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The general theory of nonlinear relaxation times is developed for the case of Gaussian colored
noise. General expressions are obtained and applied to the study of the characteristic decay time of
unstable states in different situations, including white and colored noise, with emphasis on the dis-
tributed initial conditions. Universal effects of the coupling between colored noise and random ini-

tial conditions are predicted.

I. INTRODUCTION

The dynamics of stochastic processes driven by colored
noise has received an increasing interest in the last years.!
One of the most studied aspects has been the dynamics of
the steady state,”? addressing, for instance, the study of
correlation functions and relaxation times. However,
some systematic work is still to be done in the more
varied context of transient dynamics, that is, on the study
of the relaxation of initial conditions. Most of the efforts
in that direction have been concerned with the problem
of time scales. The success of the first-passage-time
(FPT) techniques in the context of white noise has
motivated the study of the mean-first-passage-time
(MFPT) problem in the presence of colored noise. How-
ever, the difficulties involved in the mathematical treat-
ment of this problem for non-Markovian processes have
been an important handicap.* A possible alternative to
these techniques has been proposed very recently’ regard-
ing other definitions of characteristic times which in
some cases are expected to circumvent some of the
difficulties of the non-Markovian FPT theory. These are
the so-called nonlinear relaxation times (NLRT), which
are defined in terms of time integrals of the transient mo-
ments. For a process x(z) defined by a Langevin-like
equation of the general form

X =v(x)+g(x)&(e), (1.1

the NLRT associated with the average [over realizations
of the noise £(¢) and over initial conditions] of any arbi-
trary quantity ¢(x) is defined by®

e (B =)y,
o= J e,

Depending on the particular problem and for appropri-
ate choices of the quantity ¢(x), this may be a good
definition of a global time scale for the relaxation of ini-
tial conditions towards the steady state. The interest of
that definition lies in the fact that the NLRT’s can be
usually calculated via very general techniques based on
the knowledge of the evolution operator of the probabili-
ty densities, and with no use of any explicit form for the

(1.2)
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time dependence of the function {¢(x(#))), which for
nonlinear problems is usually unknown. The formalism
can be systematized in a way that parallels the calcula-
tion of the FPT moments and has turned out to have
some practical and theoretical advantages over them. Its
usefulness has been checked in the context of white
noise,”® but the advantages may be particularly relevant
in colored-noise problems.’

The fundamental difficulty in the study of the transient
dynamics of processes driven by colored noise is that, due
to the non-Markovian character of the process x (¢), the
evolution of P(x,t) not only depends on its initial condi-
tion P;(x) but also on the initial state of the noise and its
coupling to the variable x. The usual point of view is to
assume that the noise variable is in its steady state and is
also initially decoupled from the system variable (statisti-
cal independence). This means that their joint probabili-
ty density factorizes. One of the points we want to em-
phasize here is that this assumption, made for the sake of
mathematical simplicity, is not necessarily the most in-
teresting from the physical point of view. A natural way
to prepare the variable x with a given probability distri-
bution could be, for instance, as the steady state of an ap-
propriate auxilliary model. A typical example would be
the instantaneous change of a control parameter at t =0
which leaves the system in an unstable situation but with
a probability distribution which corresponds to a previ-
ously stable state. The point is that for any such steady
state the joint probability density of the system variable
and the noise variable is never factorized. In this paper
we will discuss the dynamical consequences of this initial
coupling on the transient dynamics.

The NLRT approach provides a particularly appropri-
ate framework for this discussion, since it permits a natu-
ral treatment of the case of random initial conditions (ini-
tially distributed states), contrary to what happens with
the MFPT. Other advantages come from the absence of
the absorbing boundary conditions which cause most of
the troubles in the MFPT calculations. This will enable
us to obtain very general expressions, which are relatively
simple and provide a clear interpretation of the different
transient and preparation effects, particularly on the dis-
tinction between the purely non-Markovian ones and
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those which can be implemented in a quasi-Markovian
description of the problem. These general aspects of the
theory of NLRT’s with colored noise is the topic of Sec.
1L

In this paper we also apply the theoretical approach of
Sec. II to study the decay of unstable states in the pres-
ence of colored noise and random initial conditions. For
at least the last two decades, the study of the decay of un-
stable states has called attention to the theoretical® !°
and the experimental'® ™! points of view. Its relevance is
remarkable, for instance, in the study of laser sys-
tems.!>1971 The decay of an unstable state is governed
by the initial fluctuations which are amplified through the
deterministic evolution. Hence this type of dynamical
process is very sensitive to the statistics of the initial con-
ditions and of the noise. This makes it very appropriate
for our discussion on the effects associated with an even-
tual coupling between the noise and the system variable
due to different types of preparation of the system. The
application of the NLRT approach to this study is
presented in Sec. III. The existence of some results in the
literature, mainly based on quasideterministic theory
(QDT),!!~ 1520 will also be useful in our discussion. Exact
calculations on some mathematically simple models will
allow us to extract general conclusions on the basis of
universality. Conclusions are summarized in Sec. IV.

