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We extend the partial resummation technique of Fokker-Planck terms for multivariable stochas-
tic differential equations with colored noise. As an example, a model system of a Brownian particle
with colored noise is studied. We prove that the asymmetric behavior found in analog simulations
is due to higher-order terms which are left out in that technique. On the contrary, the systematic
T-expansion approach can explain the analog results.

I. INTRODUCTION

For almost a decade, stochastic differential equations
(SDE’s) for non-Markovian problems have received in-
creasing interest from theoretical and applied research-
ers. Theoretical aspects of SDE’s with colored noise ini-
tially were the main interest,"”? but now there is a large
number of applied studies on real systems influenced by
this kind of noise.3~> We should note here the impor-
tance of the non-Markovian nature of laser systems.®

The problem of one-variable SDE’s with colored noise
(mainly dichotomous and Ornstein-Uhlenbeck noise) is
now well understood, and there are standard mathemati-
cal tools to deal with the stationary>”® and most of the
dynamical properties.>!° For problems of more than one
variable, there are some formal approaches (Refs. 7, 11,
and references therein), but few of them give practical re-
sults.!>~!* The reason is very simple: in the case of more
than one variable, there is no certainty of being able to
obtain even the steady distributions. Nevertheless, these
types of problems appear in relevant systems such as
lasers.> 1

Our aim here is not to present a new “more powerful”
approach to this problem, but to give some insight into
the importance of higher-order corrections to the Marko-
vian case. Up to now, the emphasis was on deriving
Fokker-Planck equations for the probability density valid
to first order in 7 (Refs. 7 and 8) (7 is the correlation time
of the noise), or on including a partial resummation of all
of the terms of the Fokker-Planck form.®!¢17 We will
see here that some important qualitative aspects of the
problem escape both of these approaches.

In Sec. II we will extend Fox’s approach of partial
resummation to multivariable problems, in order to see if
this technique is as powerful in this case as it is generally
claimed to be for one-variable problems.'®!”!® The ex-
tension is far from being trivial but, finally, a Fokker-
Planck-like equation is obtained for some models.

The starting set of SDE’s is
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37

where

g (1.2)

' Dn
(£,(0)E,(2") =T—#8#Vexp

t—t'
Ty

=y5,1)8,, .

D, and 7, are, respectively, the intensity and the correla-
tion time of the Gaussian colored noise §,(¢) (Ornstein-
Uhlenbeck processes).

In Sec. III we study a two-variable model system
whose SDE’s are those of a Brownian particle of unity
mass but with nonwhite noise:

= (1.3)

do
h=—Ap ——— t).
p P dg +§(1)
A is the damping coefficient and &(¢) is a (1.2)-type
colored noise. ®(q) is the potential whose explicit form
in our calculations is

2 4
o(g=—L-+1-.

5 (1.4)

This model has the advantage of “knowing” the station-
ary probability density for 7=0. We will use it as a refer-
ence frame to test the predictions of different approaches,
comparing them with analog simulations.

II. PARTIAL RESUMMATION TECHNIQUE
FOR MULTIVARIABLE SYSTEMS

Since 1980, the first correction on 7 to the multivari-
able problem (1.1) under the influence of the colored
noises (1.2) has been known. Resummation of Fokker-
Planck-like terms was made in Ref. 8. In 1986, Fox'’
developed a new approach to deal with such non-
Markovian problems. The new theory was applied to the
study of lasers, among others fields.!®* The main feature
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of this approach was its ability to avoid the anomalous
behavior of the diffusion terms in some xmportant mod-
els, which was present in earlier theories.””® Our interest
here is, firstly, to extend this approach to the multivari-
able problem (1.1) and (1.2), and secondly, to apply it to
the model system of Brownian motion with colored noise,
and finally, to compare the prediction of thls approach
with what is obtained using the 7 expansxon, and to com-
pare both results with analog simulations of that model.'

Let us consider the set of Langevin equations (1.1) with
the Gaussian colored noises (1.2). The functions v,(q)
and g,,(q) can be arbitrary functions of q. Following
standard procedures,!! one can write down the formal

equation for the probability density
P(q,t)=(8(q—q(1))),
dP(q,?) S d d
— = P(q,t)+— — A,z ,
3t aq“ vu(q) (q,t)+ aq“ gﬂB(q) 3. B
2.1
where

t
A= [ drygne <5§ 8(q—q(1) )> (2.2)
and where Novikov’s theorem has been used.’

