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We study the Fréedericksz transition in a twist geometry under the effect of a periodic modula-
tion of the magnitude of the applied magnetic field. We find a shift of the effective instability point
and a time-periodic state with anomalously large orientational fluctuations. This time-periodic state
occurs below threshold and it is accompanied by a dynamically stabilized spatial pattern. Beyond
the instability the emergence of a transient pattern can be significantly delayed by a fast modulation,
allowing the observation of pattern selection by slowing down the reorientational dynamics.

I. INTRODUCTION

The magnetic Fréedericksz transition in the nematic
phase of liquid crystals is the result of a competition be-
tween elastic and magnetic torques. For a magnetic field
larger than a critical one the molecules align following
the applied magnetic field. Recent, renewed interest in
this phenomenon is partly due to the appearance of a
transient spatial pattern which appears in some cir-
cumstances during the reorientation.! The study of the
formation of this transient pattern belongs to the class of
problems dealing with pattern-selection mechanisms.
The dynamics of pattern formation in the Fréedericksz
transition has been described’ using an analogy with the
problem of spinodal decomposition. A natural question
to address in this context is the possibility of stabilizing
those patterns by some mechanism. Motivated by this
idea, we study in this paper the behavior of the system
when the magnitude of the magnetic field is periodically
changed by using values that are alternately larger and
smaller than the critical value.

Studies of instabilities under a periodic modulation of
the control parameter exist for several physical systems.
In particular, thermal convection under external modula-
tion® and periodic spinodal decomposition caused by
periodic temperature quenches* have been considered in
some detail. Comparisons of the effects of periodic and
stochastic modulations are also available.” These studies
reveal some interesting features of modulated instabilities
which are also worth studying in the case of the
Fréedericksz transition. Three of these features are, re-
spectively, the effective shifts in the instability point, the
existence of anomalously large fluctuations, and a delay
in the observation of the instability or postponement in
the onset time.

The shift of the instability point can be found in a
deterministic description of systems with more than one
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relevant variable.> It can also occur in the slow modula-
tion limit as a combined effect of fluctuations, nonlineari-
ties, and modulation for a single-variable system.6 In our
case we find for the Fréedericksz transition a shift in the
instability point in a deterministic description, which also
involves a single variable. This is a consequence of the
nonlinearity of the model in the control parameter.
Anomalously large fluctuations are commonly associated
with critical points or transient states. Under a periodic
modulation it is possible to predict time-periodic stable
states with large fluctuations caused by a periodic
enhancement. Such a state, described in this paper, is
found below the shifted instability point. It exhibits large
spatially distributed fluctuations in the orientation of the
molecules for slow modulations. These fluctuations are
described by a related structure factor. Finally, we also
find that above the shifted instability, and for fast modu-
lations, the onset time for the observation of the instabili-
ty can be significantly increased. This results in a delay
in the emergence of the transient spatial pattern. Conse-
quently, such a modulation procedure provides us with a
powerful method to increase the reorientational dynamics
time interval, thus allowing the observation of pattern-
selection mechanisms and subsequent pattern annihila-
tions during considerably larger intervals of time. These
results clearly suggest the convenience of performing ex-
periments carried out under these circumstances. Con-
cerning the possibility of pattern stabilization, we predict
the existence of time-periodic solutions with an associat-
ed spatial pattern. These solutions occur below the shift-
ed instability point.

The paper is organized as follows. Section II contains
the basic equations and parameters used in the analysis of
the Fréedericksz transition in a periodic field. In Sec. III
a mean-field analysis of the instability is given. Section
IV considers the problem of the spatially distributed
orientational fluctuations and addresses the question con-
cerning pattern formation.
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II. EQUATIONS FOR THE FREEDERICKSZ
TRANSITION IN A PERIODIC FIELD

We consider a nematic sample in the twist geometry as
is shown in Fig. 1. The sample is contained between two
plates perpendicular to the z axis. Boundary conditions
corresponding to strong anchoring of the director are as-
sumed at z=1d /2. The director is initially aligned
along the x axis [n°=(1,0,0)] and the magnetic field H is
aligned the y axis. Its direction is constant but its magni-
tude will be a periodic function of time. We assume
homogeneity in the y direction and only the macroscopic
flow v, along that direction is retained. We also assume
that the director reorientation takes place essentially in
the x-y plane,

