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We study the interfacial modes of a driven diffusive model under suitable nonequilibrium condi-
tions leading to possible instability. The external field parallel to the interface, which sets up a
steady-state parallel flux, enhances the growth or decay rates of the interfacial modes. More
dramatically, asymmetry in the model can introduce an oscillatory component into the interfacial
dispersion relation. In certain circumstances, the applied field behaves as a singular perturbation.

Phase transitions under a variety of nonequilibrium
conditions have been receiving attention, and this prom-
ises to be a valuable study. Recently a series of computer
simulations'~3 have characterized the bulk features of the
nonequilibrium phase transition of a lattice-gas model of
interacting particles subject to an external field, which
drives a steady particle current. Theoretical discussions
have involved both discrete>*® and continuous mod-
els.””!'! The computer simulations indicate'~>!2 the ex-
istence of a sharp phase transition at a temperature which
depends on the strength of the external field, below which
the system undergoes phase separation into two phases
(particle rich and poor). The external field is responsible
for the anisotropic striplike configuration of the system;
the interface separating the two phases lies parallel to the
external field, and a constant particle flux parallel to the
interface is carried by each of the phases.

The simulations and the related work noted above lie
within the general context of nonequilibrium steady-state
systems; in the present case they are also referred to as
driven diffusive systems. The possibility of using such sys-
tems to model superionic conductors has been widely ex-
plored in the literature.!® In a different context there is
theoretical'* and experimental'® work on critical fluids
under shear flow.

A study of the stability of the two-phase interface
present in the simulations'~3 will be the subject of this
short paper.'® Such a study is an essential ingredient in
understanding patterns which might be produced under a
variety of nonequilibrium conditions. Considerable pro-
gress has been made in problems of pattern forma-
tion,'’~? and some insights derived from such studies
might be applicable to the present class of driven systems.
In a reverse sense, the systems discussed here are particu-
larly simple in description, and there may be implications
of the study of such systems for other pattern forming
processes.

The system of interest is easily described. One consid-
ers an Ising lattice gas with equal numbers of particles
and holes. The dynamics are particle conserving, and an
applied field E is oriented parallel to the x axis. Periodic
boundary conditions are assumed, particularly in the x
direction. In the simulations,!™3 relative to a nearest-
neighbor particle-hole exchange along a bond perpendicu-
lar to E, the applied field favors a particle-hole exchange
in which the particle moves along E, and inhibits particle

3

motion opposite E. The situation in the ordered phase is
shown schematically in Fig. 1. We have generalized this
model in two ways. First, we note that the applied field E
does not of itself induce unstable behavior. To study the
effect of the applied field E on an interfacial instability,
we consider the interface driven by a particle flux perpen-
dicular to the interface. This flux of particles (from the
particle poor to the rich phase) may be imagined as result-
ing from a rapid quench deeper into the ordered phase.?!
The model without E is just the so-called symmetric mod-
el,?>2 which has an interfacial instability for sufficiently
long wavelength for any nonvanishing perpendicular flux.
Such instability, which contains a Mullins-Sekerka-type
instability '® in perhaps its purest form, lies at the heart of
a variety of interfacial growth processes. The present
work considers the effect of the applied field E on the
well-studied features of the symmetric model. As a
second generalization we consider the effect of asym-
metry.

The most noticeable effect introduced by the external
field E is the appearance of an oscillatory component in
the growth or decay of interfacial modes when asymmetry
is present. On the other hand, the external field E does
not modify the critical wave number for which a particu-
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FIG. 1. Schematic illustration indicating the phase separated
system under the influence of the external field E and the per-
pendicular current jo. The flat interface lies in the plane y =0; a
small amplitude distortion is indicated.
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lar mode is stable or unstable, but one finds that the
growth or decay rates are increased by the presence of the
applied field. The analytic dependences on E are interest-
ing; the applied field may have to be considered a singular
perturbation (see below).

The continuum model we use to study the linear stabili-
ty of the interface has been used extensively in studies of
the bulk properties.”"!! It corresponds to a generalization
of the usual time-dependent Ginzburg-Landau description
of a system with concentration as the conserved order pa-
rameter [model B (Ref. 24)]. A new current proportional
to the external field is added, and the coupling to the order
parameter is produced by a concentration-dependent con-
ductivity. This term has been introduced on a phenome-
nological basis,” and it brings up an interesting conceptual
point. For such a system with periodic boundary condi-
tions, as noted by Katz et al., 2 the external field cannot be
included in the Hamiltonian but rather enters the transi-
tion probabilities. From this conceptual viewpoint the sit-
uation is slightly different from the inclusion of a field
gradient (say, gravitational) in a closed system with walls.
The continuum equations of motion can be derived from
the cell-model description of Oono and Puri® or, one ex-
pects, from the full master equation describing the dis-
crete lattice model with conserving dynamics (ie.,
Kawasaki exchange?°).

