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Passage times for the decay of an unstable state triggered by colored noise
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We study the decay of an unstable state in the presence of colored noise by calculating the mo-
ment generating function of the passage-time distribution. The problems of the independence of the
initial condition in this non-Markovian process and that of nonlinear effects are addressed. Our re-

sults are compared with recent analog simulations.

An interesting analog simulation of the decay of an un-
stable state triggered by a colored noise has been recently
reported.! In this simulation, data for the probability
density of the relaxation time are presented. Results for
the mean relaxation time have been explained in terms of
a formula by Suzuki,” which determines a characteristic
time up to an undetermined constant. This formula was
derived in the context of the scaling theory with indepen-
dent initial conditions for the decay of an unstable state
and it appears as a matching time between two dynamical
regimes. The first regime corresponds to the early stages
of the decay of the unstable state and is dominated by
noise and linear terms. The second regime is dominated
by nonlinearities, and noise plays no essential role. In
this sense the characteristic time of Suzuki is a measure
of the lifetime of the unstable state and a limit of validity
of the linear theory. It is important to note that in the
derivation of Suzuki the initial condition is assumed to be
independent of the noise acting during the decay process.

Our aim in this Brief Report is to show that Suzuki’s
formula for the characteristic time can be derived within
a mean first-passage-time framework and also generalized
to account for the fact that the initial condition is physi-
cally determined by the same noise that triggers the de-
cay process, so that initial condition and noise cannot be
considered to be statistically independent when the noise
has a finite correlation time. In our derivation the un-
determined constant is evaluated and in addition it per-
mits us to calculate any moment of the passage-time dis-
tribution. In particular, results for the variance of the
first-passage time are given. The derivation is based on
the calculation of the generating function associated with
the passage-time distribution. Such probability distribu-
tion considers simultaneously different noise realizations
and different initial conditions. We follow the same
method already used to describe the switch-on statistics
of a dye laser.>* In this last problem, multiplicative
colored pump noise plays an important role. The same
method has been used to study the case in which a con-
trol parameter is changed with a finite velocity.’

A general simple model for the decay of an unstable
state triggered by additive colored noise is given by

dx=ax+N(x)+u(t), (1)
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where a >0, N(x) contains nonlinear terms, and u(?) is
the noise term assumed here to be Gaussian with zero
mean and correlation

(u(u(t"))=(D /T)exp(—|t —t'| /7). ()

D is the noise intensity and 7 its correlation time. As
mentioned above, the characteristic lifetime is deter-
mined by the linear and noise terms. Thus neglecting
nonlinear terms the integration of (1) gives

x (t)=h (t)explat) , (3)
where
t
h()=x,+ fo,u(t')exp(—at')dt' , @)

and x, is the initial value of x. The system is assumed to
be at £ =0 in a stable state associated with a value of the
control parameter a = —a,. In other words, for t <0 the
system is described in the linear approximation by

dx=—aypx +ult) . (5)

Hence x, is not arbitrary, and it is given by the solution
of (5)

0 ,

xo=x(0)= [ p(the™ dr" . 6)
At t=0 the control parameter is instantaneously
changed from —a to a value a >0 so that the system be-
comes unstable. The exact result for the probability dis-
tribution P (x,t) associated with (5) is known.® In partic-
ular, the stationary distribution is Gaussian with a vari-
ance

D

Y =———— . (7)

2
x0) = T agn)

The effects of the colored noise with respect to the lim-
it 7—0 in (7) is seen to be just the replacement of D by
D /(1+ayr). However, an additional important conse-
quence of having 7540 is that x given by (6) is a random
variable determined by u(?) so that {xyh(¢))<0. With
these properties for x, 4 () is a Gaussian process of zero
mean and second moment
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- = _, —2at
all+ar) e *

2 (2
(h21))=(x3)+ e

where the last term corresponds to the coupling between
p(t) and xg, t > 0. This is the correct way to take into ac-
count the preparation procedure (5) which was not con-
sidered in the theoretical analysis of Ref. 1.

For times at>>1, h(t) can be approximated by a
time-independent Gaussian random variable with a
second moment

(h¥(@))=(xg)+ a(lia‘r) * (1+a027'l))(:+ar) ’
9
In this time regime Eq. (3) can be inverted as
t =(1/2a)In(x}/h?) . (10

This gives the time ¢ to reach a prescribed value x2 as a
random quantity whose statistics are determined by those
of h(e). This random time is identified with a passage
time to the value x.

The generating function for the passage-time distribu-
tion is

W (B)=(exp(—Bt)) . (11)
From W (f3) the statistical averages are evaluated as

()=(172a)In(x}/2(h?*))— (1) 2a , (12)

(=)D =y'(1)/4a’ (13)

where ¥(4) and ¢'({) are, respectively, the digamma
function and its derivative.
At this point it is worth to comment Suzuki’s formula?