(2.1
(2.2)

n,(x,z)=cosd(x,z) ,

n,(x,z)=sin¢(x,z)

Under these hypotheses the stochastic coupled equations
for ¢(x,z) and v (x,z) can be written in a minimal cou-
pling approximation? as

__1&F
digix,2)=— L HI AR, i), Q)
d,uy(x,z)-——(1+)»)axg+ L (020, +v,020,)
+3,0,, 42,9, , (2.4)

where F is the Oseen-Frank distortion-free energy supple-
mented with the magnetic contribution,

SF _
N

k,, and ki; are the elastic constants associated, respec-
tively, with twist and bend deformations, X, is the aniso-
tropic part of the magnetic susceptibility, p is the mass
density, v, v,, and v; are viscosity coefficients, A is a di-
mensionless number depending also on the viscosities of
the material, and &(x,z,t) and an(x,z,t) are Gaussian
random forces satisfying fluctuation-dissipation relations,

— [kyy320+ksyd2 64X, H? [¢—§¢3] ] . @5)
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(&(x,z,t)E(x",2",1"))

kT
=2 8(x —x")8(z—2z")8(¢t —¢t'), (2.6)

YlLy
(Q,4(x,2,0)Q,4(x",2",1"))
=2 V,B,8(x —x")8(z —2")8(t —1') ,
P°L,

a,f={x,z} (2.7)

where v, =v3, v, =v,, L, is the y-linear dimension of the
sample, and T the temperature.

We consider a periodic modulation of the magnetic
field H in (2.5) around a mean value denoted by H, and
with period T. For simplicity we assume instantaneous
changes of H () at time ¢;,

H(t)=H,+H(1), (2.8)

Hl’ t2j;1<t<t2j=t2j_1+T/2

(2.9
—H,, t;<t<tyi,,. )

ﬁ(t)=[

Equations (2.3) and (2.4) are better analyzed by using a
Fourier mode analysis,

d(x,z,t) 20 x,t)cos (2m+1)—d—
=3 3 O, (1c0s | 2m + DTE |
m q,

(2.10)

The linear-stability analysis of the modes 6, , (¢) indi-

cates that m modes become unstable for

H>H, =(kym*/X,d)"? .
Only the m =0 mode is unstable for H, <3H,. In addi-

tion, linear instability of g, modes is predicted for?

X,H? H? 33
—(2m+1)? 2 .11
ky H2 > ky Ty
Y
/'y
H

FIG. 1. Schematic representation of the geometry of the nematic sample. Flows generated by oppositely rotating zones which ex-
plain the appearance of transient structures are also schematically displayed.
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These linear stability results are independent of the
dynamical coupling between director and velocity fields.

As can be noticed from (2.3)-(2.5), the control parame-
ter governing the instability is the square of the magnetic
field. The periodic modulation of H?(¢) is shown in Fig.
2 in terms of the squared reduced field h%(t)=H?(t)/H?
(ho=Hy/H,, hy=H,/H_). The effects of this modula-
tion can be completely characterized in terms of three di-
mensionless parameters,

ro=1—(h3+h2)20, (2.12)
r1=2h0h1>0, (213)
u=r,T>0. (2.14)

ro measures the difference between the mean value of
h*(t) and the instability point (h2=1) in the absence of
modulation. The parameter r; measures the amplitude of
the modulation of 4%(¢) and p measures the strength of
the modulation. When | r, | /r; <1 the system is period-
ically driven through the instability point.

A first study of the stability properties of the system
under a periodic modulation can be done by considering
the dynamical evolution of the mode 6, o, 4 _.o(2)=6(z).

This represents a strict mean-field analysis for the most
unstable m mode corresponding to the spatially averaged
quantity

O0n(=(1/L,) [ dx 6,,(x,1) .

In this approximation hydrodynamic effects do not enter
into the description. Neglecting the coupling of the
m =0 mode with other m modes, the equation for 6(¢)
reads

9,0(s)=—0(s)+h*(s)0(s)[ 1 —16%s

N+E(s), (2.15)

where we have introduced a dimensionless time scale
s=(X,H?/y,)t and £(s) is a Gaussian white noise of zero
mean value and correlations

2643

hi(s
(s) (horh)?