II. GENERAL THEORY OF NLRT
WITH COLORED NOISE

The standard approximations for the time evolution of
the probability density P(x,t) of the non-Markovian pro-
cess (1.1), when the noise is a Gaussian colored process
with zero mean and correlation

<§(t)§(t')>=€exp(A|tAt'l/'r) 2.1)

for small 7, usually assume, implicitly or explicitly, that
the noise variable and the system variable are uncoupled
at t =0. This leads to effective Fokker-Planck equations
with time-dependent diffusion. In our case, in order to
admit completely general initial conditions and preserve
all possible non-Markovian effects of the preparation of
the system, we will address the two-variable Markovian
formulation of the problem (1.1) with (2.1) defined by

g (x)

x=v(x)+~:—y , (2.2a)
s
g=—§—+ eDnU), (2.2b)

with {n(t)n(t'))=28(t —t'), =7, and where the noise
variable has been scaled as &(¢)=u(tz)/e. The Fokker-
Planck operator associated to (2.2) is

3 1 9 1

L = —
(x’ll') ax U(x 62 alu enu’

2
—g(x)+28— .

€ du’®
(2.3)

The starting point for the calculation of the NLRT as-
sociated with ¢(x,u) is obtained by commuting the aver-
age and the time integral in the definition (1.2) and reads

1
To= oyt J [ dx xR b

SeIY
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where the quantity R (x,u ), defined by
R (x,u)= fowdt[P(x,,u;t)—-Pst(x,p)] , 2.5
obeys the equation
L (x,p)R (x,u)=Py(x,u)—P;(x,u) . (2.6)

If we knew P (x,u) and we could obtain an explicit ex-
pression for R (x,u) from (2.6) we would have reduced
the problem to quadrature, inserting it into (2.4). In our
case, despite the fact that (2.6) is not exactly solvable,
standard approximate techniques can be applied. In par-
ticular, a singular perturbation approach for small corre-
lation time of the noise is suitable for our purposes. The
application of this approach to NLRT’s was already out-
lined in Ref. 21. Here we will give some more details of
the essential steps necessary to follow the calculation.

According to (2.3), the exact Fokker-Planck operator
for our system (2.2) can be written as

F, B
Lx,pu)=—F+—+F;, (2.7)
€ €
where
d 9?
Fi=—u+D—~, (2.8a)
1 a‘u:u’ a‘uz
Fo= =2 o (x) (2.8b)
2 Hu Ax ’ .
F =-—iv(x) (2.8¢)
3 ax ) ’
Equation (2.6) to solve then reads
F, F
P (x,u)—P;(x,u)= _2+T+F3 R(x,u) . (2.6"
€

The starting point of the method is then the ansatz of an
expansion in powers of € of the quantities involved in
(2.6")

P (x,u)=Py(x)P () +e€P(x,u)

+e*Py(x,u)+ - -, (2.9a)
P (x,u)=P{(x)P,(u)+€P (x,u)

+ &P (x,u)+ -+ -, (2.9b)
R (x,u)=Ry(x,u)+€R (x,u)

+eR,(x,pu)+ -+, (2.9¢)

where P (u) is the stationary probability of u, so that in-
serting (2.9) into (2.6) and collecting the different orders
in € one gets the infinite set of equations

F,R,=0 for e 2,

F,R,+F,R,=0 fore !,

F;Rq+F,R,+F,R,=[Py(x)—P{(x)]P,(n) for €°,
(2.10)

FiR,+F,R,+F ,Ry=P (x,u)—Pi(x,u) for €',

F,R,+F,R, ,+F R, ,=P, (x,u)—P}(x,u) for e".
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The ansatz (2.9a) leads automatically to an expansion
in powers of € of the NLRT itself. According to (2.4) the
non-normalized NLRT will read

fdx dpud(x,w)R (x,u)=Ty+eT,+¥T,+ -+,
(2.11a)
where
T,= [dxdp¢(x,u)R,(x,p) . (2.11b)

Since we are mainly interested in the NLRT for quanti-

ties ¢(x) independent of the noise variable, we will write
Eq. (2.11b) as
= [dx p(x)Ro(x)+€ [ dx p(x)R (x)+ -+,
(2.11¢)
which defines the quantities R, (x) as
Ry(x)= [duRy(x,pu) . (2.12)

Therefore, to obtain the NLRT up to a given order €"
we have to solve (2.10) up to that order. Equations (2.10)
are formally similar to those set up in Ref. 21 for the
steady-state probability density P (x,u) of this problem,
except for the nonhomogeneous terms in the right-hand
side (rhs) of (2.10) for k =0, so we will follow a parallel
procedure. While the quantities of (2.9b) are an arbitrary
input, the expansion (2.9a) has to be obtained consistent-
ly, solving the homogeneous part of (2.10), which is what
was done in Ref. 21; so those quantities are known (up to
order €2).

