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We discuss the dynamics of the transient pattern formation process corresponding to the splay
Fréedericksz transition. The emergence and subsequent evolution of the spatial periodicity is here
described in terms of the temporal dependence of the wave numbers corresponding to the maxima
of the structure factor. Situations of perpendicular as well as oblique field-induced stripes relative
to the initial orientation of the director are both examined with explicit indications of the time
scales needed for their appearance and posterior development.

I. INTRODUCTION

Many different systems in nature experience nonequi-
librium processes characterized by the emergence of spa-
tially periodic order developing spontaneously from a
homogeneous state. Liquid crystals constitute an espe-
cially well-studied class of such systems. In this paper we
will particularly refer to the magnetically induced reori-
entation of a nematic sample known as a Fréedericksz
transition.! Very broad theoretical and experimental evi-
dence’ ™! supports the idea that such an orientational
transition normally induces hydrodynamic motions that
result in the transient appearance of striped textures of
characteristic periodicity in the plane of the sample. The
earliest observations made by Carr® in N-(4'-n-
methoxy)benzylidene-4’ -(n-butyl)aniline (MBBA) stimu-
lated the theoretical and experimental analysis of Guyon
et al.’ applied to a planar-homeotropic geometry. In this
last decade experiments abound both in lyotropics®~'°
and thermotropics’® reporting the occurrence of perpen-
dicular>”® as well as oblique® and two-dimensional'®
striped patterns relative to the initial orientation of the
sample. Here we will specifically concentrate on Guyon
et al’s geometry,3 also discussed by Hurd et al.,® which
is especially interesting since oblique periodic structures
may result from the coupling of the flow and director
fields in three dimensions.

The process under consideration shows strong similari-
ties with other spatial pattern forming phenomena such
as those corresponding to the Rayleigh-Bénard or
Couette-Taylor instabilities in hydrodynamics, but at the
same time it intrinsically differs from these latter ones in
its transient nature. Owing to this and following the
pioneering analysis by Guyon et al.,’ the field-dependent
periodicity of the pattern has been commonly associat-
ed>”~!! with the wavelength corresponding to the mode
of fastest growth predicted by a linear analysis of the
nematodynamic equations. This approach, based on an
eigenvalue analysis, although useful in understanding the
main physical ingredients in the origin of the observed
periodic structures, is far less valid if we are interested in
the dynamics of the pattern formation process. For this
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reason we have recently proposed a model'>~!* which
identifies the basic time scales involved in the reorienta-
tion of the nematic sample. This model enables us to
study the time dependence of the characteristic periodici-
ty starting from the homogeneous sample at the initial
time. The highlight of our analysis is the evolution equa-
tion for the time-dependent structure factor which ac-
counts for the orientational distortions of the director
once thermal fluctuations and hydrodynamic effects have
been taken into account.

Thermal fluctuations, essential in triggering the initial
decay from an unstable state, are incorporated in our
description through the use of Langevin-type equations
corresponding to a time-dependent Ginzburg-Landau
(TDGL) formulation commonly invoked to study critical
dynamics'® and the dynamics of phase transitions.!® In
this way our approach to the problem of the Fréedericksz
transition is reminiscent of the Cahn-Hilliard-Cook
theory of spinodal decomposition.!” However, an impor-
tant conclusion already remarked upon in our previous
papers!>!>18 is that, taking the mean first-passage time
(MFPT) as indicator, the equations we use here for the
Fréedericksz problem admit linearization procedures that
turn out to be valid over a considerably larger time scale
than in the case of spinodal decomposition of systems
with short-range forces.!” This should make the predic-
tions contained in this paper much more easily accessible
to experimental testing. In the spinodal decomposition
problem, it is worth noting that the fact that the most un-
stable mode is not the homogeneous one can be under-
stood in terms of a conservation law. In the Fréedericksz
transition, however, this effect can be related to a tradeoff
of rotational for shear viscosities leading to a compromise
at some intermediate wave number q=£0 for which the in-
crease in elastic energy contribution is favorably balanced
by a higher energy dissipation rate controlled by a lower
effective viscosity. This effect directly results from the
coupling of director rotations and fluid velocity gra-
dients.