S S IS S h3+h?

(ho-h,)?

0

FIG. 2. Modulation of h*(s) taking alternative values
(ho+h,)* and (ho—h ) with mean value h3 +h2.

kyT/V

> (2.16)
XGHC

(E(5)E(s")) =2e8(s —s'), &=

with V being the volume of the sample. The period T is
from now on also measured in units of s. The analysis of
the solutions of (2.15) is postponed to Sec. III.

Equation (2.15) cannot describe the possible emergence
of the experimentally observed striped like spatial pattern
perpendicular to the initial orientation of the director in
the sample. To address this question we have to retain
spatial inhomogeneities along the x direction and intro-
duce the effect of the hydrodynamic coupling."? The for-
mation of transient patterns when the field H is switched
from H; < H, to a final fixed value H > H_ has been stud-
ied? by analyzing the dynamical evolutlon of the struc-
ture factor associated with the spatially distributed orien-
tational fluctuations associated with the most unstable m
mode, i.e., the m =0 mode. This structure factor is
defined as

C(Q,t)=<0m=0‘ qx(t)OM=0, ,qx(t)) .

In the approximation of negligible inertia (d, v, =0), one
obtains from (2.3) and (2.4)

2 k33 h (s 2
d,C(Q,s)=——| |hHs)—1——=02 |C(Q,s)— <e s)9 s)0 _ ()0_, (s)) | + €,
Q (Q) k22 Q Q . Eq 9, (qxl+qxz) 9 f(Q)
*17 %
(2.17)
l
where ready used in the time adimensionalization proposed
0= (q.d /m) after (2.15), so that in view of (2.17) we conclude that the
=\4xa/mr effective viscosity coefficient appropriate to the dynamics
_ iy (1A of C(Q,t) is given by ¥,=7,f(Q). The replacement of
flO)=1— a , &= £ , (2.18) Y1 by 7, contains the whole effect of the hydrodynamic
1+7Q 2 v3+%71(1+?\)2 coupling. The wave-number dependence of ¥, implies
that Q@ =0 is not the most unstable g, mode. This is the
= V2 origin of the occurrence of the spatial pattern. The evo-

Vit Ly, (141)?

At this point we recall that a viscosity ¥, has been al-

lution of the structure factor under a periodic modulation
of the magnetic field and its implications on pattern for-
mation are discussed in Sec. IV.
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III. MEAN-FIELD SOLUTIONS: SHIFTED
INSTABILITY AND PERIOQDIC SOLUTION

Neglecting fluctuations, (2.15) can be solved by a
change of variables. Introducing x (s)=0"%(s), it is im-
mediately found that

e—z(s)z[e—%owr [ldsh¥s")
0
s’ " 2 0 _
2 [ Vds Ths) 1]”

_2foxds’[h2(s’)—l]

Xexp

X exp (3.1

The long-time behavior of this solution is determined by
the sign of

fosds’[hz(s')-—l] .
We have

hAs)=(1—ry)+£(s), (3.2)

ry, st—l <Ss <S2j=s2j—1+T/2

fls)=

—ry

52 <5 <5301 - (3.3)

Due to the secular factor ezros, 6%(s)—0 as s— o« for
ro >0, while a nontrivial periodic solution appears for
ro<0 and s — . This indicates an instability at r;=0.
For ry >0 no homogeneous reorientation occurs for long
times. For r; <0 an x homogeneous periodic reorienta-
tion of the director occurs after some transient. The in-
stability point ry=0 corresponds to H3=H2?—H?Z.
Therefore, for a fixed value of the amplitude of modula-
tion H,, the instability occurs for an averaged value of
H(t),H,, which is smaller than the critical value H, in
absence of modulation. This shift in the instability point
is an interesting effect of the modulation and it is a conse-
quence of the fact that the control parameter H appears
nonlinearly (H?) in the dynamical equation (2.15).
Within a deterministic analysis other types of shifts of in-
stability points can be found in systems described by
more than one relevant variable.’