The analog of the normalization condition for the
probability density will be in our case

JdxduR Gop)= [dxdp [ “diLP )= P(x,p; 0]

=0, (2.13a)
which has to hold for all €, so that
Jdx dp R, (x,p)= [ dx R, (x)=0. (2.13b)

We will also assume that the noise is always in its
steady state, that is,

P(u,n= [dx P(x,u;0)=P, (), (2.13¢)
so that

[ dx P (x,u50=0, k=12, (2.14)
and condition (2.13b) reduces simply to

[ dx R, (x,u)=0, k=0,1,2,... . (2.15)

We define now the quantities 7, (x,u) and g, (x,u) as
R, (x,u)=
Pk(x,,u)

r(x,w)P(u) ,
=q(x,u)P () , (2.16)
Pi(x,pu)=q}(x,u)P(p) .

From the equation to order € 2 in (2.10) we obtain im-

mediately the factorization
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Ro(x,u)=Ry(x)P(u) , (2.17)
with ro(x,u)=ry(x)=Ry(x) and from (2.15)

J Ro(x)dx =0. As we have explicitly assumed in (2.9a),
we also have, from the corresponding system (2.10) for
the P (x,u), the equation F, P, =0, which also implies the
factorization Py(x,u)=Py(x)P,(un), so that gq(x,u)
=gy(x)=Py(x), with fPO(x)dx =1. The same condi-
tions have to be assumed for the lowest order of the ini-
tial probability density.
Now, using the operator relation

F\P,(u)=P,(u)F} , (2.18)
where F J{ is the backward operator of the Ornstein-
Uhlenbeck process, the equations to solve take the form

Flr x,p)=I,(x,u), k=0,1,2,... (2.19)
with

Iy(x,u)=0 (2.20a)

I, (x,u)= yaig X)ro(x) (2.20b)

- i 9
Iz(x,p)—Po(x)—Po(x)Jru—é-;g(x)rl(x,u)
+—a—v(x)r (x) (2.20c)
ox o ’

I (x,p)= —gi g+

KGRI =Gk —27 Gk —2 #axg k=17 3 k-2
(2.20d)

The system (2.19) is formally the same as that encoun-
tered for the P(x,u). The differences are on the func-
tions I, (x,u), which include now a dependence on the
steady state and initial probability densities, and on the
supplementary boundary conditions to fulfill the r;.

The system (2.19) has to be solved consistently with the
solvability condition

[ P (x,p)dp=0, k=1,2,... 2.21)

which comes from the relation
fd,uP ,u)Flrk xX,u)= fdurk(x,u)FP( )=0
(2.22)

and expresses that the inhomogeneous parts I (x,u) of
(2.19) have to be orthogonal to the null space of F,.

The solvability condition (2.21) required to a given or-
der will allow us to obtain the explicit solution of r; (x,u)
of lower orders in a systematic way. In order to get the
contributions to order €2=7, one has to perform the cal-
culations up to kK =4. In Appendix A we give more de-
tails of the calculations up to this order. Despite being
solvable in general, for the sake of simplicity and for its
physical relevance, we have assumed a particular form
for the quantities g/ (x,u) which corresponds to a steady-
state-like initial condition. This means that the g; have
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the same functional form as that of the g, (x,u) in v(x)
and g(x) (see Appendix A), but now on the arbitrary
quantities 7(x) and g(x). These functions define the
preparation model which is assumed to be coupled to the
same noise source (D =D, 7=7).

From the results (A12) of Appendix A,
normalized NLRT of a function ¢(x)
(r=€?)

the non-
can be written as

T=["lo(x)—
+T|<¢>,.—<¢>0

+ [ "ot -

($0]Py(x)C(x)

(2.23)

The first term of (2.23) after an integration by parts is
identified with the white-noise solution.””® However, Eq.
(2.23) admits a more interesting form both from a
theoretical and a practical point of view. Taking into ac-
count that the steady-state probability density for the
variable x in the same approximation is of the form

’ 2 ’
1 v v
P_(x)=Py(x) 41— — |— —< — >
0 T 2D g g g 0
1 ] +0(7?)
(2.24a)
and
v | 1 /o2 1 /02
— — ) =———(— 2.
<g g >0+ 2D<g2>o 2D<g2>0’ (2.245)

after some manipulations it is possible to show that (2.23)
is equivalent, except for corrections of order 72, to a com-
pact expression for the normalized NLRT of the form

