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A precise digital simulation of a bistable system under the effect of colored noise is carried out. A
set of data for the mean first-passage time is obtained. The results are interpreted and compared
with presently available theories, which are revisited following a new insight. Discrepancies that
have been discussed in the literature are understood within our framework.

I. INTRODUCTION

A number of (sometimes conflicting) views have recent-
ly dominated the literature on bistable processes driven
by external noise. Most of the conflicts arise in the con-
text of the effects of external noise that is colored, e.g.,
whose correlations decay exponentially with a correlation
time 7>0. Varous theoretical approaches have been
developed in the small-7 (Refs. 1-7) and in the large-7
(Refs. 7—-10) limits, and some of the predictions emerging
from these theories have been tested against analog simu-
lations,? numerical computations,“'12 and a few numeri-
cal (digital) simulations. 1314

In order to attain a better understanding of the rela-
tions among these various theories and the accuracy of
their predictions, we have carried out extensive numeri-
cal simulations of the Langevin equations that serve as
the model from which all these theories depart. By cov-
ering extensive ranges of parameter values (in particular,
of the correlation time 7 of the noise), we are able to ar-
rive at some definitive conclusions that should help to
sort out some of the present uncertainties in the field. It
should be remarked that the main contribution of this pa-
per lies not in the accuracy of the computer simulations
(which is comparable to that of other recent simula-
tions'3) but in the insight and better understanding of the
present theories acquired through the data.

As our system we shall consider the generic and widely
studied bistable system

G(=q()—g () +ul1), (1.1

where u(t) is the noise driving the system, which we shall
assume to be Gaussian throughout this analysis. In the
absence of the noise, the system has fixed points at ¢ ==*1
(stable) and at ¢ =0 (unstable). If u(z) represents white
noise, then its correlation function is

(u(Bu(t'))=2D8(t —t') . (1.2)
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If the noise is Gaussian colored, then

(u(z)p(z'))=2e"*f"/f. (1.3)
T

The colored noise can itself be generated from a whiie

noise process u,,(t) via the dynamical equation

a=—Lun+ L0 . (1.4)
T T

Herein we consider two quantities most frequently dis-
cussed in the literature: the mean first-passage time
(MFPT) for the system starting from one well of the bi-
stable potential, e.g., at ¢ = —1, to reach ¢ =0 (T,;) or
to cross the barrier and reach the other potential well,
e.g., at ¢ =1 (T, ). A third time of interest that we con-
sider is the MFPT to reach the separatrix between the
wells (T, ).

Considerable discussion has recently centered on the
appropriate (meaningful) end points to use in MFPT cal-
culations since the fixed points in the absence of the noise
are instantaneously shifted by the (colored) noise, and
especially since ¢ =0 is not the separatrix between the
two potential wells in the presence of (colored) noise.
Thus, whereas it is generally agreed upon that T, does
represent a transition time from one well to the other
(even in the face of shifting minima), T\, is only an accu-
rate measure of this transition when the noise is white
and D is small, and T, is only an accurate measure of
Ty, when D is small. These remarks notwithstanding
(and we shall return to this issue later), we will use these
three quantities to asses the validity of various theories
because they have been so prominent in the literature.
Quite aside from the physical content of these measures
they can of course still be used to compare analytic
theories with simulations.

For white noise the MFPT can be expressed exactly as
a double integral® ! that can then be evaluated by numer-
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ical procedures. When a steepest descent approximation
is applied to these integrals, one obtains analytic esti-
mates (“Kramers times”'%) for TX and TX ,

top
Tk, = %e 174D (1.5)
and
TE =mv2e!/4P (1.6)

These results, valid only in the “high-barrier” asymptotic
limit D —O0, reflect the fact that upon reaching the top of
the barrier half of the trajectories immediately go on to
the new well while the other half return to the original
well. For finite D Larson and Kostin!” have calculated
the first correction to these results. This correction reads