The periodic solution 8 (s) for ry <0 can be written as

1 T L2 ’
_.;mfodsh (s—s")

074s)=
1—

X exp 2/,Las7—2fs ’ds”f(s")] ,
(3.4)

where we have introduced a convenient parameter
a=ry/r,. Equation (3.4) is manifestly periodic with
period T. The behavior of (3.4) is better understood con-
sidering the values of 0 (s) at the end of semiperiods in
some limiting cases. Taking s;;=nT and s,;,,
=nT+T/2, we find in the limit of small modulation,
p<<l,
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roT
6% (nT)=2 |1 - —— L {—e )
h0+h1 (ro—])T(1+e0 )
+0(u?), 3.5)
1
0% (nT+T/2)=2 |1—-———
" n3+h ]
raT
1 (1—e ° ) 2
-2 +0(u?) .
(ro—1)*T (1+e’0T)IL #
(3.6)

The first term, 2[1—1/(h3 +h?)], is the equilibrium value
for a field h2=h3+h3. Equations (3.5) and (3.6) indicate
that 6 _(s) oscillates with a small amplitude around the
equilibrium value associated with the mean value of
h*(s). In the opposite limit of large modulation, u>>1,
we find the following. For |a| > 1,

6%,(nT)=2 |1— ————
(ho+h,)
4r
1 . ey.(a'—l) , (37)
r1+—1— (02—1)
—0
1
0 (nT+T/2)=2|l—-——
(ho—h,)?
+ 4r1 5 eu(a+1) ,
1 2
ri— T+o (0°—1)
(3.8)
and for |o | <1,
1
| 2r, |r — 4o
6%.(nT)=2 |1— > |+ 7e,
(ho+hy) 1
it l1—0o
(3.9)
02 (nT+T/2)=r(1—g?e Ho+D (3.10)

When o <0, |o | >1, H(s) always remains larger than
H_. The two first terms in (3.7) and (3.8) are the equilibri-
um values associated with the values of H(s) in each
semiperiod. The second terms are small corrections
which decrease exponentially with u. When |o | <1, we
find a similar result for s=nT, but for s=nT+T7T/2,
H (s) has adopted a value smaller than H, during the last
semiperiod and 6, is thus exponentially close to zero. In
summary, for p>>1, 6(s) follows the modulation nearly
reaching equilibrium in each semiperiod.

When including fluctuations in the description of the
system an additional shift of the instability point can be
found. This is an effective stabilizing shift which acts in
an opposite sense of the one discussed previously. It
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occurs as a result of the interplay of modulation, non-
linearities, and fluctuations and it is due to the mixing, in
a short time scale, of the two symmetric solutions for 6.
The phenomenon was analyzed for a general model in
Ref. 6 and it only occurs for slow modulation. The essen-
tial idea is that for ry <0, u>>1, and |0 | <1, a small
fluctuation acting at times close to nT + T /2 takes a posi-
tive 6 to a negative one and vice versa. The long-time
average (for long times) then gives a zero value for 0.
The value of the parameters Beyond which this mecha-
nism becomes efficient determines the shifted instability.
Such a value can be estimated making (3.10) equal to the
noise intensity measured by €/r,. We will no longer dis-
cuss this phenomenon in this paper. For ry <0 we will
consider here effects which appear for fast modulation
(u <<1). In this limit only the deterministic destabilizing
shift takes place with the instability point located at
ro=0.

IV. STRUCTURE FACTOR AND PATTERN
FORMATION

In this section we consider the spatial dependence of
the orientational fluctuations as described by the struc-
ture factor. Equation (2.17) for C(Q,s) is solved in a
linear approximation,

k33
h¥(s)—1———Q?2
k22

2
flQ

2¢e
f(Q) -

4.1)

The stability of the different Q modes is determined by
the sign of the redefined parameter o,

/rl . 4.2)

This is an obvious generalization of the parameter o in-
troduced after (3.4), which becomes now Q dependent.
When 0 >0, h3+h3—1—(k33/ky)0%<0 and C(Q,s)
tends, for long times, to a periodic solution. But if o <0,
C(Q,s) diverges for the modes for which h2+h?
—1—(k33/k2)Q%>0. These conclusions follow from
the general solution of (4.1). Such a solution can be writ-
ten in terms of a parameter 7 (0 <7< T /2), which med-
sures time from the end of each semiperiod. We take
s=mT + 7 for odd semiperiods and s=mT + T /2+ 7 for
even semiperiods. The index m indicates the number of
periods elapsed (m =0,1,2,...). We find