We are interested here in the simplest macroscopic
description, which means that we consider a sharp inter-
face compared to the length scale of any interfacial undu-
lations, and we neglect effects of noise. The nonlinearities
involving the interface are introduced in the standard
fashion via thermodynamic boundary conditions. In this
approach, the equation for the concentration field is

atca-—v'ja s 1)
ja=—D(V¢,)+Eo(c,) , )

where c,(r,t) and j,(r,t) are the concentration and
current in the particle rich and poor phases (4 and B, re-
spectively), D is the diffusion coefficient (which we take
equal in both phases), E=EX is the applied field, and
o(c) is the conductivity.?’” We consider effects of the
external field on the stability of the flat interface, taken to
be the plane y =0. The configuration is shown in Fig. 1.

The flat, translationally invariant (in the x direction)
stationary solution of Egs. (1) and (2) near the interface
takes the form

cao(y) =cg0— %y , (3)

where c40 is the equilibrium (or steady state) concentra-
tion for the phase a=A or B. We have assumed a con-
stant flux jof driving the interface, imagined induced, as
discussed in Ref. 21, by quenching the system deeper into
the ordered state. On the other hand, there is a net flux of
particles in the x direction due to the external field. The
total stationary flux is then

Jao(r) =jo§ +Eo(co(y)) . )
A perturbation of the interface of the form
Vinterface ™ {(x,1) =¢explikx + wt) , (5)

is introduced in the standard fashion; the amplitude ¢ is
the small parameter in the linearization. The sign of
Re(w) will determine the stability of the perturbation of
wave number k. One searches for a solution of the form

ca(r,t) =coo(y) +cai(r,t) )

where the second term is the correction, which in a linear
analysis, is of order {. In the linear regime the equation
for c,1(r,2) is

8:ca1 =D (V2ca1 — Qudxcar) @)

where Q, =E(do/dc),/D. We have assumed an expan-
sion of the form o(c,(r,2))=o(cs0(y))+ (do/dc),
X ca1(r,t), and have evaluated the derivative at c,o (valid
for small jo). Note that the (inverse length) parameters
Q, explicitly depend on the phase a =A4,B. Strictly speak-
ing, within a symmetric Ising model one should take
Q4= —Qg, but we allow further generality for more real-
istic systems or those operating some distance below the
phase separation temperature.?® One seeks a solution of
the form

ca1(r,1) = A, exp(ikx F q.y + 0t) (8)

where, as noted, A, is 0(¢). In Eq. (8) the minus and
plus signs correspond to the 4 and B phases, respectively,
so the solution must have Re(g,) > 0. For simplicity, in
the following discussion we consider X > 0. To determine
the constants A,, ¢, and the dispersion relation for w we
need additional conditions. The first is the Gibbs-
Thomson relation, which is a statement of local equilibri-
um and introduces the effect of capillarity, namely,

ca(r,t) l interface — Ca0 ™= —T'K , 9

where I is proportional to the surface tension (but gen-
erally also involves an appropriate thermodynamic deriva-
tive?’). K is the curvature of the interface, which for
small displacements is just

a2
K=~—2=¢0x,1) . (10

ax?
The second condition is provided by the continuity equa-
tion

Ac)V=i- (j4—js) , (1n)

which yields the motion of the interface due to a flux im-
balance. Here i is the normal directed toward the A4
phase, v, is the normal velocity, and Ac is the equilibrium
miscibility gap. Straightforward algebraic manipulations
yield in first order the relations

= - i.o__ 2
A=d,= | -Tk?|¢, (12)
(Ac)w¢=DA(q4+qs) , 13)
o=D(—k*+q2—iQ,k) . (14)

The first two equations are quite standard for the sym-
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metric model, and at this order the external field (E)
enters only the last equation. In this quasistatic approxi-
mation, one neglects @ in Eq. (14); for simplicity we make
this approximation recognizing that there will be dif-
ferences in detail, for example, at extremely long wave-
lengths. The external field changes the values of ¢, and
the dispersion relation; in general ¢, and @ are complex.
We will return to this point below.