T =01+iD)TX. (1.7)

There exist no exact analytic results (or even analytic
results in the form of integral expressions) when the noise
driving the system is colored. A number of approximate
theories have been developed, all of them dealing with
the limiting cases of either very short or very long corre-
lation time of the noise. The small-r theories arrive at ex-
pressions similar to (1.5) and (1.6) with corrections that
contain a 7 dependence. The long-7 theores arrive at ex-
pressions that are quite different from the white-noise re-
sults. In the first (small-7) group the following expres-
sions have appeared in the literature:

172
T:op(T)’—'% llj—-z—: 1/4D 0.8
T, (1)=—"_g!/4D+(3/2)r 09
top ‘/5 s .
T. (r)=-"% (1—27472)172 1+3r+37
<o TS (1t dr+4r2)i 2 317
4
xexp % % Igi—% , (1.10)
2 172
T'°P(T):‘/L§ L= [ 2] gVrtir e,
(1.11)

Equation (1.8) was derived by Hénggi, Marchesoni, and
Grigolini,! and Fox;> Eq. (1.9) was obtained by Maso-
liver, West, and Lindenberg;® Eq. (1.10) is the MFPT to
the separatrix derived by Klosek-Dygas Matkowsky, and
Schuss;® Eq. (1.11) [with £(1)=—1.460354. . .] is due to
Doering, Hagan, and Levermore.*

An approximation for T, valid for small D but for ar-
bitrary correlation times 7 was proposed by Luciani and
Verga.!” Their“interpolation formula” [Eq. (66) of Ref.
7], applied to our system, is
1 1+8r+17

Toor(T)=7V2(1+37)%exp
ot 4D 1+2Zr

(1.12)
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For very large 7 the following approximations have been
published:

172
Tr)= |2+ [%DT 272D 14D | (1.13)
T(1)=[277D(r+1)]" %exp 5?7—75 9% . (114)

Equation (1.13) was obtained by Tsironis and Grigolini®
and is designed to bridge the 7—0 and 7— c results.
Equation (1.14) is due to Hinggi, Jung, and Marchesoni.’

It should be noted that the small-7 expressions (1.8)
and (1.9) are to be interpreted not as representing T,
but rather T, /2. These two quantities are only equal
for white noise and in the weak-noise limit, where ¢ =0 is
actually the separatrix between the two wells and where
the trajectories reaching this value immediately proceed
to one well (half) or the other (the other half). The theory
of Doering et al.* incorporates finite-r subtleties that
arise from the fact that ¢ =0 is no longer the separatrix
and results in the V'7 contribution evident in (1.11). It
has been argued!® (and agreed to by Doering et al.!®) that
a more physical characterization of the transition process
is the time to reach the actual separatrix (or the other
well), and in this latter calculation [cf. (1.10)] there ap-
pear no V7 contributions.

All the small-7 theories with the exception of Eq. (1.11)
thus predict a leading behavior of the form

(1.15)

whereas Doering et al.* predict the leading behavior

Top(7) 1 2 12
- m

1 3
Trop(0) EEWr+ir,
thus exhibiting the V7 correction mentioned above.

The large-7 theories [Egs. (1.13) and (1.14)] and the in-
terpolation formula (1.12) all have the same leading ex-
ponential dependence 27 /27D, which is exact in the limit
7— . The theories differ from one another in their pre-
dictions of the behavior at large but finite 7.

(1.16)

II. NUMERICAL ALGORITHMS

The numerical integration of Eq. (1.1) with Gaussian
noise u(t) of correlation properties (1.2) or (1.3) has been
carried out following the procedure detailed in Ref. 20.
We have simulated a number of trajectories (typically 500
or 1000) for each choice of parameter values, each driven
by a different realization of the noise.