3,C(Q,s)= C(Q,s)+

ks

o= |ro+ P Q2

Cyimy =~ el —2f ~1(Q)omp]
140
—P (D) {exp[ —2f "N Q)omul—1} , (4.3)
Cyim=<TL |1 -2 2~ 01— 0)r 7]
o—1 o+1

xexp[ —2f "1 (Q)ampu]
—Py(t){exp[ —2f "N Q)ompul—1} , (4.4)

where
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Po(r)= e/r 2 1—exp[f Q)1 —0)u]
! 140 1—o 1—exp[—2f "N Q)ou]
xexp[—2f " UQ)1+0)r 7] |, 4.5
Pulr)e e/ry 1 2 l—exp[—f " HQ)1+40)u]
2 -1 1+0  1—exp[—2f " (Q)oul

Xexp[Zf‘l(Q)(l—cr)rl'r] . (4.6)

C,(m,7) and C,(m,T) are the solutions for odd and even
semiperiods, respectively. They satisfy the obvious con-
tinuity conditions C{(m,7=T/2)=C,(m, 7=0) and
C,(m,7=T/2)=C{(m +1,7=0). In Egs. (4.3) and (4.4)
one clearly identifies a systematic evolution given by

exp[—2f "H(Q)omu]

which is modulated by other functions defined in each
semiperiod. As we anticipated, the sign of o determines
the existence of a periodic solution for m — o or a diver-
gence of the structure factor.

The two situations leading to a periodic solution or
divergence can be understood in terms of our previous
nonlinear analysis of 6(s). For ry>0, 0 >0 and a global
instability (in the sense of an homogeneous reorientation
for long times) does not occur. The periodic solution for
C(Q,s) describes the long-time evolution in which, how-
ever, large although finite periodic orientational fluctua-
tions exist. In this time periodic state nonlinearities play
no essential role. In this regime we find that a spatial
pattern develops under some circumstances to be dis-
cussed below. This might be understood as a stabiliza-
tion of the transient pattern which occurs when changing
H from an initial value H; <H, to a final fixed value
H, > H,.? Here the pattern appears for a mean value of
H?(s) smaller than H? (ro>0). In the other situation in
which ry <0 the divergent linear solution of (4.1) cannot
describe the final approach to the state characterized by a
homogeneous periodic reorientation of 6(s). However, it
does describe the early stages of the transient evolution
towards that state. The time domain of validity of the
linear approximation becomes larger with faster modula-
tion. During this transient evolution we will see the oc-
currence of a spatial pattern whose characteristic wave-
length oscillates in time. The emergence of the pattern
and subsequent evolution can be significantly delayed by
decreasing the period of modulation.

A. ro > 0: Periodic solution

When ry, >0, o >0 and we find from (4.3) and (4.4) sta-
tionary periodic solutions in the long-time-limit regime,

CP(r)=C{(m=ow, 7)=P(1), 4.7)

Cr(r)=Cylm=0o0, 7)=P,(7) . (4.8)

A typical example of the behavior of this solution is
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shown in Fig. 3. This figure makes explicit the important
difference between the cases o0>1 and o<1. For
o(Q)>1 the mode Q is always stable. For od(Q) <1 the
system is still globally stable, but the mode Q is unstable
during the semiperiods in which (hy+h,)?> 1. In these
semiperiods it has an exponential growth. As a conse-
quence we find a periodic amplification of fluctuations to
anomalously large values for a noncritical stationary
state. These anomalous fluctuations can be described in
terms of the function which modulates the equilibrium
fluctuations associated with the mean value of A2,
(h*)=h3+h}

CZ(1)=Cq(h*=h§+h})F,(7), i=1,2 4.9)

since
Ceo(h*=hi+h})=¢e/(or)),
FI(T)Z(U"‘/G)P‘(T) .