Our results here for the dynamics of such a process in
the planar-homeotropic geometry indicate that the devel-
opment of both perpendicular as well as oblique struc-
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tures is rather exotic, displaying a rich variety of growth
routes. As a matter of fact, since our characterization of
the pattern appearance and development proceeds
through the analysis of the position in q space of the
maximum of the structure factor, rather peculiar phe-
nomena of competing maxima are found over a wide
range of applied magnetic intensities. In addition, situa-
tions of emergence of early obliqueness that is finally not
persistent and of spurious pattern development are also
predicted, as is explained in detail in Sec. IV. Finally, a
brief discussion of the effects that the initial prescribed
conditions and the material parameters have on the pat-
tern development is also presented.

The paper is organized as follows. In Sec. II we review
the general dynamical equations satisfied by the director
components. Section III is essentially devoted to deriving
the corresponding equations for the components of the
structure factor. The main results and their discussion
are summarized is Sec. IV, whereas Sec. V is reserved for
raising some conclusions and suggesting future perspec-
tives. Finally, the more technical points are reserved for
the Appendixes.

II. EQUATION,S FOR THE PLANAR-HOMEOTROPIC
FREEDERICKSZ TRANSITION

Let us assume a parallel-plate cell of thickness d con-
taining planar-aligned nematic liquid crystals with X, > 0.
The initial director characterizing the internal orienta-
tion of the slab is arbitrarily prescribed along the x direc-
tion: n°=(1,0,0). Then at some initial time the mole-
cules of the sample are suddenly forced to rotate towards
the normal to the walls by applying an external magnetic
field along the z direction, H=(0,0, H ), with intensity H
exceeding a critical threshold for distortion. As we men-
tioned in the Introduction Hurd et al.® reported on the
emergence of a transient periodic structure that for cer-
tain values of H appears under cross polarizers as oblique
stripes in the x-y plane. Flows characteristic of convec-
tion cells develop in some plane across the stripes. This
obliges us to simultaneously refer to the coupled dynam-
ics of both the director and velocity fields. For the direc-
tor we will restrict our discussion to the components n,
and n, which become macroscopically amplified during
the realignment. Using a minimal-coupling approxima-
tion,?° the nematodynamic equations written in terms of
functional derivatives of the free energy F{n(r;¢);v(r;?)}
(Ref. 21) read (summation over repeated indices generi-
cally denoted a is implied) as shown in Eq. (2.1). Equa-
tions (2.1) are obtained by specializing for the geometry
considered here the model equations we derived in Ref.
12, where a complete discussion of the principles used in
their formulation may also be found. In Appendix A and
for the sake of the self-completeness of the paper we pro-
vide the reader with an extracted and directly utilizable
version of those general equations. In (2.1) p is the mass
density, v, v, (A=—v,/¥1), v}, v, and v; are the
viscosity coefficients used in Harvard’s version of the
nematodynamic equations, and p is the pressure. The
Gaussian random forces left in (2.1) represent sources of
thermal noise and accordingly they are prescribed with
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zero mean value and satisfying the appropriate
fluctuation-dissipation relations (see Appendix A)

, . kpT A
(§a(rl,tl )gﬁ(rz,tz))=25a5y—5(r1—r2)5(t1 —tz) )

1
(2.2)
(CaplT1, 11085, (12,15)) =2k g TM Y55 8(r, —1,)8(1] —13) ,

where M 255,/ stands for the tensor M g, introduced in
(A6) written in terms of n’. Finally, the explicit expres-
sions for the functional derivatives of the free energy are
computed in the limit of small distortions leading to

§%=—K,<a§ny+a§znz>—1<z<6§ny—aiz"z)
—K;3in, ,

gr? =—K(3,n, +3n,)—Ky(3yn, —3;,n,)
K@, X Hn, | 2.3)

5F

Sv =PUq; a={x1y,2} .

