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We study the problem of the Fréedericksz transition under a rotating magnetic field by using a
dynamical model which incorporates thermal fluctuations into the whole set of nematodynamic
equations. In contrast to other geometries, nonuniform textures in the plane of the sample do not
appear favored. The proper consideration of thermal noise enables us to describe the dynamics of
orientational fluctuations both below and above the shifted instability.

I. INTRODUCTION

Liquid crystals have become an interesting subject of
theoretical and practical research in the field of non-
equilibrium transitions. Very broadly studied is the
field-induced distortion of a nematic film with positive di-
amagnetic anisotropy X,, called the Fréedericksz transi-
tion.! In the context of this instability two different ques-
tions have deserved a good deal of attention in the past:
(i) the time evolution of a periodically forced system, and
(ii) the possibility of observing nonuniform distortions of
characteristic periodicity in the plane perpendicular to
the initial alignment of the sample. The Fréedericksz
transition under a rotating field has already been studied
by Gasparoux and Prost? in a planar-anchoring situation.
Brochard and co-workers>* discussed this problem for a
homeotropic geometry, which is the one adopted here,
assuming uniformity in the plane of the slab. Much more
recently, Kuzma dealt with a somewhat different
geometry for a lyotropic material with X, <0. With
respect to the second question, much work has been de-
voted to the study of transient periodic textures of hydro-
dynamic nature accompanying the pure Fréedericksz re-
orientation of the sample. Perpendicular,®~'° oblique, !
and two-dimensional'® striped patterns have been investi-
gated theoretically and observed experimentally.

In this paper we will discuss simultaneously both as-
pects for a homeotropic sample placed under a rotating
field perpendicular to the initial orientation of the mole-
cules of the material. The entire set of nematodynamic
equations is considered in order to retain hydrodynamic
effects responsible for eventual backflow patterns. In ad-
dition, much effort is devoted to incorporating thermal
fluctuations into our dynamical scheme from the begin-
ning, to account for their essential role in triggering the
relaxation from the initial unstable undistorted state and
its decay to the final stable distorted configuration. This
is accomplished by using a model we recently proposed in
Refs. 9 and 10 generalizing previous versions without hy-
drodynamic coupling. '?

Our results seem to preclude the appearance of regular
backflow inhomogeneities regardless of the frequency and
intensity of the magnetic forcing. At the same time, by
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including thermal noise in a consistent way a genuine
periodic behavior of the fluctuations below the instability
is found, whereas they amplify in a modulated way above
the critical magnetic intensity.

II. LINEARIZED EQUATIONS
WITH HYDRODYNAMIC COUPLING

Let us call z the direction perpendicular to the plates
containing the sample and separated by a distance d. A
rotating magnetic field of characteristic frequency o is
applied perpendicular to the initial alignment of the
directors, let us say in the plane x-y. If the intensity of
the magnetic forcing exceeds an w-dependent threshold,
to be determined later, the sample will undergo an inter-
nal homeotropic-planar reorientation. We focus on the
components of the director (nx,ny) which become ma-
croscopically amplified during the realignment. To take
into account hydrodynamic and thermal noise effects we
use a Langevin version of the nematodynamic equations
as established in Refs. 9 and 10. Specializing this scheme
to the geometry here considered and invoking a
minimal-coupling approximation,®!® the final equations
for the director and velocity components read (summa-
tion over repeated indices generically denoted «a is im-
plied) as shown in Eq. (1) (see next page). In (1) p is the
mass density, ¥, ¥, (A=—%¥,/v,), v}, ¥5, and v; are the
viscosity coefficients used in Harvard’s version of the
nematodynamic equations, p is the pressure, and & stands
for the free energy whose contributions reduce in the lim-
it of small distortions to

5F

on. =—K,(din,+3n,)+K,(d%,n,—~n,)
—K;33in, —X,(n,H +n,H)H, ,

ﬂ——x (32 3%n,)+K,(d? dn,)

Bny - 1 xynx+ yny + 2 xynx" xny
—K332n,—X,(n H, +n,H,)H, , 2

8F _ Voo a={x,p,z}

SU —’P a? - ’y) .