For the case of white noise, the discrete version of Eq.
(1.1) is

gt +h)=q()+[qg()—g*()+X(t)]h , (2.1)

where X (¢) is a random number chosen from a Gaussian
distribution of mean zero and variance V2D /h. We
have not retained terms of higher order in the integration
step h because their effects are negligible if 4 is chosen to
be sufficiently small. For each realization of the sequence
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X (t) we compute the time that it takes the process g (t)
starting from ¢ =—1 to first arrive at ¢ =0 and to first
arrive at ¢ = 1.

If the noise driving Eq. (1.1) is colored then we must
discretize the coupled set (1.1) and (1.4)

gt +h)=q(t)+[q(t)—q*t)+u()ln , (2.2)

e +h)=u(t)+[X(t)—u(t)]% : (2.3)
where once again we have neglected higher-order contri-
butions in A. Initially the value of g is —1 and the pro-
cess u(t) has a stationary Gaussian distribution. Again,
for every trajectory we compute the time for the system
to first reach the values ¢ =0 and g =1.

In order to test the accuracy of our simulations we
have in a few cases carried out a much more accurate
simulation for comparison. This latter procedure, requir-
ing much more computing time, uses a different random
number generator, a smaller integration step, an im-
proved algorithm for the integration of the equations,?!
and a greater number of trajectories (5000). The results
from this more accurate simulation confirm the numbers
that we report below within our estimated errors.

A different algorithm for the numerical simulation of
colored noise has been reported recently by Fox et al.??
This new algorithm uses an integral version of Eq. (1.4)

u(t +h)=p(t)e "7+g(1), (2.4)

where g (¢) is a Gaussian number of zero mean and vari-
ance {D[1—exp(—h/7)]/7}!/% Since Eq. (2.4) is exact
even for long step sizes, we could in principle save com-
puting time. The actual situation for a MFPT simula-
tion, however, is not so optimistic, as is shown in Ref. 23.
The boundary conditions that appear in a MFPT simula-
tion cause a strong dependence of the result on the step
size. Therefore, the step has to be sufficiently small and
there is no difference between the two methods. This is
clearly seen in Fig. 1, where the two algorithms are tested
in the MFPT simulation for the noise variable to reach a
prefixed value. We see that the smallness of the needed
step size makes the difference between the two methods
irrelevant.

III. RESULTS
A. White noise

We begin by studying the process (1.1) driven by white
noise. The purpose is to test the theoretical approxima-
tions and the digital simulation in the limit in which it is
possible to obtain precise numerical results from exact
quadratures. In particular, we want to test the reliability
of our MFPT simulation and the domain of validity of
Egs. (1.5) and (1.6).

In Fig. 2 we show the relation T, /TE,, using as T\,
both the exact numerical integral and the simulation re-
sults. There are clearly important corrections to the Kra-
mers time. In the range 0.1 <D <0.2, i.e., for relatively
small values of D, the errors in the Kramers time exceed
25%. Kramer’s time formula requires noise intensities
smaller than 0.05 for the error to be smaller than 10%.
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FIG. 1. MFPT results for Eq. (1.4) vs the integration step A.
The noise variable pu(t) starts from =0 and reaches the bound-
ary at £ =0.31. The parameters D=0.1, 7=1 lead to the nu-
merical result T7=2.026. Asterisks, algorithm of Fox et al.
(Ref. 22); squares, algorithm of Eq. (2.3) (Ref. 20). The central
processing unit time is nearly the same for both points of each
pair.

Unfortunately, the calculation time grows exponentially
with decreasing D for small D in a MFPT simulation, and
it is not practical to simulate noises of intensities smaller
than 0.07. The correction (1.7) of Larson and Kostin!’
improves the theoretical prediction substantially for in-
tensities smaller than 0.2.