As we anticipated in the Introduction, we intend to fol-
low the dynamics of the Fréedericksz instability by focus-
ing on the temporal evolution of the orientational distor-
tions n, and n,. Thus our primary goal consists now in
reducing (2.1) to a pair of closed equations for these two
components of the director. This is accomplished by suc-
cessive technical manipulations of (2.1). Here we limit
ourselves to carefully describing the different steps of this
standard procedure that can be in this way straightfor-
wardly reproduced by the interested reader.

(i) We make the common approximation of negligible
inertia.>7—%12=1% In addition, pressure terms can be easi-
ly eliminated from the velocity equations in two steps us-
ing the fact that V-(Vp)=0. First we take partial deriva-
tives relative to y and x, respectively, in the equations for
v, and v, and after that we repeat exactly the same pro-
cedure but now for the pair v.,v,. Finally, by invoking
the incompressibility condition of the nematic materials
we are able to get rid of one of the velocity components.

(ii) We introduce a Fourier representation correspond-
ing to the free-free boundary conditions we adopt
throughout the paper: d,v,=0,v,=v,=n,=0 at
z+d /2. Specifically, we set

va va
n, ng

()= 3 (t')eiq'Psin(kzz) s
98 o, Sa
éaﬂ gaﬁ q.k,

(2.4)

v, v,
n, n,
gz (r;t")= 2 gz (t')eiq'pCOS(kzZ) ’
¢ * g
gyz gyz 9.k,

for a,B+z (except for &,,) ,

with k,=(2m +1)mr/d. A detailed discussion regarding
the appropriateness of the free-free boundary conditions
adopted here may be found in the paper by Hurd et al.®

(iii) We specialize our analysis to the most unstable z
mode associated to an even z symmetry for n,. It corre-
sponds to m =0 or k,=m/d. This enables us to use for
the remainder of the paper dimensionless wave numbers
Q=gq/(w/d). Complementarily we propose a time adi-
mensionalization, t'=7yt, based on the time unit corre-
sponding to pure orientational relaxations: 7y=vy,/
(K,7*/d*)=y,/(X,H?), H. being the critical magnetic
intensity for the pure splay Fréedericksz transition.

When all these transformations have been completed
we end up with a pair of coupled equations for the
Fourier amplitudes (n,.qo(?);n,.o(#)) which are more com-
pactly written using a matrix notation:
ny;Q( t)

yo,m=Kn+y, n=nglt)= (2.5)

nz;Q(t)

Y and K are self-adjoint matrices, respectively, associated
with the viscosity and elastic contributions, whereas ¥
collects the entire effect of thermal fluctuations. The ex-
plicit expressions for the y, K, and ¢ components in
terms of the viscosity and elastic constants of the materi-
al are given in Appendix B. Operating (2.5) with y ~! we
transform this last equation into the more convenient
form

3 A=AT+7,
(2.6)
<77a;Q(t1 )nﬂ,_Q(Iz))zzeaﬁ'QS(tl —tz) ’

with y 'K =A and y "¢ =7.

As a way of testing (2.6), let us carefully examine the
particular case of the planar Fréedericksz transition with
perpendicular stripes which can be easily discussed in
terms of Eq. (2.6). In particular, we will concentrate on
the structure of the matrix A responsible for the deter-
ministic part of the dynamics of the director.

The case of perpendicular stripes: Q,0,Q, =0

This is the situation considered by Guyon et al.’ in
their experimental observations on thick samples of
MBBA. In our analysis here we have only to project the
obtained equations onto the subspace Q,=0. The A
adopts a diagonal form with the pair of eigenvalues A,,,
corresponding, respectively, to n,,n,, given by

1

)\y‘—'—‘— 2 (I?2+I?3Q3),
R S B
Y1 M. +7]an_2
i 2.7
A=
1 (a3—a,07)

7 1.8 4+2(vi =14+ 1,007 + 1,
X(h*—=1-K,Q2) .