All the approaches to that problem look for an explicit
expression of 4,5 The first step is to evaluate the
response function R ,4(1,1")=08g,(1) /8£4(t"). From a for-
mal integration of (1.1), we get

9a(0=04(00+ [ ds[v,(a()+84,(qs)E, )], 2.3)

which we differentiate functionally with respect to £(¢")
to get

dv,(q(s))

R 4(t,t'
A dg,(s)

)=gas(q(t )+ f’fds

984, (q(s)
+ 84,(5) §a(s) l

8q ,(s)
x-‘lﬁi— . 2.4)
8églt")

A derivation with respect to the time yields a linear equa-
tion for R 4,

0g,,(q(1))

dv,(q(t))
d q n £.(1)
dg,(1) 9q,(1)

Et—Raﬁ(t’tl)z

X8g R (1,1, (2.5)

with the initial condition

R 5(t,t)=8,p(q(1)) . (2.6)
Introducing the notation
v,
/4 sy (2.7)

afuv = aq#
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9g,,
Eq. (2.5) can be written in the form
4R _W+HR, 2.9
dt

where R, W, and H are the matrices corresponding to the
quantities defined in (2.4), (2.7), and (2.8). The solution of
(2.9) is

R(t,t")=T (2.10)

exp [f‘fds(ﬂﬁ—ﬂ) } }g(t') ,

T being the time-ordering operator and g being the ma-
trix corresponding to g,,,(q).

By means of some minor algebra and using Eq. (1.1)
one can obtain

d
| 4 2.11
8 —g=Gg+V, ( )
where the matrices G and V are
agaﬁ

=—¢,, 2.12
GaBuv aqp gv ( )

9
Vg =2y (2.13)

dq,

Equation (2.11) is linear and easy to solve formally. Us-
ing that solution, Eq. (2.10) can be written in the form

[lasw+m)]]
exp lftt'dsQ] ]g(t)

+ f't’ds

R(t,t')=T |exp

(2.14)

exp lfst‘ds'g] ]Z(s)

R is the quantity based upon which the different ap-
proximations are made. In Refs..7 and 8, R is expanded
in powers of (¢t —t'), whereas Fox’s approach makes the
expansion in powers of (¢ —¢’) in the arguments of the
exponentials of (2.14) instead. Fox’s approach to first or-
der in (¢t —t') involves a partial sum of some of the 7-
expansion terms. The argument that justifies both ap-
proximations is the same. The correlations y,(t,t') are
sharp functions on t'~t for small 7, so the main contri-
bution to (2.2) comes from times ¢’ near t. With this in
mind, (2.14) transforms into

R(y,t")={exp[(t —t"\W()]}jg(t)—(t —t")¥ (1)

+(t —t")[H(t)—G(1)]g(r) . 2.15)

We have separated the contribution to our equation
(2.1) into two terms. The first one, which comes from the
two first terms in (2.15), leads to a Fokker-Planck equa-
tion, as we will see later.

To calculate the contribution of the third term in (2.15)

to the mean value of the last expression, we shall use the
Novikov theorem, because there are two terms with the
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noise §,(1). Since these two terms contain a (¢t —¢') fac-
tor, we do not need to go further than the lower order in
7. To this order, it can be seen that the Novikov theorem
leads to

(£, (Q)8(q—q(1))

=—Duf(q)d—zp—gp#(q)P(q,t)+o(TH) ,  (2.16)
where we have used
(£,(1)€,(t'))=2D,8,,8(t —t')+o(7,) . (2.17)
The third term in (2.15) can be written as
[R5(t,t)] 5= —(t —t")K 15, (q(1)),(2) , (2.18)
where
Kaga(q)=i%q—)-gw(q)~§§§§—?1gw(q). (2.19)
Applying (2.16), we obtain
(R 3(4,t")8(q—q(1))) 45
=(t—t’)DaKaﬁa(q)—d—z:gp,,(q)P(q,t) ,  (2.20)
and then
Aol y=DgD, 75| 1— ;’;-1 exp(—1/75)
xKaﬂa(q)Lgpa(q)P(q,t) . (2.21
dq,

Neglecting the transient terms, we have

AaB|3=DBDaTﬁKaﬁa(q)%g’,a(q)P(q,l) . (2.22)
P

We can see that this contribution breaks the Fokker-
Planck-like form in our equation for P(q,t), because a
third differentiation on variables ¢ is introduced. In fact,
this contribution in (2.1) is

oP(q,?) —D.D d d
a |, Dg UTB—dq“guB(q)__"dqa

d
xKaBU(q)Egpa(q)P(q,t) . (2.23)
It is clear that, in general, there is not any Fokker-
Planck equation to first order in 7. This result has al-
ready been obtained using 7-expansion techniques.
|

oP(q,p,t) =_i 9 ,
3 aqu(q,P,t)—k aP[kp +®'(q)1P(gq,p,t)

+ 9’ D
3¢ dp 14+Ar+D"(g)7?

