirm that the behavior ob-
tained using the mean-field approximation is correct, at
least, at a qualitative level.

V. SUMMARY

In this work we have studied the phase diagram of a
2D lattice-gas model of rodlike molecules which can ex-
hibit four possible different orientations. In addition to
the antiferromagneticlike positional interaction energy
between molecules, the Hamiltonian of the system also
contains a nonpolar orientational interaction between
nearest and next-nearest neighbors. In its dimensionless
form, the Hamiltonian depends on two parameters, K}
and K3, which correspond, respectively, to the ratio be-
tween the NN and the NNN orientational interactions
and the positional one. The orientational interaction is
similar to the one considered in the Maier-Saupe model,
commonly used for the study of the nematic-isotropic
phase transition in liquid crystals.

Our model is able to reproduce both a smectic-
nematic-like transition and a nematic-isotropic-like tran-
sition. It represents only a first approximation to the
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study of the behavior of real systems. Its relative simpli-
city, however, allows us to analyze the interdependence
of the orientational and the positional components of the
interaction determining its influence on the phase dia-
gram of such kinds of systems. The ground state of the
model has been investigated on the basis of Karl’s
theorem. For different values of the two parameters, the
system can show a rich variety of structures. We have fo-
cused our attention on the region compatible with the ex-
pected behavior exhibited in liquid crystals. In this re-
gion the Monte Carlo simulation results have confirmed
the ground state predicted by Karl’s theorem.

We have investigated the properties of the system in
this region by mean-field calculation and using the Monte
Carlo simulation technique. The mean-field results have
been qualitatively confirmed when compared with the
Monte Carlo simulations.

The shape of the energy and heat-capacity curves
versus temperature, for both the smectic-nematic and
nematic-isotropic transitions seems at a qualitative level
comparable with those found experimentally in some real
systems. Nevertheless, the order of the transitions in-
volved in the model has not been obtained unambiguous-
ly. It seems, however, that the smectic-nematic transi-
tion has a continuous character, while the nematic-
isotropic transition could also present a continuous or at
least weakly first-order character.
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