In 2.7), 7g,mp,Mc,2,a3,m4 are viscosity coefficients
defined _in Appendix B, K,,K; are reduced elastic con-
stants, K, =K, /K, and h? is the reduced magnetic inten-
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sity, h2=H?/H?. When Q,=0 there is no coupling be-
tween the perpendicular components n, and n,. Conse-
quently, and according to the physical image of the
Fréedericksz transition, we may predict that the unique
component of the director susceptible of experiencing the
instability will be n,, while n, will remain in any case
stable. Indeed, based on values in the literature for
MBBA,'

1'"(0‘%/7’17%)/(1‘*‘77‘; /T]ch_z)

is positive and consequently A, is always negative. On
]
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the other hand, the expression for A, coincides exactly
with the one computed in Ref. 3, if we realize that in that
paper a different notation for the viscosity parameters
was used (9, —7;, 7. —17,), and additionally it was as-
sumed K, =K;. Moreover, the particularly simple ex-
pression for A, when Q,=0 is especially appropriate in
order to better understand the origin of inhomogeneous
patterns, Q, 0, leading the response of th¢ system to the
instability: the additional contributions corresponding to
internal bend distortions, —K;Q2, are favorably bal-
anced by a lower value of the effective viscosity,

1
7’1“/7/1=1—7(a3—azQ3)2/[mQ,}‘+2W1—174+m Qi 47,1,
1

which monotonously decreases from a maximum value,
1—ai/y\mp, at Q, =0 to a minimum, 1—a}/yn, for
O, — .

The complementary situation, Q,=0, Q,+0, which
would correspond to a striped texture parallel to the ini-
tial orientation, has been neither reported in the litera-
ture, nor predicted in our analysis here (see Sec. IV).

III. THE DYNAMICS OF THE STRUCTURE FACTOR

In a general situation of nonzero wave number Q, the
algebra is more complicated since the equations for n,
and n, are nontrivially coupled. To proceed further we

need to diagonalize A:
(UAU ) gp=Asd4p - 3.1)

J

<ma:Q(t)mB:~Q(t)>: Cxp[()ua+}»,g)t](ma;Q(O)mB;_Q(O))+2

[

By defining

m=Un, p=U7, (3.2)
Eq. (2.6) transforms into

Mmy=Am,+@, a={yz}. (3.3)

These Langevin-type equations can be directly converted
into evolution equations for the components of structure
factor (m,q(t)mg _q(2)). In terms of the intensity of
the thermal noise sources

<¢a;Q(t1 )‘PB;~Q(t2)> :2¢aﬂ;Q8(tl "‘tz)

The physical components of the structure factor are then finally given by

Sp(Q;t)=(nyqtingo(1))
=Ug'UpyUp' Uy expl(Ay+4,)1]

% |$,.(Q,0)+2—27
S

expressed in terms of the initial correlations between the
director components S,,.(Q,0). These initial conditions
are consistently obtained taking the long-time limit on
the solution (3.6) for magnetic intensities below the criti-
calone: h2<1.

The emergence and growth of the periodic structures
resulting from the Fréedericksz transition is followed by
studying the time-dependent structure factor S,5(Q;¢).
The position in Q space of the maximum of S,4(Q;t),
denoted Q,,,,(?), is associated with the characteristic
wave number of the striped texture and its temporal evo-
lution from Q=0 with the pattern development.

{1—exp[—(A,+A, )]}

=2U,y Ugg€yp,Qd(t; —1;) (3.4)
we have
b -
aB;Q
) 1. 3.5
)La-i-)\ﬁ[e)(p[(k“—'.kﬂ)t] 1} (3.5)
(3.6)

The role of thermal fluctuations incorporated con-
sistently from the beginning into the model considered
here is essential in describing the dynamics of the unsta-
ble distortion modes, as can be seen in the final results
(3.6). Fluctuation effects appear there through two well-
differentiated contributions: thermal randomness in the
initial conditions corresponding to the first term in (3.6)
and subsequent spreading of stochastic trajectories
represented by the additive correction €,,.. At ¢ =0 ini-
tial conditions dominate and we can expect that the
homogeneous mode Q=0 will be preponderant. In the
other limit, t— oo, the evolution of S(Q;?) is largely
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dominated by the exponential factors. In this way the
growth of the structure factor will be eventually dominat-
ed by the mode of the fastest growth, this is by the Q
maximum of the unstable eigenvalue A,.?2 Consequently
our results for Q. (¢) will asymptotically approach as
time goes on those predicted in the eigenvalue analysis of
Hurd et al.® The merit of (3.6) is that it enables us to de-
scribe the whole temporal evolution of Q,,,,(t) between
these two limits. This is the purpose of Sec. IV.