The assumption T\, /T,,, =2 is asymptotically valid
in the limit D—0. In Fig. 3 we see that the departure
from this assumption for intermediate D is quite
significant. The value of Ty, /T,,, is 2.15 for D =0.1

0.4 T T T L T

0.0 0.2 0.4 0.6 0.8 1.0
D
FIG. 2. Ty, /TE, vs D for the white-noise case. Squares,

simulation; solid line, exact result; dashed line, Larson and Kos-
tin correction (1.7).
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FIG. 3. Ty, /Ty, vs D for the white-noise case. Squares,
simulation; solid line, exact results.

and reaches 2.7 for D =1.

These remarks serve to stress the fact that Egs. (1.5)
and (1.6) fail to describe accurately the properties of the
MFPT for finite D. The disagreements are substantial
even for the smallest D that can be implemented reason-
ably in a digital simulation or, which is perhaps more im-
portant, in analog experiments.?

Finally, the simulation of the white-noise case has been
useful to test the MFPT algorithm. In Figs. 2 and 3 we
see that the results of our simulation fit the exact theoret-
ical curves reasonably well.

B. Colored noise: small 7

Since all the theories for small 7 [Egs. (1.8)-(1.12)] con-
verge to Egs. (1.5) and (1.6) in the limit 7—O0, the failure
of these latter equations for finite D described in Sec.
III A presents a new problem. If we were to compare
directly the results of the small-7 theories with the ones
obtained from simulations, the effects of the correlation
time 7, which we are interested in, may be masked by er-
rors introduced by small-D approximations. The way to
avoid this problem is to analyze the ratio T'(7)/T (0) in-
stead of T (7). In this way, the errors arising from the
steepest descent calculation are expected to be reduced.

The first point we wish to stress via the simulation re-
sults is the very different behavior of T,,(7) and Ty, (7).
The comparison of the two MFPT’s is plotted in Fig. 4
for the three intensities D considered. We see that
Ty, /Tyop has a value near 2 for 7—0, but this ratio de-
creases very rapidly with 7, reaching the value 1 for
moderately colored noises. This departure is of course
related to the departure of the separatrix from g =0 with
increasing 7 and reflects the fact that the actual separa-
trix has already been crossed when g =0 is reached. Any
assumption of a simple proportionality between Ty, (7)
and T',,(7) is thus seen to fail for colored noise even for
small values of 7.

The results of different theories are usually given by ex-
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FIG. 4. Simulation results for Ty, /Ty, vs 7. Squares,
D=0.083; triangles, D =0.114; rhombuses, D =0.153.

pressions for T, or T, such as Egs. (1.8)-(1.11) whose
white-noise limit is (1.4). For the correct interpretation
of the results for T, one must consider two possibilities:
(a) The theory gives the correct behavior for T,,. In that
case the theory does not directly address the behavior of
Ty..- (b) The theory gives the correct behavior for T,
i.e., one must interpret the result as T\, =2T,,,, Tyop
then being a function with no simple connection to the
actual MFPT to reach ¢ =0. This explains the existence
of two different leading behaviors in 7 among the theories
for small 7.

The values of Ty, obtained from our simulations show
a slope for Ty (7)/Tyoi(0) of 3 for very small values of 7.
This is the prediction of Egs. (1.10) and (1.12) and also of
(1.8) and (1.9) if these latter two are interpreted as
representing T, /2 (the interpretation we adopt hence-
forth). The results are seen in Fig. 5, where we have plot-
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FIG. 5. Ty (7)/Tpe(0) vs 7. Squares, D =0.083; rhombuses,
D =0.153; solid line, Eq. (1.9); dashed line, Eq. (1.10); dotted
line, Eq. (1.12).



2124

"
=]
S 34 8 0
5
- °
'_
~ 2
9 ¢
S -7
- 24 [ -
- g /,’
//
‘ == T T T T T
00 o.l 0.2 0.3 0.4 0.5
T

FIG. 6. T\,,(7)/T,,(0) vs 7. Squares, D =0.083; triangles,
D =0.114; rhombuses, D =0.153; solid line, Eq. (1.11); dashed
line, Eq. (1.9).

ted Eq. (1.9) as representative of the T, =2T,,, theories.
All the theories fit the simulation data quite well for
small 7. For larger 7 the differences between the theories
become apparent, but none of them seems to fit the simu-
lations much better than the others. We have also plot-
ted Egs. (1.10) [using T ,(7)/T,(0) in this case] and
(1.12) because these theories predict a D-dependent slope
for T(7)/T(0). The variation of the slope is predicted by
both equations, but the actual value is underestimated by
Eq. (1.12) and is overestimated by Eq. (1.10).