T=Ty(r)+r(1—T,)+0(7?), (2.25)

where now we know how to interpret the different terms.
The first term on the rhs of (2.25) is identified as the
NLRT solution of the problem defined by the Fokker-
Planck operator
3 d d

L(x)=—§u( )+Da— (x )Bx

where H (x) defines any possible effective diffusion func-

H(x), (2.26a)

tion?>22 whose first-order form agrees with
H(x)=g(x) |1+7g(x) % +0(),  (2.26b)

so that T,(7) includes the contributions coming from the
steady-state effective Fokker-Planck approximation, that
is, the one with a time-independent diffusion function, ob-
tained in the limit z— . If we denote the steady-state
probability density of (2.26) by P (x) and the correspond-
ing to the preparation model as P_(x), the first term of
(2.25) reads
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(9)0]Po(x)Cy(x)dx |+0O(7) .

Toln =3 i<¢> S ;H)(I;)")( jdx . (227a)
where

-/ "[¢(x'>—<¢>,]1>,(x dx (2.27b)

f [P (x')—P.(x")]dx’ (2.27¢)

The averages are taken with the corresponding steady-
state probability densities and a,b is the domain of
definition of the process x (t).

The second term on the rhs of (2.25) has two parts.
First there is a systematic positive amount of 7 complete-
ly general for any model, any initial condition, and any
relaxing function ¢(x). This is a typical non-Markovian
effect analogous to that found in Ref. 3 for the LRT,
which accounts for the expected slowing down in the
presence of colored noise. Finally, we have the coefficient
T,, which depends on the preparation of the system and
is given by

T = 1 beo(x> v(x) _ (x) | Polx)
V()= (8)o e Dg(x) [g(x)  g(x) | Polx)
(2.28)

where the zero subscript indicates Gaussian white noise.
This coefficient contains additional transient information,
particularly about the initial coupling of the variables x
and pu, since it contains the dependence on U(x) and g(x).
This term, which could not have been obtained from the
standard one-variable effective Fokker-Planck descrip-
tion, provides the distinction between the coupled and
the uncoupled initial conditions. In fact, for an uncou-
pled initial condition, T'; would read

T = 1 fb Fy(x)P;(x)
' (5)0—(¢)0 a Dgz(x)Po(x)

[the term Ty(7) would be the same identifying P_(x) with

(x)]. The most remarkable particular case of (2.29) is
P,(x)=0(x —xy). If x is a deterministically stationary
point [v (xy)=0], T; will vanish.

For the coupled case, an explicit evaluation of (2.28)
can be performed with great generality for arbitrary v (x),
g(x), and ¥(x), with the only restriction of g(x)=g(x)
and yields the simple result

T,=1.

v(x)dx (2.29)

(2.30)

This is a quite general and remarkable result which ap-
plies to most interesting situations. It implies that only
the term T,(7) survives in (2.25), so that the problem is
reduced to the effective steady-state Fokker-Planck
description (2.26), with a time-independent effective
diffusion function.??

It is to be remarked that the dynamics of our system
for almost any steady-state-like preparation has thus been
reduced, having included all the transient effects (to first
order in 7), to an effective Gaussian white-noise one,
where the 7 dependence enters only parametrically into
the equations, so that the usual machinery of Markovian
processes is applicable.
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III. EXPLICIT RESULTS FOR UNSTABLE STATES

A. Definitions and models

The usual definition of an unstable state x, for a gen-
eral model (1.1) is

v(xy)=0, v'(xy5)>0. (3.1)

If v'(x,)=0, then we have a marginal state which is not
the subject of this work. Nevertheless, our approach can
be extended to that situation.?

A very common model one can find in the literature as
a prototype for the study of unstable states is the Landau
model defined by the equation

x=ax —bx3+&(t), a,b>0 (3.2)

where x,=0 is the unstable state. This model has two
stable states at |x|=Va/b. However, even for such a
simple model, few results can be obtained exactly. In or-
der to find analytical and explicit results and on the basis
of the universal properties of the unstable states, we
define a “‘representative model” which is mathematically
simpler than (3.2) but captures its essential features. This
model is defined by a linear equation

% =ax +£(t), xE[—R,R] (3.3)

subject to two reflecting boundaries at |[x| =R. The effect
of these boundaries is essentially that of the nonlinearities
in the model (3.2), that is, to provide a saturation regime
which stabilizes the system at a typical distance R from
the unstable state. The model (3.3) has thus the same pa-
rameters as the original model (3.2), with the equivalence
R =V'a/b (a comparative study of these models can be
found in Ref. 8).