IV. DYNAMICS OF PATTERN GROWTH

The results in this section refer to the z-diagonal com-
ponent of the structure function, S,,(Q,¢). In other
words, we will limit ourselves to studying the pattern of
evolution of the orientational distortions along the direc-
tion of the applied magnetic field. As a matter of fact,
S,,(Q, ) essentially displays analogous trends of behavior
with some specificities, limited to very short time inter-
vals after the inijtial destabilization of the sample, prob-
ably originating in initial condition effects. The most in-
teresting questions we want to emphasize regarding the
phenomenon of the transient pattern development exam-
ined here will be presented in relation with particular ex-
amples of application of Eq. (3.6) for S,,(Q, ).

Let us start, for example, with the dynamics we have
reproduced in Figs. 1 and 2, corresponding to an applied
reduced magnetic intensity #%=10 and initial conditions
for h?=0.5. Figure 1 is a direct three-dimensional repre-
sentation of S,,(Q,¢) versus (Qf,Qyz) at different times,
whereas Fig. 2 is somewhat more illustrative of the pat-
tern growth route since it monitors the dynamics of
Q..ax(2). The interesting aspect to be noticed in Fig. 2 is
the permanent maximum exhibited by S,, at the origin of
wave numbers Q=0. According to what is depicted we
can distinguish several phases in the emergence and de-
velopment of the spatial pattern. In an initial stage, the
homogeneous mode Q=0 dominates as is expected and
no other maximum exists. The distribution of orienta-
tional distortions is still reminiscent of the Ornstein-
Zernike form corresponding to the equilibrium fluctua-
tions at hi2=0.5 < 1. Then, at a very characteristic time,
t ~0.25 in the units of 75,2* another maximum appears,
this one associated with an oblique Q540 mode. The
preponderancy of the trivial maximum at the homogene-
ous mode Q=0 lasts for a very short time since a bit later
(t ~0.40) it is finally dominated by the incipient Q-0
maximum. At this moment the final stage of the evolu-
tion is initiated and follows an asymptotic path of slow
growth of Q_ .. tending to the value predicted in a deter-
ministic analysis. However, we tend to think that what
we have reported here is not, properly speaking, a signa-
ture of strict bimodality, since one of the maxima is al-
ways associated with the homogeneous mode. The per-
sistence of various maxima of the structure function, even
in the asymptotic limit ¢t — o as is illustrated by this ex-
ample, is certainly a peculiar feature of the planar-
homeotropic Fréedericksz transition we did not find in
other simpler geometries analyzed previously,'>!® as for
example for the pure twist distortion.?* Note also that
this result leads us to think of a possible discontinuity in

FIG. 1. Different plots for the z-diagonal component of the
structure factor vs Q2 and Qy2 corresponding to successive
stages of the evolution of the orientational fluctuations when the
reduced magnetic field is increased from A>=0.5 to 10. Times
are taken at t =0, 30, 40, and 50 measured in units of 75~ 10 sec
in this figure and the subsequent ones. The values for the ma-
terjal parameters are 7, =41.6 cP, 9, =23.8 cP, ., =103.5 cP,
v;=50.8cP, y,=76.3¢cP,K,=%,K;=%.

the pattern formation phenomenon contrary to the view
of this process as a continuous evolution from the initial
preponderant homogeneous mode Q=0 towards the
asymptotic value of maximum growth. Needless to say,
this genuine property can only be properly detected and
examined in the context of a dynamical treatment such as
the one proposed here but is out of the scope of any pre-
vious deterministic approach based on eigenvalue deter-
mination and analysis.