The plot of T,,(7)/T,,(0) in Fig. 6 shows a distinc-
tive small-7 curvature that is correctly predicted by Eq.
(1.11) and not by the other theories. The special bound-
ary conditions that have to be imposed, and that only
the theory of Doering et al* considers, give the new term
proportional to V' 7 that leads to this curvature.

C. Colored noise: large 7

The large correlation time expressions (1.13) and (1.14)
predict a MFPT that grows exponentially with 27/27D in
the limit 7— oo. It is not possible to deal with very large
values of 7 in a MFPT simulation because the calculation
time grows as its own result, i.e., exponentially. In the
present simulation, with D near 0.1, the values of 7 used,
though perhaps not asymptotically large, give values of
7/D larger than 40, which is sufficiently large to allow
comparison of the diverse large-7 theories.

This comparison is shown in Fig. 7, where we plot
Ty (7) on a logarithmic scale. The plot of T',(7) is in-
distinguishable from that of T, (7) for 7 larger than 1.5.
It follows from Fig. 7 that all the theories try to have the
correct exponential behavior, but the precise values pre-
dicted for the MFPT are clearly wrong (in some cases
with deviations of orders of magnitude).

These results seem to indicate that the discrepancies
between the theories and the numerical results lie in the
prefactors and not in the exponential dependence on 7.'*

LAUREANO RAMIREZ-PISCINA et al.

1&

o
N A
o
H
(8]

T

FIG. 7. Tyu(7) vs 7. Squares, D =0.083; rhombuses,
D =0.153; solid lines, Eq. (1.12); dashed lines, Eq. (1.14); dotted
lines, Eq. (1.13).

In the following, instead of trying to calculate that pre-
factor, we use approximate arguments to obtain a scaling
law that fits the numerical results reasonably well and
gives a possible dependence of the MFPT on the noise pa-
rameters 7 and D.

For large values of the correlation time, the change in
the noise is so slow that the analysis of the system (1.1)
and (1.4) can be done from a semideterministic point of
view. The dashed line in Fig. 8 represents the separatrix
Heep(q) between the initial conditions that drive the sys-
tem to each well. The deterministic evolution (D =0) of
the two variables ¢ and p is shown in the figure for two
values of 7.

If 7 is very large, the evolution of the noisy system
from a given initial condition is very similar to the deter-
ministic evolution, and therefore the MFPT to reach the
second well is related to the mean time taken by the sys-
tem to reach the separatrix. In Fig. 8 a sample trajectory
of the system is shown. Once the system has crossed this
curve, it has a finite probability (parameter-independent
to leading order) of actually reaching the second well.
Therefore, the MFPT in which we are interested is likely
to be proportional to the mean time to reach the separa-
trix. The dependence of the separatrix-crossing position
on the parameters of the problem should then give the
dependence of MFPT on these parameters.

This kind of reasoning is followed in Refs. 8 and 9 to
obtain Egs. (1.13) and (1.14). In the case of Eq. (1.14), the
actual separatrix is replaced by the straight line
g = —1V'3 (vertical dotted line in Fig. 8). In the case of
Eq. (1.13) the noise is considered as constant, and the ac-
tual separatrix is replaced by a critical value p, =2/3V'3
(horizontal dotted line in the same figure).