The models (3.2) and (3.3) define the dynamics of the
system for ¢z >0. Since we are interested in the prepara-
tion of steady-state-like initial conditions at ¢t =0, we
have to fix now the preparation models which define the
evolution of the system for ¢ <0, from an arbitrary state
at t = — oo. In our case the preparation of the system at
t =0 for the models (3.2) and (3.3) will be given, respec-
tively, as the steady state of

x=—ayx —bx +&(), ag,b>0, —ow<t<0
and

(3.4)

Xx=—ayx+&(t), —ow<1<0. (3.5)

Equation (3.5) is the linear approximation of (3.4).
This approximation is justified when the intensity of the
noise is very small, which is the limit in which we are in-
terested. In the case of a large intensity of the noise, the
dynamics of the relaxation is completely different and
does not admit the usual picture of unstable states.®

The steady-state probabilities for the Gaussian white-
noise case are, respectively,

2

agXx 4

Pyx)~exp | == —i’;‘), , (3.6)
aox2

Py (x)~exp |— Tk (3.7)
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where we admit in general a different noise intensity D’
for t <0. In the case of Gaussian colored noise the
steady distribution is exactly known for (3.7). The solu-
tion is the same as for (3.7) but with the substitution

Dl

D'—»—-.
—> 1+agr

(3.8)

The preparation models (3.4) and (3.5) describe the typ-
ical situation in which the system suffers an instantaneous
“quench” of the coefficient of the linear term —a,—a
which leaves the system initially located around an unsta-
ble state. Up to very recently the usual initial condition
considered was

P;(x)=5(x) . (3.9)

From the experimental point of view, this means that the
spread or uncertainty of the initial condition is much
smaller than the actual intensity of the noise that will
trigger the decay. However, in many situations both
quantities will essentially originate from a unique noise
source, so that they will be of comparable size. If the
noise is colored, a particular attention has to be paid to
the coupling of the system variable and the noise vari-
able. When the system is prepared as a real steady state,
the joint probability density of the variables x and u nev-
er factorizes. This means that due to the history of the
system during the preparation at ¢ <O there is a correla-
tion between the noise and the system variable. Only if
the noise source is not the same for t <0 and ¢ >0 (or
there is not any and the system starts from a point distri-
buted at random) can the two variables be considered as
statistically independent. Some recent theoretical results
have considered the study of unstable states with the
latter assumption.lz’14 However, here we claim that this
approach is not justified for simulations of quenched un-
stable states like (3.2) with (3.4) or those of Ref. 19, since,
as we will show, the net effects of the initial coupling are
not negligible.

For the sake of a better comprehension of the colored-
noise effects and for further reference we will start
analyzing the white-noise case with distributed initial
conditions. In the rest of the paper we will always refer
to the NLRT associated to the second moment

[6(x)=x7].
B. White noise

The NLRT problem for the decay of an unstable state
with fixed initial conditions (3.9) and white noise was
solved very recently.”® The conclusion was that for a
(symmetric) unstable-state model, characterized by the
parameter a and the length R separating the stable states
from the unstable one, the NLRT, for a small intensity of
the noise, is given by the general law

R?a
2D

TF(D,T=O)=—‘11— %m +cl+o), 3.10)

where the logarithmic term is universal and the numeric
constant C is characteristic of each model and accounts
for the details of the deterministic relaxation in the non-
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linear and saturation regimes. In Appendix B we give
more details about the meaning and the calculation of
that constant for fixed initial conditions and white noise.
For the linear model (3.3) we have®

Co=3(y+2In2—1)=0.482... , (3.11)

%
where y is the Euler constant. The value for the non-
linear (NL) model (3.3), from (B9), is just

Cai=CpL+1=0.982... . (3.12)

In this section we are interested in the corrections to that
constant due to nonfixed initial conditions and to colored
noise. Despite the fact that the value of the constant is
model dependent, those corrections are expected to be
universal.

Let us see first the effects of the distributed initial con-
ditions (3.7) in the model (3.3). The NLRT expression for
white noise is given by (2.39) with 7=0. The explicit cal-
culation for the model (3.3) is explained in Appendix C.
The final result in the limits of both D,D’—0 with D /D’
finite reads

RZ
2(D/a +D'/ay)

%ln

Tf(r=0)=% +Cy

+O0(D,D’) . (3.13)

We see that the effect of the distributed initial condition
defines a larger effective diffusion coefficient. The
difference between (3.13) and (3.10) is

1

TP(7=0)—TF(r=0)=——1In
2a

D'a
Dao

[1+ +0(D,D"),

(3.14)

so that the presence of distributed initial conditions
speeds the decay of the unstable state. Its effect is impor-
tant when the width of the initial distribution D’ and the
diffusion coefficient D are of comparable size, even when
both are very small. Although the formula (3.14) was cal-
culated for the representative case (3.3), (3.5), and (3.7),
that result has to be general [R?=a /b in model (3.2)],
since in the limits D, D’—0 only the linear part of the dy-
namics is involved. This result could also be used in real
experiments to estimate the actual uncertainty on the ini-
tial condition.