5360 © 1988 The American Physical Society



DYNAMICS OF ORIENTATIONAL FLUCTUATIONSIN A . ..

38
B S S0 I S D
B ERBNE LD BB D

—_
g
o
P
§ @ %
= Z ar an X
)
< = _‘liq_h +
~ =
—-l&-l& ©
-
PN
=
-
._|Q_
—_
n
[y}
2,
>
Py +
= ~ R Sa
(1=} © 3]
o X ¥ 9 2
S w VIESILN
~ %
—l&‘r ©
<
P
=
_..|N
Q
—_
an
[g=]
2,
Py
< +
j— ~ ~ % ~ X
+ T T
< =} + s s
- ~ = ~
o Rl -l
N 2
=
S
=
-
"“lQ-
o o
_ = =
=~ + |
o o
| < <
"‘&"|z3‘
N >
< ©
~ = =
=< + |
o [=]
| < <
- & - &
Il
:K =A Qx > .
©

—_
—
-

{x.y.z} .

a=

’

&x
&
dabax
9abay
9abaz

5361

The Gaussian random forces left in (1) have zero mean
value and satisfy appropriate fluctuation-dissipation rela-
tions

. kT N
<§a(r1,t’l )gﬁ(r2,t2)>=26aBT8(rI—r2)6(tl —tz) 9
1
(3)

(Lap(11s 115 (12, 15)) =2k TM 45, 8(r, —1,)8(1} —13) ,

with M g5, expressed in terms of the initial components
of the director

1
Maﬁa},=;2—[2(v1+v2—2v3)ngn%ngn$,

+V2(8088ﬁ7+507855)
+(v3—v2)(n2ng8ﬁy+n2n?,835+n2n28a7
+n03n25a8)] . 4)

To proceed further we make the common approximation
of negligible inertia, we conveniently manipulate the set
of equations for the velocities to get rid of pressure terms,
and furthermore we invoke incompressibility of the ma-
terial to eliminate one of the components of the velocity.
All this algebra, leading finally to a pair of equations for
the director components, is much more easily handled by
Fourier transforming according to

ng= 3 Ngqux (t')e'dPcosk,z ,
q,k

§a= 2 §a;q,kz(t’)eiq.pc’05kzz ’
q.k,

Vo=, va;q,kz(t’)e’q"’sink,z ,
9.k,

Lapia 1)
gzz;q,kz(t')

;aB
gzz

e'Psink,z , (5

q.k,

v, =

=, vz;q,kz(t’)e‘q”’coskzz ,
a.k,

oz =3 Cazqnk, (t')e'VPcosk,z ,
q,k,

v

d ’

where strong-anchoring assumptions for the director and
free-free boundary conditions for the velocities are
prescribed at the limiting plates: z =+d /2. Using an
opportune matrix notation for the Fourier ampiitudes,
the final equations read

k,=(2m +1) {a,B}={x,y},

d '
yaﬂ}?o—np(t ):Kaﬂnﬁ+yaﬁ€5+¢a’ {a,B}=[x,y] . (6)

Before giving explicit expressions for the viscosities we
recall the definitions of Miesowicz’s coefficients
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Na=V2> ri=n.kl+m,09:+4))
_ 2
M=Vt 57 (1=A)7, 7 r%z(na—2n4+2v1)k22+17b(qf+qy2) ) 9
= 1y (14+A1)?,
e =vitarili+d) ré=nck 20, —ma+ vk gl +4;)
we introduce a coupling viscosit
4 plng y +15(gl+4q7),
=5y +n.—71), (8)
and we define a set of auxiliary quantities to finally obtain
J
71 : 71 g [1-1
2 2y 9x 2
Y =71 1—~4—(1+M r%r (rlk +r2qy) 2 —(1—A )_rT 1+)\(q,c—f-qy) 2k;
2
4 2 %2 a0 22y Y N [1=A 2
V=71 1~—4-(1+M r%r4(r1kz+r2qx)——j4—(l——k )7 1+}»(q"+qy)+2k (10)
2
Y1 2 z 2 Y1 2 qqu 1—A 2
Yo =Vx =71 T(H—M r%r‘trquqy—T(l——?\ )——r4 1+k(qx-f-qy)+2k