The extension of the Tsironis-Grigolini® (TG) calcula-
tion to large but finite correlation times is discussed in
Ref. 10, where it is argued that a system with the “noise”
equal to the (constant) critical value u. requires an
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infinite time to cross the inflection point ¢ = —1/V'3; it is
furthermore shown that the system must typically reach
values of the noise much larger than u, to complete the
transfer from one well to the other. This larger value
©> . of the noise must depend on 7, and its lower bound
1, is calculated under the condition that the deterministic
time to go to the other well be smaller than the correla-
tion time 7 of the noise. This lower bound for the critical
value of the noise gives a correction in the exponent of
order 1/77 to the TG result.

We shall here obtain the (approximate)  dependence
of u. We start from the TG calculation.® In this model
one must wait a time T to let the noise reach the critical
value . (note that if u were constant then . would be
the separatrix). This time is calculated by standard pro-
cedures,’

He
T(u, =%fo dyfjwdzexp —ETD—(zz—yz) (3.1

a)

!
]

0.5 A

3. 00

-0.54

-1.0
-1.5

0.5 A

-05 4

FIG. 8. Trajectories for the two variables g and u. Solid thick
lines, deterministic trajectories (D =0); solid thin line, stochas-
tic trajectory (D=0.5); dashed line, actual separatrix; dotted
lines, g==+1/V/3 and u=+2/3V3 used as effective separatrices
in the theories leading to Eqs. (1.14) and (1.13), respectively. (a)
7=35. (b) 7=15.
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After some manipulation, this equation yields

172
— T
T(u)=7vVm {1+erf l—z—B i, ]
(r/2D)? 2
T I T
X ¢ -
e Flisp | He
(/2D 2,
—2r [ dy F(y) , (3.2)

where erf(x) is the error function and F(x) is the Dawson
Integral.?* For large 7, the asymptotic behavior of Eq.
(3.2) is

_ V27Dt . (r/2D)2

T(u,) (3.3)

He

which is the TG result.® In view of Egs. (3.2) and (3.3),
the MFPT in the TG model is 7 times a function of
Tul /D.

Let us go one step further and neglect only the white
stochastic driving force in (1.4) but retain the dissipative
time dependence of u. The variable p then experiences
exponential relaxation. Retaining this feature yields be-
havior closer to the true evolution of the two-dimensional
system. With this deterministic but time-varying-u ap-
proximation, the slope of the separatrix at ¢ =0 is a sim-
ple function of 7 as a consequence of the exponential re-
laxation of the “noise” variable,’

d.u‘sep
dq

. (3.4)

1+1
q=0 T

Therefore, near ¢ =0 the position of the separatrix is
given by

Hsep(g, T)= (3.5)

1+4
-

.ll‘sep(q’ o).

Although this relation is only valid close to ¢ =0, we as-
sume the same dependence for the entire separatrix.

These arguments can be reasonably retained even in
the presence of the white noise in (1.4) if 7 is sufficiently
large that if at a given time the system is above the
separatrix, it has enough time to evolve towards the other
well before the noise u(z) departs appreciably from its
deterministic exponential relaxation. Then, generalizing
the ideas of Refs. 8 and 10, we take for the MFPT calcu-
lation the approximate 7-dependent critical value

1
puleo) .

ulr)= K (3.6)

1+1
p

which is consistent with the lower bound found in Ref.
10. As a consequence, the dependence of the MFPT on
the noise parameters is

r
;

T

=f D 3.7)

1 2
1+-]
,

This scaling law is tested in Fig. 9, where we have plot-
ted the simulation points for = above 0.9. For 7 smaller
than this value the points deviate from the behavior pre-
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FIG. 9. T(r)/t vs (r/D)1+1/7)* for 7>0.9. Squares,

D =0.083; triangles, D =0.114; rhombuses, D =0.153.

dicted by Eq. (3.7), as can be expected from the singulari-
ty in (3.6) at 7=0. In light of this figure, the predicted
scaling is convincinly confirmed. The result (3.7) calls for
more theoretical work.