Now we turn to the question of the pattern oblique-
ness. After completing a series of runs for different
values of the pair of applied magnetic intensities, (A 2,h,~2),
we conclude that the values of k2 for which asymptotic
oblique patterns may be predicted are independent of h?
and, for the set of material parameters corresponding to
MBBA at room temperatures,' range from h?=5.85 up
to 25.97. For h?<5.85 no asymptotic pattern is predict-
ed and for h%>25.97 they asymptotically adopt perpen-
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FIG. 2. Wave numbers corresponding to the maxima of the
z-diagonal component of the structure factor vs time for an ap-
plied reduced magnetic intensity 4°=10 and two different initial
conditions, #2=0 and 0.5. Scales for the x and y components of
Q2.. are depicted in the left and right margins, respectively.
The dashed lines indicate that the associated maximum is not
the dominant one. The asymptotic values obtained in an eigen-
value analysis [(Q2 .« Jasym=1.34, (Q}?’mx )asym —0.19] are also
shown for comparison.

dicular orientations relative to the initial alignment of the
director. These conclusions essentially agree with what
was found in Ref. 8. From a dynamical point of view
what remains to be investigated is the interesting dynam-
ics of the obliqueness itself. In other words, we want to
elucidate two complementary questions concerning, re-
spectively, the possibility of a pattern development for
5.85<h?<25.97 first appearing as perpendicular,
Q) max=0, and turning progressively towards an oblique
conformation, (Q, .y)asym70, and the opposite situation
for h%>25.97 in which, although the oblique character of
the pattern is not persistent, it may actually appear as a
transient. In respect to the first question we have not
found any example appropriate to that behavior. Indeed,
in all the runs we have performed with 5.85 <h?<25.97
the dominant inhomogeneous mode naturally changes
with time but it is oblique from the very beginning.
However, we have been more lucky in regard to the
second question since we have effectively found cases for
h?%>25.97 in which the obliqueness of the pattern may be
transitorily detected. This is shown in Fig. 3 where we
have plotted the dynamics of Q,,,,(¢) for a considerably
larger magnetic field, h2=50 and h?=0. Another cir-
cumstance deserves our attention in this case and refers
to the coexistence of maxima. Although it manifests it-
self again in this situation, it is not persistent contrary to
what was found for #2=10. Comparing both situations
we tend to believe that this feature would be practically
unobservable in going to larger values of the magnetic
forcing.

Finally, we turn to the last point we will explicitly con-
sider here. It is summarized in Fig. 4, corresponding to
an applied reduced magnetic intensity h2=5.5, h?=0.
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FIG. 3. Evolution of the maxima of S,,(Q;t) vs time for
h?=50 and h?=0. The maximum corresponding to the homo-
geneous mode Q=0 disappears at t ~0.037.

As we have just mentioned we cannot expect to find in
this case a nonhomogeneous mode leading the asymptotic
evolution of the structure function. This is exactly what
is observed but coexisting with the maximum correspond-
ing to the homogeneous mode Q=0 another one for
Q=40 develops after a transient and even survives a long-
time limit. In referring to the z-diagonal component of
the structure factor, as we are doing here, we can some-
what qualify this Q,,,,50 as spurious since it never dom-
inates the maximum at Q=0, but in examining this par-
ticular aspect for the transverse y-diagonal component,
S,,(Q,?), we have actually found a few examples of tran-
sitory preponderancy of such an inhomogeneous mode.
The final discussion of our results refers to the effects
caused by varying the initial conditions of the nematic
layer and its material parameters, especially its viscous
and elastic constants. In respect to the influence of the

, 045 ; . 03,
Q5 pax h=55 , hi=0 Q) max
///‘—‘ Qx,max
p
030f / 102
Il
/—— v
/ Qy,ma)(
015 404
000 00
0 3 % 3

FIG. 4. Evolution of the maxima of S,,(Q,t) vs time corre-
sponding to a reduced magnetic field h2=5.5, h?=0. The inho-
mogeneous mode (Q,,,,0) never dominates the maximum at