The contributions from the elastic and magnetic torques
read

K., =X,,H2cosza)t'—(Kqu+K2qyz+K3k22) ,

through the equations for the velocity fields. The explicit
expressions for ¢, and ¥, in terms of {4 are rather com-
plicated. We first define

1= ] xy 4dx 4 T 5xx 4x
S1=plity (g2 —g))+i (&), — 6. )axa,
K, =X,H*sin’ot'—(K ,q; +K,q; + K k}) , (11)
kz(qxgyz_qygxz)] ’
K, =K, =X,H*inot'cosot’ — (K, —K,)q,q, . ) 5 (12)
gZEp[—lkz(qxgxx+qy§xy)_(qx_ z)gxz

Finally, two well-differentiated noise contributions ap- —q.q.Ctig .k C. ]
pear in (6). &, is directly related to the dynamics of the xhyopz DX T25z 0
distortion modes, whereas ¥, enters into that dynamics  to get finally

J

Vi —A gz
b=~ k, +mk— (q,r36+k,ri&)
L=A Sy kd 2y, — a2k 241,02k 2+ ,02(a2 +aD)1E —ria k.6
- 1+}\- kz T’C 2+ na 774+Vl dx z 7’(1 anx qx qy 1= rlqy 252 )
(13)
Vi 1 1—A 49x9
dy=—5 (1+1)~ e (130 K, *(g,r361+k,r16))
k. 1-x 4 | .
+ q—+—~—1+)\ K {rig k. So—[n k) +200, —na+vi)gikl +ma9,k 7 +159:(5 +9,)161)
X P4

A series of manipulations turn out to be particularily useful in what follows. First of all we assume we are dealing

with small enough magnetic fields so that only the first z

mode, k,=m/d, will become unstable as a result of the

Fréedericksz transition. This enables us to utilize throughout the remainder of the paper dimensionless wave numbers

Q=q/7w/d. Expressions (9)-
Ri=n.+m,(Q+0))
RI=(m,—2m4+2v)+1,(Q2+0Q)) ,
R4=1,+2(n, =+ v Q2+ 01+ 7, (Q2+ 02,

(11) transform then into
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1%‘* i“ QI+ +2 (15)
%(l+k)%Qny ,
(16)

Y1 21 2 202 Vi 2

Yxx =71 I_T(1+)\) R% 4(R1+R2Qy) 4(1—K)
A R? LAV
Yy =71 ——(1+ ) Y (R} +R30H)— L
R2 1—A

K, =X,H%os’wt' —m* /d*(K 0} +K,Q]+K3) ,
K,, =X, Hsin’ot' —7*/d*(K,Q; +K,0; +K3)
nyznyz)(astina)t'cosa)t —m*/dHK,—K, 0,0, .

Secondly we propose a time adimensionalization and a
notation in terms of reduced magnetic fields

2 1 2

, 1 T T
tzty—le‘;;, h*=H?/H?, H“ZZZK3F’ (17)
which converts (6) into

FaB%nﬁ(t)=K;Bn3+‘I/B s (18)

with I’aﬁ=y1‘]yaﬁ, and the elements of the reduced ma-
trix K" being

K/ =h%os’Qt — Qx+—Qy+1

3

K K
20:02 Tla2, M2 42
K;, =h’sin*Qr — [K3 Q},—G—K3 Q:+1
(19)
K’ =K k—h 25inQt cosQt — -K,)0,0, ,
3
_ Y1
- K3772/d2 ’