IV. THE EIGENVALUES OF THE
FOKKER-PLANCK EQUATION

A method frequently used to estimate the MFPT
without carrying out digital or analog simulations is the
numerical solution of the eigenvalue problem for the
two-dimensional Fokker-Planck equation corresponding
to the system (1.1), (1.4) (e.g., by using a matrix
continued-fraction expansion).'""!? The MFPT to reach
the barrier is calculated as the inverse of the first nonvan-
ishing eigenvalue A,

T=x'. 4.1)

However, the connection between the MFPT and the
eigenvalue A, in a system with various attractors such as
ours is only clear under certain conditions.?® First, one
must be in the weak-noise limit. Second, the probability
of turning back to the first attractor (the first well)
without reaching the second one, once the system has
crossed the boundary condition of the MFPT, must be
small. This second condition clearly does not hold for
the boundary condition at ¢ =0 because the probability
of turning back once the system reaches the top of the
barrier is not necessarily small (it is equal to 1 for white
noise). However, the condition holds for the boundary at
g =1 because the crossing of the boundary means that the
second well has been reached.

The eigenvalue A is therefore in general related to the
MFPT T, and not to T,,,. This conclusion is tested in
Fig. 10, where T, and T\, are compared with the nu-
merical eigenvalue results of Ref. 12. It can be seen there
that the inverse of the eigenvalue A, coincides for small D
with half of the MFPT T, and not with T Thus the

top -
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FIG. 10. InA; ! and InT vs 7. Solid lines; numerical resutls
from Ref. 9. Symbols; simulation results for D =0.2 and
D =0.1. Squares, T\,,; triangles, T,,; rhombuses, T, /2.

precise relation (4.1) reads

Toot =241 ! 4.2)

and one should bear in mind that even this relation is
only valid for small D.

V. CONCLUSIONS

The main conclusions of this paper can be summarized
as follows:

(a) Kramers’s formulas (1.5) and (1.6) and their correc-
tion (1.7) by Larson and Kostin are asymptotic results.
In the experimentally accessible range of variables fur-
ther corrections to these results become important.
Hence these formulas cannot be used to conclude the va-
lidity of numerical or digital simulations.

(b) Ty, and T, are neither equivalent nor are they in
general related in a simple universal way; they contain
different physical information. Therefore one of these
quantities cannot in general be used to deduce the behav-
ior of the other. T, is the more physically relevant time
and is rather insensitive to the precise location of the ini-
tial and final values so long as they are both deep within
their respective wells.

(c) At present only the small-7 case (r<0.3) is ex-
plained satisfactorily by the theories. All existing small-7
theories for Ty, and T, yield an initial slope of 4,
which is clearly the behavior also observed in numerical
simulations. The differences between (1.8), (1.10) (in both
of which the 37/2 arises from the prefactor, and (1.9)
(where it arises in the exponent) are not apparent in the
range 7<0.2. Therefore all the theories are equivalent
from a practical point of view in this range. It is not pos-
sible to conclude which theory leads to the most accurate
D dependence that becomes evident in the large-7 simula-
tions (0.2 <7< 1).

(d) Simulations of T\, for small = clearly confirm the
V'7 contribution found by Doering et al. in (1.11).

(e) The large-t case is explained only qualitatively by
current theories; there remain large quantitative
differences between the theories and the results of numer-
ical simulations. For very large values of 7 the fluctuat-
ing potential picture of Tsironis and Grigolini® yields the
correct asymptotic exponential dependence on 27/27D in
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the MFPT. Corrections to the asymptotic exponent can
be obtained by a simple extension of the fluctuating po-
tential idea, cf. Egs. (3.6) and (3.7). Nevertheless there
are serious quantitative disagreements with the simula-
tions that arise from prefactor contributions that have
not been properly captured.

(f) The dominant eigenvalue of the two-variable (g,u)
Fokker-Planck equation should be identified with T,
through Eq. (4.2) for small D."’
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