C. Colored noise

Now we will consider the case 7#0 so we have to
evaluate our general result (3.37) in the different cases.
The simplest situation is that corresponding to coupled
initial conditions given that T, =1, so only the evaluation
of Ty(7) is necessary. As we established in Sec. II, this
contribution is exactly that of the effective white-noise
problem defined by (2.26), so we can use the result (3.13)
with the substitutions

D—D/(l1—arT),
D'—D/(1+ayr),

(3.15a)
(3.15b)

J. CASADEMUNT, J. 1. JIMENEZ-AQUINO, AND J. M. SANCHO

I8

and we get finally the result

T27)=TP?(r=0)+0(4D) , (3.16)

which has to hold also for the nonlinear model (3.2) and
(3.4).

For decoupled initial conditions we have that for the
case (3.9) T, =0, so that, using (3.13) with (3.15a) and
D'=0, the result can be written as

TF(T)=TF(T:O)+‘;’+O(D,1’2)

2

nR sl vcromm . Gan

2D

1
2a
This result coincides to first order in 7 with the predic-
tion of the QDT,'%!* up to an additive constant.
Assuming a distributed initial condition for the vari-

able x given by (3.7), but decoupled from the steady-state
distribution for the noise, one gets

a
a +ao

T,= +0(D) (3.18)

and

2

T27r)=T27r)+ ——+0(+%,D,D") ,

‘H_—a/a—o (3.19)

where the hat means uncoupled initial conditions. As in
the previous cases these results are claimed to be univer-
sal, so they have to hold also for the Landau model.
Equations (3.14), (3.16), (3.17), and (3.19) are the main
predictions of this work.

D. Comparison with the MFPT and QDT approaches

The comparison between the NLRT and the MFPT
approaches has been widely discussed in Ref. 8 for the
case of white noise and fixed initial conditions. In the
limit of small intensity of the noise both results coincide
up to a systematic constant 1, whose relevance is mani-
fest in the limit of large D.® In the case of distributed ini-
tial conditions, the MFPT approach also makes sense
from an experimental point of view.!® Assuming that the
initial distribution is very peaked with respect to the es-
cape region studied, the MFPT can be evaluated by a
simple averaging over the initial distribution. For the
model (3.3) with 7=0, this leads to the same result (3.13),
except for the additive 1, characteristic of the NLRT.

In the context of colored noise, the advantages of the
NLRT approach may be more relevant. The NLRT pro-
vides a simple characterization of the whole relaxation
process and avoids some technical difficulties of the
boundary conditions in the MFPT theory. On the other
hand, it is also naturally adapted to the treatment of arbi-
trarily distributed initial conditions.

In the particular case of unstable states, the difficulties
of the MFPT with colored noise have been avoided in the
literature by means of the QDT approach. The explicit
results for (3.3) and (3.5) were obtained in Ref. 15 and are
(D=D")
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1 D D D7 1
ty=——1 +—[y+In(2x})] . .
(== | T0ran ao(1tagr) (tagn(itan | T 2q7 TIn@xp] (3-20)

Taking x2=R?2, we recover, if 7=0, the result (3.13) up
to the constant 1 in (3.11). To first order in 7 we see that

R
2D

o

1
+In

+0(D,7) . (3.21)

<t>=l
a

This is a clear manifestation of the universality of the
process. The decay of an unstable state in each case has a
well-defined characteristic time scale which can be ob-
tained using different approaches. Particularly, the
corrections to the model-dependent constant due to dis-
tributed initial conditions and coupling effects are
claimed to be universal and should be encountered also
for other characteristic times like the MFPT.

IV. SUMMARY AND CONCLUSIONS

We have developed the general theory of NLRT’s for
colored-noise driven systems and applied it to the study
of the problem of the decay of unstable states in different
situations, with special stress on the non-Markovian
effects associated with the preparation of the system in
the presence of colored noise. We have obtained different
predictions with theoretical and practical interest, which
are also in qualitative agreement with those of the QDT
analysis. The advantage of our formalism is that, con-
trary to what happens with the QDT, it is completely
general, so that it can be applied to other relaxation pro-
cesses such as those which involve metastable or margin-
al states. It is to be remarked that, despite the fact that
our general results are valid for small 7, they include all
non-Markovian effects. Its application to particular cases
is straightforward: there is a contribution which comes
from a quasi-Markovian effective problem, for which
standard Markovian techniques can be applied, and then
a simple expression which supplies the purely non-
Markovian effects. The formalism can be seen as a com-
plementary approach to that of the MFPT that circum-
vents some of the its difficulties, and can be a useful tool,
both from a theoretical and a practical point of view, in
the study of non-Markovian transient dynamics.