7P (q,p,t) .

_+_.__"__._.—_.—
3p? 1A+ 0" ()7
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For the sake of simplicity, we will study models where

Kope =0 . (2.24)

Additive noise systems (g ,;=const), e.g., (1.3), and unidi-
mensional systems, satisfy this condition.
In this case, we have that

(R(t —1")8(q—q(1))) =(fexp[(t —1"W]}g
—(t—t"V)P(q,1) (2.25)

and, neglecting transient terms, the expression (2.2) be-
comes

Aop=Dgl(I—75W)"'g —75V],5P(q,1) (2.26)

with I,5,,=8,,84,. Finally, defining the matrix W as
dv,,

=3 (2.27)

W
we have the following Fokker-Planck equation for P(q,t),
where we make explicit all the indexes
dP(q,t) d

= — P N
3 3, v,(q)P(q,1)

J )
+DB——aq g#B(q)—aq
" a

_ agaB(q)
X (1 —73W )m,'g‘.,g—rﬁ—a;~v,,(q)

X P(q,1) . (2.28)

Equation (2.28) is easily recognized to be the generaliza-
tion to multivariable systems of Fox’s results for one-
variable systems [Eq. (8) of Ref. 17].

III. APROTOTYPE MODEL

As an application of the former results, and in order to
make a comparison with other approaches, we will con-
sider a model system whose equations of motion are (1.3).
The explicit calculation of the inverse matrix in (2.28) is

i -1
—7
1
(1-7W)" = Q'r 14Ar
1 14+A7 7
e e (3.1)

Thus the Fokker-Planck equation (2.28) for this model
reads explicitly

2
9 D P(g,p,t)

(3.2)

This equation has also been obtained using projector-operator techniques and a quasilinear approximation.'?
One way to get information from (3.2) is by using the so-called mean-field approximation'*'®!° (MFA), which substi-
tutes the variable dependence of the diffusion functions in the last two terms of (3.2) by their mean value,'
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Plgpt) _ 3 b 3 , 9’ D
= \ D, +P'(gq)]P( e —————— ,1)
ar agb P! [ PP Dt e (o) L &P
o D
+ TP(q,p,1) . (3.3)
3q3p Itart (@2 PP
[
Now the steady-state solution of (3.3) is still very P, (q,p)=Py(tq,*p), (3.7)

difficult to obtain, because the mean averages depend on
the solution P (q,p). One way to simplify the procedure
is to approximate {®"’ ), by (®"'),, where the average is
taken with the white-noise (r=0) probability distribu-
tion. Another way is to substitute (®") by ®"(x,),
where x,, is the deterministic steady state. In both cases,
the diffusion functions are constant and the steady-state
distribution is well known,'4!?

2 d(q)

P (qp)~exp |- —L— _ 29 (3.4)

t 2D, /L D,/A
with
D

D — , (3.5)

T 14+(D") /(1 + A7)
D

D =—2 (3.6)

Pt ar+(®" )7

So we obtain a Pg(q,p) very similar to the equilibrium
case, but with different diffusion coefficients for the two
variables g and p. This remarkable fact was pointed out
in Ref. 12, where only the first 7 correction to (3.2) was
taken into account. The symmetries of (3.4) are the same
as in the white-noise case,

3P(gp,t) _ B
at paqP(q’p”)+a

+ AT+ (A2—d")72]P(q,p,t) .

68

This equation is valid up to order 7, and if we include
the rest of the orders, the Fokker-Planck form is lost.
Two aspects of Eq. (3.9) should be remarked upon. The
first and most important is that a 7 term
(*D3*/3p*®'"'P) appears and mixes p and g variables,
breaking the symmetry of the steady-state distribution
(3.7). The second aspect is that the remaining terms coin-
cide up to the 7° order with those of (3.2) when diffusion
coefficients are expanded in 7. In Ref. 13, it is shown that
terms proportional to @'’ can be found if the quasilinear
approximation is not used.