In the limit of no modulation (u=0) F;=1. The effect of
modulation in the fluctuations is more clearly displayed
in the opposite limit g— co. In this limit and at the end
of the semiperiods we obtain
g
o+1
o

F(r=T/2)= , (4.10)

, o>1

Fy(r=T/2)=

explf "NQ@Q1—op], o<1.
—0

(4.11)

These results just indicate that for o > 1 equilibrium fluc-
tuations are modulated by a finite periodic quantity.
However, for o <1 fluctuations are greatly enhanced, the
modulating function grows exponentially with g, and its
maximum value is reached at the end of the semiperiod in
which Q is unstable.
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The preceding discussion on the amplification of fluc-
tuations is qualitatively independent of hydrodynamic
effects. Indeed, neglecting the coupling of the director
and velocity fields amounts to formally setting f(Q)=1
in the preceding formulas. In particular, (4.10) and (4.11)
are not modified when there is no instability (o > 1), and
for 0 <1 we just find a smaller amplification since
f~YQ)>1. However, the inclusion of hydrodynamic
effects permits us now to address the question of the for-
mation of spatial structures. For a time-independent
magnetic field these structures appear as a transient
phenomenon caused by hydrodynamic effects. They are
associated with a most unstable mode Q0. The ques-
tion now consists in the possible appearance and stability
of these structures for the modulating conditions we are
dealing with here. Of course, such structures could only
appear when there is some kind of instability in the sys-
tem. Therefore we restrict our discussion to o < 1. The
spatial structure may be expected to appear during the
semiperiod in which h2>1. A necessary condition for
the formation of such a structure is then that C5° (7) has
a maximum at a value Q=40 for some time 7 < T /2. The
emergence of this maximum at Q540 identifies the devel-
opment of a periodic structure. The requirements for the
fulfillment of this condition are more easily determined in
the limit £ — oo, in which the structure could most likely
occur. In this limit C5 (7) can be rewritten as

Cr(n) Ceqlh?=(ho—h})?)

ew(Q)f
€ €
+ 1 (ew(Q)‘r_l) ,
(h()"l'h] )2_1_(k33/k22 )Q2
(4.12)
where
o(@)=2f"NQN(hg+h )} —1—(k33/ky)Q%] . (4.13)

T=30

2
h“=1.7
h2=0.1
Ci2
6:7
gz}
g>1

S

FIG. 3. Long-time-limit results for the periodically modulated structure factor in the regime r, > 0. The three well-differentiated
behaviors corresponding to the value of the instability parameter o are depicted.
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Equation (4.12) corresponds to the evolution of the
structure factor under a constant magnetic field
h%*=(hy+h,)? starting at 7=0 with the equilibrium ini-
tial condition associated with a field h2=(hy—h )*. In
other words, in this limit the system reaches equilibrium
at the end of each semiperiod in which h=hy—h,. A
necessary condition for the occurrence of a periodic pat-
tern can now be taken from the results of Ref. 2,

(ho+h P>1+-21 (4.14)
a

In terms of the parameters r; and r used here (4.14) be-
comes

rl‘—ro>——g‘ . (4.15)
a

Properly speaking, (4.14) is a condition to have a most
unstable mode specified by a nonhomogeneous mode
@540. This instability would manifest itself as a max-
imum of the structure factor only if the semiperiod of in-
stability lasts long enough. This is always the case in the
limit under consideration, p=r,T— o, since the re-
quirements o(Q =0)<1 and h*(s)>0 imply that r, is
bounded; 1—ry>r; >r,.

In the case of a constant magnetic field the condition to
obtain a spatial pattern can be always satisfied by taking
a large enough magnetic field. However, in the case of a
modulated magnetic field, (4.15) can be only fulfilled if a
certain unequality among the material parameters is
satisfied. Indeed, the previously mentioned requirements
on r, and (4.15) imply that

1520 (4.16)
a

In the limit u>>1, Eqgs. (4.15) and (4.16) give condi-
tions for the occurrence of the spatial pattern. A
different question is the persistence of the pattern
through the whole period of modulation. Such per-
sistence would imply that the maximum of the structure
factor remains at a value of Q different from zero during
the whole period. It can be checked from (4.12) that this
is not the case, indicating that the pattern is not per-
sistent in the limit u— o. Outside this limit numerical
results for C° () show that the same conclusion applies
for finite u. A typical form of the evolution of the max-
imum of the structure factor obtained from (4.7)-(4.8) for
finite u is shown in Fig. 4.” Larger values of pu give a
more intense pattern structure in the sense of earlier for-
mation, longer persistence, and larger values of Q2.
Decreasing the value of the period the pattern may not
even be formed in the periodic solution (4.7), (4.8). Physi-
cally it corresponds to situations in which T becomes
comparable with the time required for the instability to
become apparent. This of the order of the lifetime of the

unstable state measured by a mean first-passage time
(MFPT).>%.
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B. ry <0: Transient evolution