D

2
In <x°)+a(1+a7—) +InC|, (14

(t)=—(1/2a)

which was derived for the case of independent initial con-
ditions but with an undetermined constant C which is
here calculated using our formalism as

—InC=y +In(2x?) , (15)

where ¥y =0.57721. .. is the Euler’s constant. Formula
(14) appeared also in Ref. 7 [Eq. (4.6)] and in Ref. 8 [Eq.
(3.15)]. When (h2(o0)) of (9) is substituted in (12), we
recover the formula (14) used in Ref. 1 plus the extra
term coming from the initial preparation and the explicit
expression for C given by (15). We remark that this re-
sult is completely independent of any nonlinear contribu-
tion, since it has been here obtained neglecting all non-
linear terms. The usefulness of the calculation above is
that it leads simultaneously to higher-order moments of
the passage-time distribution. In particular, the variance
(13) is found to be independent of the noise intensity D
and also of the correlation time 7. This seems to be at
least in qualitative agreement with the passage time dis-
tributions displayed in Ref. 1.

2ar _ _
(e (a+1/‘r)t__e 2at) +
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2Dt (1—e ~(ati/m)
(1+ayr)(1+ar) ’

The role of the noise parameters D and T is seen more
transparently rewriting (12) as

(t)=—(1/2a)InD+B(1)+B, , (16)
where
Bir)=(1,2a) (1+7a)l+Tay) an
T a/n 1+7ratay)
Bo=(1/2a0n | —22¢" 1
= al)ln | ——
0 ao_l-i-a_] 1%

The first term on the right-hand side (rhs) of (16) gives
the dominant contribution for small D and it is indepen-
dent of 7. The term B (r) gives the contribution to (¢ )
due to the finite correlation time 7. It vanishes in the
white noise limit B(7=0). Finally, B, gives a constant
contribution (noise independent) which already appears
in the white-noise limit.

We wish now to compare our theoretical predictions
with the analog simulation results of Ref. 1. The simula-
tion was made for a particular model defined by the
Langevin equation

A (1)

—1+
1+x?

dx=x +u(t), (19)

where A (t) is the control parameter. For A4 <1, the
model has a stable steady state and for 4 > 1 it has bista-
bility.! In particular, 4 (z) behaves as

Ag<1, t<0
A()=

(20)

A>1, t>0.

In order to clarify the linear assumption made in our cal-
culation for this model we rescale Eq. (19) by changing
the variable

x=VDgq . (21)
Then Eq. (19) becomes

dg=q|—1+—2 1o (22)

‘ 1+ Dgq? ’

where ©(¢) has a correlation
(OmO(1"))=(1/7T)exp(—|t —t'| /7). (23)
If ¢2D << 1, Eq. (22) reduces to its linear form,
dig=aq+0O6(t), a=4—1. (24)

We may conclude that the linear approximation is reli-
able while

Dg¥(t)<<1 . (25)
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FIG. 1. MFPT vs decimal logarithm of D. The values of
are the following: 0.1, closed circles; 1.0, open circles; and 5.0,
diamonds. The solid lines correspond to Egs. (16), (17), and
(28). The points correspond to the analog data of the Fig. 7 of
Ref. 1.

In fact, using that g*(¢)~exp(2at), Eq. (25) gives as an
upper limit of validity of the linear theory a time
T =~(2a) " 'In(1/D) which is the dominant contribution in
(16). Hence for small enough D a linear calculation of
(t) makes sense.

We now compare our predictions [Egs. (16)—(18)] tak-
ing the explicit expression for the parameters

a=A4—1, ay=1+|4,l (26)

with the analog results of Ref. 1. We choose the case
which the authors of Ref. 1 consider to be the worse to fit
the value of the constant term B,. This is the set of data
closest to the white-noise limit. The value of the parame-
ters (20) are 4 =4 and A,=—2.4. Our formula (18)
gives

B;,=0.24, (27)
which underestimates the value that fits better the analo-
gic data

B;=0.34 . (28)

Our interpretation of this fact is the following. It is
clear from the theory presented here (see Refs. 3 and 4
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for details and also the classic work by Haake, Haus, and
Glauber®) that nonlinear terms give a small positive con-
tribution to the constant B,. This is the whole effect of
the nonlinear terms. For small enough D, this contribu-
tion to B, can be neglected. However, for the values of D
used in the analog simulation, B, becomes noticeable and
it was here calculated within a linear approximation. To
clarify this point we will divide B, in two parts:

By=B_+By - (29)

B; includes the linear contributions and it is given by Eq.
(18). By incorporates the nonlinear contributions which
are independent of the noise parameters. These contribu-
tions are necessary to have a precise estimation of the
mean first-passage time (MFPT), when D is not very
small. An explicit calculation of this quantity is very
complicated due to the special nonlinearities of the model
(19). However, if our argument is correct an estimation
of B, from analog results for a given value of 7, in partic-
ular 7=0, should be enough to fit all the data for any oth-
er value of 7£0. From (27) and (28) we see that the non-
linear contribution is

By =0.10, (30)

which is a small correction to the total result for (¢ ), Eq.
(16), and it justifies the use of linear approximations in
the study of the relaxation of unstable states at least as an
asymptotic theory.

In Fig. 1 we present our theoretical results, using (28),
compared with the analog data of Ref. 1. One can see
that the agreement is good even for 7 large. Our inter-
pretation is different of that of Ref. 1. We consider the
case 70 as an extension of the white-noise case while in
Ref. 1. B, was estimated for the largest value of 7.

A point to be noted is that (17) implies that there does
not exist a first-order correction in 7 to the white-noise
result, the first correction being of order 72. This does
not conflict with the analog data since the small range of
7 values for which (17) predicts a 7-independent (t) is
beyond the experimental accuracy.
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