Finally, W collects the entire contribution arising from
thermal fluctuations

1
= ylraB§B+ b, . (20)

v

III. MEAN-FIELD DYNAMICS

The first important point we want to address in this pa-
per concerns the possibility of finding nonuniform distor-
tions Q=£0, leading the response of the system to the
Fréedericksz instability. This can be discussed from the
explicit expressions obtained for the viscosities (15) and
elastic and magnetic torques (19). As expected, we can
directly conclude from (19) that the nonuniform rotation
modes involve additional contributions corresponding to
internal elastic distortions which are absent for the uni-
form rotation mode Q=0. Owing to that, the only possi-
bility for finding nonuniform patterns in the x-y plane de-
veloping faster than the pure uniform one should be
justified in a tradeoff of rotation for shear viscosities if

f

their effective values for modes Q-0 were sensibly small-
er than for Q=0. Actually, this is the usual argument
employed in explaining the common striped structures re-
sulting from the Fréedericksz instability in the pure
twist”®!% and planar-homeotropic®'"!* geometries in
nematic materials with X, >0. However, in our case
here, and using typical values for the material parameters
corresponding to  N-(4-n-methoxy)benzylidene-4'-(n-
butyl)aniline (MBBA) at room temperatures,' the
effective viscosities do not fulfill this requirement. Ac-
cording to (15) all the viscosity components increase in
going from a uniform mode Q=0 to nonuniform ones
Q540 of moderate modulus for which we can still predict
instabilities under the conditions previously prescribed of
low magnetic fields. Specifically, the diagonal viscosities
Iy, and T, increase from a nonzero positive value,
1—v,(1+A)°/4n,, whereas I',, augments from a null
value at the origin of reduced wave numbers. In passing
we note that this argument applies regardless of the in-
tensity and frequency of the forcing and consequently it
is also valid for the static case 2 =0. Thus hydrodynam-
ic effects cannot be invoked in the homeotropic geometry
to explain domain growth, but they result in an effective
viscosity even for the dynamics of the dominant reorien-
tational mode, i.e., the homogeneous Q=0 mode.

Once this important point has been stated clearly we
will restrict our discussion to the most unstable mode
Q=0. In this way we recover what could be considered
as a mean-field description of the dynamics of the nemat-
ic sample. The explicit expressions for the components of
I, K', and ¥ are then greatly simplified,

Y1 (141)?
r”:ryyzl—T—m , Tpp=0,
K =h%os’Qt —1,
KJ, =h%in’Qt —1, 1)
K;y:hzsinﬂt cos{t ,
. 71 _ 1+A)°
K, /d? 4 ‘
(1+A) _
. Pbaz |» a={x.y]
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It turns out to be suitable to solve (18) in terms of an az-
imuthal angle ¢(¢),

n,(t)

n.(t) (22)

_ cosd(t)
=6(1) lsin¢(t)

) (

In view of (22) the essential variable concerning the insta-
bility is 6(t), since ¢(z) merely reproduces the rotating
character of the applied magnetic field without telling us
anything about the intrinsic stability properties of the ini-
tial configuration. Since we are mainly interested in
studying the effect of thermal fluctuations on the dynam-
ics of the variable really experiencing the instability, we
adopt here a strategy which consists in neglecting contri-
butions in the evolution of ¢(¢). Thus the equation for
the azimuthal angle reads

d h?

2}‘¢(t)=—2—sm2(ﬂt —¢), (23)

Y1 (14A)?

—— T2

4 7,

independently of 6(¢). On the other hand, for the distor-
tion angle we get

Y (14A)

1
4

%9(t)=[hzcos2(0t—¢)—1]9(t)

4

+(cosp¥, +sing¥,) . (24)

Apart from the ¥ term in (24), Egs. (23) and (24) coincide
with the ones used by Brochard et al.,* where backflow
effects were disregarded from the beginning, except for
the reducing factor in the viscosity:'* y¥/7,
=1—7,(1+1)*/49,~0.2. This fact alters correspond-
ingly the analysis that follows referred to the phase dia-
gram (h2,Q), although the analysis qualitatively repro-
duces the results of Ref. 4.

Two well-differentiated regimes can be distinguished
regarding the rotation of the director.