The equations determining the real and imaginary parts
of g, =qa1+iqa2 become

qh —qh=k?*, (15a)

2441942 =Qak . (15b)

As noted above, the real part of g, must be positive. The
particle-rich (4) phase is expected to have Q4 <0, and
the poor (B) phase is expected to have the opposite sign.
Hence, it is expected that the imaginary parts ¢4, and gp>
carry opposite sign with g 42 < 0. The unique solution is

k Q 2711/2y1/2 k
=14 =4 =X
e Ji{l My ] } e (6)
211/2y1/2
" Q. } k.
a=F—1{1+ |1+ =——q, . (16b)
G2 ﬁ{ k J ] Nk

The upper (lower) sign corresponds to the 4 (B) phase.
Finally the dispersion relation becomes from Eq. (13)

K
V2

This is the central result of this paper, and some com-
ments are in order at this point.

When the external field vanishes (i.e., @, =0) we recov-
er the usual dispersion relation for the symmetric mod-
el,?"2 (Ac)w =2k (jo—T'Dk?). The presence of the ex-
ternal field E changes the k dependence of the real part of
o, but it does not affect the critical wave number deter-
mined by jo—I'Dk?=0. Since the imaginary parts g2
are nonvanishing, the external field introduces oscillatory
spatial decay of perturbations into the bulk material. A
second and perhaps more interesting possibility is the non-
vanishing imaginary part in the frequency w. This means
the usual decay or growth in the symmetric model is now
modulated. Here a qualifying remark is necessary:
Strictly within the framework of a symmetric lattice gas,
one expects the two coexisting steady-state phases 4 and
B to have equal conductivity. This makes Y ,Q,=0,
which implies g =¢ %, making the imaginary, oscillatory
part of @ vanish. Generally speaking some asymmetry in
o (as well as in the coexistence curve) is expected away
from the phase separation temperature, and this makes it-
self felt in an oscillatory component. In most of what fol-
lows we assume the general situation. %

Another aspect, noted above, is that the external field
introduces a new length scale into the problem, which we
can render dimensionless through the ratio Q,/k. In the
limit of small field Q,/k <1, the dispersion relation be-

(Ac)o=(jo—TDk?)—=Y (ga1+iga2) . an

comes
(Ac)o=2k(jo—TDk?)
1 Qi+08 i
x |1+ 16 &2 +4k Q4+08)| . (18)

One sees that the decay (k > k.) or growth (k < k.) rate
is increased. For a strictly symmetric lattice gas with or-
dered phases having equal conductivities, the imaginary
part vanishes, and the correction to the usual symmetric
model dispersion relation is O(E?2). Attempting to find
the dispersion relation (for jo=0) from a Ginzburg-
Landau equation, sag following the perturbative approach
of Jasnow and Zia, > is extremely difficult.3! However, in
the nonsymmetric case, Q4+ Qp#0, the imaginary part,
being O(E), can be analyzed using such methods.
In the large field limit Q,/k > 1, one finds

1/2
(Ac)o = (jo—TDk?) [—Izi]

x[1Qal2+105] 2 +i(1 Q5] 2~ Q4| V)] .

(19)

A new length scale is, as noted, introduced by E 0.
From Egs. (18) and (19) one sees that for fixed wave-
length, sufficiently small E may be treated perturbatively.
On the other hand, for fixed E, its effect at sufficiently
long wavelength is not perturbative. So note, that when
the perpendicular driving flux is removed (i.e., setting
Jjo=0), there is no instability, but relaxation to the steady
state has Re(w)~ —k*? as compared to the familiar
(—k?) behavior. In the weak-field case the relaxation
?reserves the leading (—k3) dependence as seen in Eq.
18).

In this short paper we have performed a linear stability
analysis on the interfacial modes of a driven diffusive
model with interface established in steady-state conditions
parallel to the applied field E. As an additional feature
we have imagined the interface subjected to a steady per-
pendicular flux jo produced, say, by a rapid quench deeper
into the ordered region. At sufficiently long enough wave-
lengths the interface is driven unstable by jo. We find that
the parallel applied field modifies the growth or decay of
the interfacial modes in two essential ways. First, it intro-
duces the possibility of an oscillatory component when the
system is not completely symmetric. Second, the applied
field introduces a new length scale into the problem, which
causes the applied field to behave like a singular perturba-
tion modifying the leading k dependence of the interfacial
growth or decay rate.

Although the applied field of the driven diffusive model
of Katz, Lebowitz, and Spohn? is introduced in a concep-
tually different fashion than a usual field gradient (say,
gravitational) entering the normal Ginzburg-Landau
Hamiltonian, away from the boundaries and for short
times the effects of the two types of fields is the same.
Hence, it is possible that a simple kinetic model, such as
the one studied here, can also be of use in problems of
crystal growth in anisotropic situations and in the pres-
ence of suitably oriented external fields.
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