Analog experiments and digital simulations will be
presented in the second part of this work?* in order to
check the range of validity of the theoretical predictions
presented here.
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APPENDIX A

The solvability condition (SC) (2.21) required to a given
order will allow us to obtain the explicit solution of
ri(x,u) of lower orders in a systematic way, which we
will describe in the following. This method parallels step
by step that described in Ref. 21. We include here some
details in order to be more explicit and emphasize the
main differences with that calculation.

That condition is trivially satisfied to order e”!. The
solution of (2.19) for k =1 then reads

rilx,u)=H(x)—I,(x,u), (A1)

where H,(x) is an arbitrary function compatible with the
condition (2.15). Now Eq. (2.19) for k =2 takes the form

d d 0
F{r2=PO—P,.+ﬂ——ax H\—po—gro |+ -vro, (A2)
so the SC leads to

d 3 0
———v+D-—g=—g |rg=P,—P; .
ax” Daxgaxg "o 0 ! (A3)

Equation (A3) is the usual one encountered for the
NLRT for the case (1.1) with a Gaussian white noise.’
Its solution, eliminating one arbitrary constant from the
condition of vanishing probability current at the natural
boundaries a,b and the other from the condition (2.15), is

x I(x') , < x I >
—d —
f“ Dg?(x")Py(x") x fa Dg?P, /o

(A4a)

ro(x)=Py(x)

>

where

I1(x)= [[Py(x")—P;(x")]dx’ (A4b)

and ( ), means the average with Py(x). After a formal
integration in both members, Eq. (A3) permits us to write
(A1) as

1 1 ,
r,(x,,u)ZHl(x)-—-—yg(—x*)[I(xH-v(x)ro(x)] . (A1)

D

On the other hand, using also (A3), Eq. (A2) can be
written as

2
Flr,=Py—pP,— £
172 0 D

1

PO—P,--+-—Q-vr0

d
_+_ —_—
dx ® dx &H,

d
+ a—xvro

and its general solution is of the form

(A2)
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2
=K |p_pi 9

2p |Fo ; axv(x)ro(x)

rylx,u)

—u?i-g(x)H,(xH—Hz(x) , (AS)
where H,(x) is another arbitrary function compatible
with (2.15). Notice that it has been necessary to go to or-
der k =2 to determine ry(x), and that we have two arbi-
trary functions H(x) and H,(x). These functions will be
determined by imposing the SC, respectively, to the or-
ders k =3 and 4.
Equation (2.19) for kK =3 reads

; d d
FT"3=‘11"‘1[1+#EC‘8"2+5;U"1 . (A6a)
From Ref. 21 we know that
1 v(x)
= — P
q,(x,u) D gx) NEDTAR (A6b)

but ¢! (x,u) is to be determined from the initial probabili-
ty density for the variable x. At this point we make the
assumption of a steady-state-like initial condition, that is,
a probability density which comes from a true steady
state of the two-variable problem of the type (1.1) associ-
ated with a preparation model defined by o(x),g(x) and
driven by the same noise. We also assume that the inten-
sity of the noise D for the preparation model is the same,
in order to ensure that the noise is always in its steady
state. This case is the simplest one after the completely
decoupled case [g}(x)=0 for k >0] and is also the more
interesting from a physical point of view. In this case we
will have

_—PO P

R (A6c)
Dg Dg

g,—q1 =40q,(x,p)=p

so that the SC to the order kK =3 given by (A6) and after
the substitution of (A1) and (AS) gives

S

i ava1=O.

(A7)
J
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For natural boundary conditions Eq. (A7) implies that
H (x) vanishes identically.”!

Finally, to determine H,(x) let us consider the order
k =4,
(A8)

FT"4:AQ2(X»H)+H%8"3+ ury

ax
where we define Ag,(x,u)=q,(x,u)—q5(x,u), g5(x,u)
corresponding to the preparation system defined above.
From Ref. 21 we also know that

d 1 v? 1 /v?
Bl ’“)_21)“ ax Pt Pol5p 2 2D<g2>
31 9
—2 = Cup |, (A9
2 P, avao (A9)

and similarly for g5 (x,u). Now we have to proceed with
the SC for k =4, which gives rise to

1a 3 Dd 3 3,
2 ax Vo o T o P T 58 xS ax ”
d d v?
+pS g0 |V, —gH
ax%ax |Dg’° &3 §72
d d vl
+ dx° dx Dg
3.3 9 1
959 oAP,+ AP
ax%a 0T ax Vo0
+Ag,(x)
D2 ¢(x)A7,(x)=0, (A10)
ox
where APy(x)=Py(x)—P;(x),Aq,(x)=gq,(x,u)/u and

fP JAg,(x,u)du .