Q=0.
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initial magnetic field h? we have observed that the
growth of the pattern is faster when decreasing h} in
complete agreement with what was reported in Ref. 12
for a pure twist Fréedericksz distortion. This is shown in
Fig. 2 where as a supplement to the previously considered
situation h2=10, h?=0.5 we have plotted the results cor-
responding to #2=10 but with different initial conditions
corresponding to h?=0. In what concerns the influence
of the viscosity and elasticity parameters we have exam-
ined separately their effect on Q, and Q,. Starting with
the wave number Q, reproducing the periodicity along
the initial direction of alignment, it is clear that this
periodicity is basically dictated in the bulk of the sample
by bend modes, while splay contributions can only play a
limited role in narrow boundary layers stretching all
along the containing plates. Due to that we can predict
that the most important effects have to be observed in re-
lation to variations of K 3, the bend elastic constant. This
is what is effectively reproduced in Fig. 5(a), which corre-
sponds to a magnetic forcing from #2=0.5 up to 20. For
the sake of completeness we have also included additional
results corresponding to changes in the specific viscosities
which turn out to be more determinant of the pattern
growth, i.e., 7,, the Miesowicz shear viscosity for
elongated molecules sliding longitudinally, and v, which
applied to pure elongational flow. Now, turning our at-
tention to Q,, the wave-number component directly re-

2 2 _
s h=20 , h2=05
l;)x,max (a)
Ky /2
5ol ////—
/ ny/2
/ -
L I
7 e
”
o i 1
0.0 01 02 03
075
Qymax | (D) 29,
/’/_‘-
050}
B / n/2
025
\\\\
ol - 2,
00 01 02 03

FIG. 5. Evolution of the maxima of S,(Q;?) vs time for
different values of the material parameters. In all the cases
h?=20and h?=0.5. (a) shows the influence of K, 17,, and v, in
the x component of Q,,,, and (b) shows the influence of K, 71,,
and v, in the y component.
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sponsible for the obliqueness of the pattern, it is easily
seen that it is directly associated with twist distortions.
As a consequence the value of K,, the twist elastic con-
stant, is of crucial importance in determining the degree
of obliqueness of the transitory pattern. Actually, we can
practically suppress this obliqueness even from quite the
very beginning of the transition after a moderate increase
of K, as is depicted in Fig. 5(b). Among the viscosities,
1, and v, are again the most significative constants. In
particular, the fact that a larger value of v, favors the ob-
liqueness of the periodic texture may be interpreted in the
sense that the dissipation for the elongational flow along
the x direction, vlvff, «» can be considerably reduced due
to the incompressibility of the medium if we allow for
components of transverse flows in the perpendicular y
direction.?

V. CONCLUSIONS AND OUTLOOK

Motivated by our interest in studying phenomena of
spatial symmetry breaking and pattern formation in
nonequilibrium physical systems we have directed our at-
tention to the problem of the appearance of transitory
periodic structures resulting from the Fréedericksz insta-
bility in nematic liquid crystals. We have examined here
the planar-homeotropic transition that offers the possibil-
ity of predicting the existence of oblique patterns for a
wide range of applied magnetic intensities. By using a
dynamical model which reproduces the pattern develop-
ment by means of the temporal evolution of the structure
factor we have been able to discuss a large variety of
growth routes. Among others we have mainly referred to
situations of competing maxima that might well trigger
abundant speculations about the continuity or discon-
tinuity of the pattern forming process. In addition, the
possibility of finding “spurious patterns,” according to
the terminology adopted in Sec. IV, has been mentioned
and illustrated with a particular example.

The large diversity of pattern growth mechanisms ac-
companying the pure Fréedericksz reorientation confirms
the usefulness of the dynamic treatment adopted here
with respect to the previous approaches existent in the
literature based on eigenvalue analysis. In addition, our
hope is that our work can provoke a renewed experimen-
tal interest in the detailed mechanisms of this pattern de-
velopment.
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APPENDIX A

In this appendix we limit ourselves to recalling what is
essential of the general model derived in Ref. 12. For a
vectorial field

&(r;t)=(n(r,t),v(r,1),u(r,1))
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including director, velocity, and position fields we write
the following Langevin-type equations:

d,¢;= (Zg—{—f i=1,...,9
J

=(§,aa§aﬁ,0) >

(A1)

in terms of a free-energy & built up from contributions
arising in distortions, translational energy of the mole-
cules, and hydrodynamic pressure. The operator 4 has a
dissipative (self-adjoint) contribution 4° and a nondissi-
pative (antiadjoint) part 4%