So, up to third order in 7, both approaches coincide,
except for the new term discussed before. Since the sym-
metry properties of this term are different, one can expect
a small change in the symmetries of P (q,p). In fact, it
can be seen that this term makes a positive contribution

to the diffusion coefficient of 82/3p? for ¢>0, p>0 and

for <0, p<0. But this contribution is negative when
g>0, p<0and when g<0, p>0.

(Ap +<I>')P(q,p,t)+D——[1—Ar+(
P

where we have assumed that ®(qg) is an even function of ¢
(1.4).

Nevertheless, in Ref. 19, an analog simulation of the
model (1.3) using electronic circuits is presented. Two
important results, which are not emphasized enough by
the authors, appear there. The first one is that the sym-
metries (3.7) do not appear. Instead of that, the steady
state seems to have the following properties:

P (q,p)=Py(—q,—p)#£P(—q,p)=P,(g,—p) . (3.8)

The second result indicates that this lack of symmetry of
P,(q,p) has a weak dependence on 7, which probably
means that a higher-order correction in 7 is responsible
for that.

Since both Fox’s theory and MFA are higher order but
incomplete theories, one can suspect that a higher order
in the 7 term is missing in both approximations.

Bearing in mind these new aspects of the problem, we
have to turn back to the old small-r approximation,’®
where the different orders in 7 are evaluated systematical-
ly. In Ref. 7, a Fokker-Planck equation for P(q,p,t) is
deduced up to third order in 7. The details of the deriva-
tion can be found there and the equation reads

— ") — (A3 —200" —d""p)r} 1P (g, p,1)

(3.9

As a result, P, (g,p) should be broader in the first and
third quadrants in the plane (g,p) than in the second and
fourth quadrants, because the diffusion is larger there.
This intuitive prediction is in agreement with the experi-
ments of Ref. 19 [see Fig. 1(b) in this reference].

In order to confirm this intuition, let us try to obtain
an approximate solution of (3.9). First we look for a solu-
tion of the form

P (q,p)=exp(Fy+7F, +T?F,+7°Fy+ -+ ) . (3.10)

We substitute it into (3.9) and separate the different or-
ders in 7. They can be solved order by order, by using
the solutions of the preceding ones.

The equations we get are the following:

oF,  F, 3F,
—F og + ap? op

3F,
(@' +4p)— +A=0,

(3.11)
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FIG. 1. Contours representing loci of constant probability
corresponding to Pg(g,p) of Egs. (3.10) and (3.15)-(3.18) for
A=1,D=0.3, and 7=0.5.

dF, oF, °F, 2
' _ __}\2_1_’”~
(®'—Ap) 3 P 3 D 3" A DA
¢I
A——p=0, (3.12
+ D/kp 0 ( )
oF, oF, o°F, Pp?
I__ _ II_O ,
(®'—Ap) % P %7 + o AD/A + AP
(3.13)
s dF, dF, DaZF1 " ‘o
(¥ —Ap)g, =P, TP, T D
+o(phH)=0, (3.14)

and their solutions are
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2
- P 3.15)
Fo 2D/~ D/Ar’ G-
2
—-_ P 3.16
Fr==spah (3.16)
F APV (p* (3.17)
=~ opa® "apa o) '
q)12 1 3 1 4 (bfq)u/ s
— ¢I!! - ¥ .
Fx=p i ® P —sxP (p o o
(3.18)

We remark that the first term, F,, corresponds to the
well-known equilibrium of a Brownian particle. F, is the
first correction obtained in Ref. 12.

In this procedure, we have made a minor approxima-
tion. Solutions (3.15)-(3.18) obey (3.9) up to order 7* and
p?. The term proportional to p* in (3.18) is the one re-
sponsible for the asymmetry of P (q,p).

In Fig. 1, we present a plot of P (g,p) using (3.10) with
(3.15)—-(3.18) for the model (1.3), (1.4). The asymmetry of
P,(q,p) is clearly manifested as a function of 7. In the
experimental results of Ref. 19, a 7 that is too large for
the T expansion is used.

As a summary, we may conclude that quasilinear ap-
proximation as a backup to the Fox theory can be valid
and profitable in the quantitative study of some models
and particular situations, but some attention has to be
paid to those terms of higher order that are missing in
this approximation and that, as we have seen, are respon-
sible for qualitative disagreement between that theory
and experiments. In that sense, we think that the
theoretical formalism of Ref. 13 can enlighten us about
the different approximations and the influence of more
terms of higher order not considered in this paper.
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