(i) A synchronous rotation characterized by a constant
retardation angle a:

o(t)=Qt—a ,
sin2a=Qr, (25)
2 Y1 (14A)?
=5 |l——]— |,
h 4 7
this solution being acceptable provided Qr<1. This
defines a threshold for synchronous rotation
v asa2 ||
hya(@)= |20 [1- 2L AT , (262)
4
or in the original variables
2 via+a2 | ]
)
H, (0)=|—"y, |l -——— ) (26b)
syn Xa 1 4 7, } ]
to be compared with the result in Ref. 4:

H,(0)=Qoy, /X))
(ii) an asynchronous rotation characterized by a time-
dependent retardation angle a(?):
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o(t)=Qt —alt),

1/2
1

QZTZ

tana(t)-———i-% 1—

Qr

(021,2_ 1 )l/2i

T

X tan , 27)

this solution applying when Q7> 1.

IV. DYNAMICS OF THE ORIENTATIONAL
FLUCTUATIONS

In this section we want to describe the behavior of

orientational fluctuations following the Fréedericksz
transition. We will be mainly interested in the previously
identified asynchronous regime, since in this case the dy-
namics corresponds to a nonautonomous system.
First of all we convert (24) into an equation for the vari-
ance C(t)=(6%t)). This is commonly done by standard
procedures'® which explicitly use the correlations of the
stochastic forces given in (3 and 4). The final equation for
C (t) reads

d 2

Zcin=
dt Y1 (144)
4 m

X {[h2cos¥(Qt —¢)—1]C(t)+€} ,  (28)

1—

where € is a dimensionless measure of the intensity of the
thermal noise'® (¥, volume of the sample):
€=2——— . (29)
VK ym?/d?

The consistency of the Langevin approach used
throughout this paper is immediately recognized by not-
ing that the term responsible for thermal fluctuations ap-
pears in (28) affected by exactly the same viscosity-
reducing factor as the magnetoelastic one. This enables
us to rescale time according to

%C(s):Z[hzcosz(Q:s —¢)—1]C(s)+2€,

=/

The term 2¢, which could be called the Cook term in
close analogy with the Cahn-Hilliard-Cook theory of spi-
nodal decomposition, is a genuine consequence of the in-
clusion of thermal noise from the beginning and is missed
in Brochard et al.’s deterministic treatment. Its impor-
tance will be discussed later on. First we study (30) in the
two limits previously identified.

(i) In the synchronous regime a is constant so that
C(s) evolves with an effective reduced field smaller by a
factor cos’a,

cosla=4[1+(1-0>7)!"?],

(30

NARIEYS;

4

t
y QSEQ; N

with respect to the static case. The conclusion regarding
the critical field is then
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hAQ)=14+02, (31a)

or in the original variables

HX(w)
H

Y@

Y1 (141)?
Kym?/d?

4 7

2
1— , (31b)

which consistently reproduces the result of Ref. 4
HX(w)/H?=1+(y,0/K;7*/d*)?

except for the viscosity-reducing factor.
(i) In the asynchronous regime we have

h 2

d
—C(s)=2 | ————
s 1+tan?a(s)

—1|C(s)+2€, (32)

with

tana(s)—il—zL—l— 1—
T2 2 Q

s

h2 1 2}1/2

2
h 2

Q- | =
2

s

X tan

172
s ’ . (33)

For h?<1 the system is clearly stable. For h’>1 we
have solved (32) numerically with initial conditions corre-
sponding to an initial field #? < 1, C(0)=(1—h})"e.

What follows is essentially an analysis of the solutions
of the nonautonomous equation (32). Orientational fluc-
tuations described by C(s) are essential in the study of
the initial growth right after the system begins to feel the
instability. In the situation considered here we can ex-
pect that above the instability this growth will be periodi-
cally modulated. Fluctuations appear in (32) through the
consistent initial conditions and also through the effect of
thermal noise during the evolution incorporated via the
Cook term 2e.

Two very different behaviors reproduce the long-time
dynamics of C(s) after transients, depending on initial
conditions, have been forgotten: (a) a region of bounded
periodic oscillations with period

T=m/(Q2—(h*/2)'*,

and (b) a region of unbounded oscillations. This very
different dynamics is shown in Fig. 1 where we plot for a
particular value of Q, Q; =3, a situation of stable oscilla-
ti(z)ns for h?=1.65, and a linearly unstable one with
h°=2.1.