1
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0O r o
af=|-r" o —Lr|, (api=—ap (a3
P
o Lr o
P

where we have used a block notation in which each ma-
trix element represents a 3 X 3 matrix and I is the identity
matrix. The adjoint operator is to be understood here in
the sense of integration by parts and transposing matrix
indices. The noise sources f; satisfy a set of general
fluctuation-dissipation relations with the dissipative part
of the tensor 4

-5 100 (filrnt)fj(rp15)) = =2k TAS(xr, —1,)8(1] —13) .
Af=1 0 L 0|, (4D'=42 (A2) (A4)
0 00 The tensor I and L in (A2) and (A3) are given by
1
1
Fﬁ,,(n)=—p[(?»+l)naaa837+(k—1)na835ay] , (AS)
Lﬁy(n)zaaMaﬁ;,y(n)ag , (A6)
1
Maﬁsy(n)=;7[2(v,+v2—2v3)nan5n§n}, +v,(85,845+ 84,95
+(V3—-V2)(nan55YB+nany553+n5n58ya+n3n785a)] . (A7)
I
APPENDIX B and we define a set of auxiliary quantities in terms of the

To compare with the results of Ref. 8 we adopt here as
primary viscosity coefficients the following set: rotational
viscosity, y,; viscosity for elongational flow, v,; and the
Miesowicz shear viscosities 7,, 17,, and 7. defined as usu-
al

reduced wave number Q:
Ri=1+07,

R %y = —azQx2+aaQy2 )

na=v27 5 R
=— B
My =va+ 11, (1=, (B1) Riz=—a0x +as, (B3)
2
Ne=vi+1yi(1+A). 2 2 Y IR2 2
R = X+ a N b
In addition, we introduce another set of derived viscosity 2 =10 Ma 6" 57 x2 Ri+ 9
coeflicients
=3y —=n.—71)
2 b 77c '}’1 ’ 1
R%z:an3+ na+nb_2 R%+N
a3:%(nb_nc+71) H (Bz) Qx
=Ly +me—71) 5
=2 e =Y The viscosity components then read {D=QZQXN
N=2’Vl—27]4+7]a » +17be—2R%)2—'R%yR%z]}
_ 1
. _1+L(R%y)2R%z+a§Qy2[R —2a;'R3,(N+7,0,?R})]
yy ,}/1 D ’
(RZZ)ZRZ +a2Q2[R22-—2a_1R22(N+ QX_ZRZ)
.},zz=1+L 1 2y TAy LR 3 K M )] ’ B4)
71 D
vyt =it QIORLRE TR RE) —(RERY, +a30)N +1,0°RT)]
zy = .

'}’1 D
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The elastic components admit very simple expressions in
terms of reduced elastic constants, K; =K, /K, (i=2,3)
and reduced magnetic fields, A =-H*/H 3,

Kyyz——(E3Q3+Qy2+E2) ’
K,=—(K;Q}+K,0}+1—h%), (BS)
K,=K}=—iQ,(1-K,) .

Finally, two well-differentiated noise contributions parti-
cipate in :

- 1
V= X, H?

(riyE+9), (B6)

the first one, E, directly related to the dynamics of the
distortion modes,

&
£

’
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and the second contribution & arising from the dynamics
of the velocity field modes,

1 _
9, =p 7 ([3QJN +, 0, *RT)—RE,R3, 16,

_QBQy[R%y—aJ_IR %y(N"f_anx-zR%)];Z} ’
(B7)

9, =p 5 ([R1,R}, —a:Q}(N +1,0, "R DG,
+a3Qy[R%z_a;lR%z(N+anx72R%)]§1} ’

where

§1=0,0, (5 —£,, ) +(Q)— Q)L
+i(Qy6x, —0Ox6y.) s

£, =0:(8xx — 8 )+i(1-02)E,,
+0,(8xy —iQ:6),) -
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