We now consider the general solution (4.3)-(4.6) for
ro <0. We have already mentioned that the solution only
makes sense during a transient regime. This transient re-
gime is at least of the order of the MFPT. We can get an
idea of this MFPT by using the appropriate formulas in
the absence of modulation

1 lnL . 4.17)
QZ

T ~
MFPT ki3 26

hi—1—
k22

f(Q)

In general, this MFPT sets an upper bound of validity of
a linear theory. In our situation here this restricts our
analysis to periods T < Tppr, although it may be reason-
ably expected that for fast modulations the range of va-
lidity of a linear approach actually extends beyond that
MFPT. We are interested in the situation in which the
magnetic field h%(s) periodically crosses the instability

2_
h®=17 h2=0.1
T=30
Qe
0015 }
0.0 |
0.005}
Y A L s
h2=1.7
h2=01
T=21
Qo
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1 1

S

FIG. 4. Wave number corresponding to the maximum of the
structure factor vs time for two different values of the modula-
tion period, T=30 and T=21. Times are measured in units of
y/(X,H*)~10 sec, corresponding to typical samples (S=1
cm?, d=10"2 cm). In the two cases (ho+h,)?=1.7,
(ho—h,)*=0.1. The values for the material parameters are
a=0.74, 7=0.20, and k33/k,;=2.5. No pattern appears for
T <18.9.
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FIG. 5. Evolution of the maximum of the structure factor vs time for different values of the modulation period. For all cases
(hg+h)*=5, (hg—h,)*=0.5, and material parameters adopt the values presented in Fig. 4. For these parameters the MFPT, Eq.
(4.17), is Typpr =~ 1.7 and the periods of modulation are 1.5, 0.3, and 0.14. The asymptotic value of Q2. is 0.13.

h*%(s)=1. This corresponds to 1+ |rg| >7r;> |7o|. In
particular, we focus on the behavior of the Q modes
which are periodically unstable. These modes are those
for which 0> o > —1. The systematic unstable evolution
of these modes is given by the exponential terms

exp[—2f Y Q)ompu]

in (4.3) and (4.4). Such systematic evolution is the dom-
inant one for fast modulation (u << 1). The emergence of
a spatial pattern is then associated with the existence of a
mode Q=0 of maximum systematic growth. It can be
shown that in our conditions such a mode exists for

k —
| 7o | >—k—3i~’_1 (4.18)
2 a
or
k —
hientsi-—21 (4.19)
ky @

This is the same condition as in the absence of modula-
tion but now for a field 42, which is the average of h Y(s).
Since (4.18) is independent of 7|, there is no restriction on
material parameters as we found in (4.16).

Figure 5 shows the evolution of the maximum of the
structure factor for different values of the period of
modulation as computed from (4.3)-(4.6).° It describes
how the transient evolution proceeds via the formation of
a spatial pattern. The characteristic wavelength of the
pattern is determined by Q... As a consequence, it has
an oscillatory behavior. Q2. tends asymptotically to a
periodic function of time oscillating around a mean value

which coincides with the asymptotic Q2,,, predicted for a
fixed field, whose magnitude was the average value
h3+h? in the actual modulation situation. The most no-
ticeable feature of the results in Fig. 5 is that the emer-
gence of the pattern can be significantly delayed by re-
ducing the period of modulation. The emergence of the
pattern occurs at an onset time which is identified with
the time at which Q2 becomes different from zero.
This happens to be a rather well-defined time. Here we
are dealing with a pattern selection mechanism which is
supposedly based on the dominance of the mode of fastest
growth. The fast modulation of the control parameter
slows down significantly the process of pattern formation.
Therefore it gives an efficient way of studying this
phenomenon during larger time domains and to describe
it within linear theory. The delay in the onset time for
pattern formation is seen to occur when the semiperiod of
modulation becomes comparable with this onset time in
the absence of modulation. This is 0.17 in the units of
Fig. 5 and for the parameter values corresponding to this
figure. In these circumstances the system has no time to
decay from its unstable state during the semiperiod of in-
stability and the time interval of the reorientational dy-
namics, here manifested in the pattern occurrence, in-
creases.
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