Clearly these two behaviors correspond, respectively,
to situations below and above the instability. We have
numerically solved (32) and (33) at different points of the
phase diagram (A% Q) in order to locate the instability.
Interestingly, the instability condition turns out to be in-
dependent of ), in the asynchronous regime examined
here and corresponds to 4% (Q,)=2 in agreement with
Brochard’s analysis.

The very different behaviors shown in Fig. 1 may also
be analyzed in terms of the somewhat different role
played by thermal noise, measured by € below and above
the instability. Below the instability a sudden change
from h? to h? with 2> h?> h? results in a controlled and
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limited amplification of fluctuations which finally get
trapped into a “limit cycle’” behavior characteristic of the
stable equilibrium fluctuations appropriate to the succes-
sive and periodic determinations of the magnetic field
[Fig. 1(a)]. If we let € go to zero any virtual fluctuation,
i.e., of nonthermal origin, has to die out, inevitably as is
depicted in the inset of Fig. 1(a). On the other hand, if
we increase the magnetic intensity beyond the shifted in-
stability, hi2 <h?, h?> 2, fluctuations grow very fast, cor-
responding to a linearly unstable solution here modulated
by the periodic forcing. A nonzero value of € guarantees
in this case the proper inclusion of the initial thermal
fluctuations necessary to trigger the amplification
phenomenon, and once it is initiated favors it especially
during the early stages of the transition.

In passing we make a final comment regarding the
range of validity of this linear approach. In general, this
could be estimated as the lifetime of the unstable state

8 T T T T
ClsvCo

(a) N

1.5
C(s)/c(0)

1.0

2 0.5
0.0
0.
0 1 1 1
0 S 10 15
10 U T T T T
CE)ICo)
80 + .
(b)
60 | 1
2.5
40 2.0 B
C(s)/c(0)
1.5
1.0
20 ~
0.9
0.0
.0 2.5 5.0 7.9
0 1 1 1 1 s
0 S 10 15 20 25

FIG. 1. Time evolution of the variance of the fluctuations
corresponding to the distortion angle, C(s), in the asynchronous
regime (see text). Initial conditions correspond to h2=0
whereas ,=3. In (a) we show a stable evolution with
h?=1.65. In (b) a linearly unstable dynamics is depicted for
h*=2.1. In the insets we reproduce the results corresponding
to Eq. (30) without the Cook contribution (see text).
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formally characterized in terms of the mean first-passage
time (MFPT) to leave the vicinity of the unstable state.
Although we did not attempt to evaluate it in our situa-
tion here, previous calculations referring to the standard
Fréedericksz transition® %1215 indicate that this time is
of experimental relevance, since it is considerably larger,
of the order of tenths to hundreds of seconds depending
on the value of 42, than in other experimental situations
such as those corresponding to the spinodal decomposi-
tion of systems with short-range forces.

V. CONCLUSIONS

We have studied the onset of the Fréedericksz instabili-
ty for a nematic homeotropic sample subjected to a rotat-
ing magnetic field. We have centered our analysis in the
dynamical behavior of the orientational fluctuations. In
the synchronous regime those fluctuations evolve auto-
nomously according to an effective and constant magnet-
ic intensity. In the asynchronous mode the fluctuation

F. SAGUES 38

dynamics is nonautonomous. In this case it shows a
bounded periodic behavior or a modulated pattern of
continuous growth, respectively, below or above the mag-
netic instability. The methodological scheme used
throughout the paper is based on the utilization of a
Langevin version of the entire set of nematodynamic
equations. This allows us to analyze hydrodynamic con-
tributions. Effective rotational viscosities have been cal-
culated, but no domain-structure formation phenomenon
is predicted arising in backflow effects. Since this result
is actually independent of the frequency of the rotating
magnetic field, it also applies to the standard homeotro-
pic Fréedericksz transition.
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