After some more algebra, using the explicit form of
Po(x)=Ng "'exp( [*v/Dg?) and ry(x) given by (A4), in-
tegrating and rearranging, this yields

Hz(x) x 1 v? x 1 x I v? 1 v I 3 AP
I—vAP,—DgAg,+ | Aq, |—— — T TS5 T o
H=% 0 =, Dg’P, | Dg? o PEAG fa 217 %D fa Dg*P, g* 2D g2 P, 2 P,
1 v 3 | x I < x 1 >
— ==+ >g | - +K, (A1D)
D g? 28 g lfa Dg?*P, fu Dg?P,
[
where the constant K is to be determined by (2.15). Now, R,;(x)=0 (A12c)
in order to get the R, (x) defined by (2.12), we have to use
the explicit r,(x,u) obtained and integrate over the __ —(C Al2d
domain of u using (2.16). We then get, after some rear- Ryx) APo(x)+Po(x)[Co(0)=( Co(x))ol » )
ranging,
R(X)=Ry(x)+eR,(x)+ER,(x)+ -+ ,  (Al2a) Mith
where
x 1
C,(x)= )
Ro(x)=Py(x)[C,(x)—{C,(x))o] , (A12b) 0= ], Dg’P, (Al2e)



18

x 1 — X\
C2(x):fa Dg2P0 [_UAPO—DgAql_'_fa qu]
N U6 SRULEMN N 3 PR po R
2D g? g g [Ci(x 11X) 70} -
(A12f)
APPENDIX B

Here we will give more details about the constant C
defined by (3.10). We can write it as

C=C(n)+C(m), (B1)

where C(n) is conjectured to be a universal part which
depends only on the dimension n of the space (assuming
an isotropic unstable state in n variables®) and which was
also found for the MFPT (Ref. 8) and reads in terms of
the 9 function?

n

C(n)=—1¢ 5

(B2)

The other term in (B1) accounts for the deterministic re-
laxation in the nonlinear and saturation regimes and is
model dependent. For the linear model and the relaxa-
tion of the mth power [#(x)=x"], it reduces to
Crim=—-L . (B3)
m
Since the value of the constant C; for the linear model
is known, what we have to evaluate for the other cases is
simply the difference with respect to that one which will
be given by

AC(m)= gimo[T('")(D,xo)—-T‘L'")(D,xO)], (B4)

xo—0

where T'™ stands for the NLRT corresponding to the
mth moment, and x, is the initial condition. Both mod-
els are assumed to be scaled in such a way that
v(0)=v(l1)=v(—1)=0 and v'(0)=1. The divergence of
each term is then exactly the same and the finite
difference is just that of the respective constants. Assum-
ing n =1 for simplicity and taking first the deterministic
limit D —0, we can write

1

T'(0,x,)=
x5 —1

fow[x"’(t)~1]dt , (B5)

and with the change of variables given by the determinis-
tic equation dx =v (x)dt this reduces to

L=l (B6)

x—1% v(x)

T(0,x,)=

so that C(m) is just

1
v(x)

cim=—L4 flxm—1) |1 dx . (BY)
m 0 X

For the Landau model (B4) will be
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_r1x"—1
ACNL(m)—fo s (BS)
so that for arbitrary n and m

1 n m

Chyy = — 1ty —— = = i
NL VT ¥ ) 4 > (B9)

APPENDIX C

From the general result (2.25) and (2.27) the NLRT for
the linear model (3.3) (@ =R =1) with white noise (r=0)
and prepared as (3.5) (a,=1) is given by

—Z2__Fl(z) |e*'F(2)dz

T-_—4ae_a2fa 3
0 | 2a

1

— = [“2@(B2)dz+2 [ "F(2)®(Bz)dz ,  (CD
a 0 0

where a=V'1/2D, a’'=V'1/2D’', and B=a’'/a, and
where F(x) is the Dawson integral and ®(x) is the error
function.?> For simplicity, in (C1) we have written the
leading terms when a>>1 for each of the four terms.
Here we are interested in the correction AC(B) to the
numeric constant in (3.10) as a function of 8. This quan-
tity will correspond to the difference between the NLRT
for initially distributed initial conditions (8< ) with
respect to the NLRT with a fixed initial condition (3.10)
(B= «), in the limits a,a’— oo, that is,

AC(B)= lim

a— 0

%foaz[l*d)(ﬁz)]dz
a

—2[F1—0B)ldz |,  (C2)
0

since only the terms depending on B remain. The first
term of (C2) vanishes as 1/a?, so that we only have to
calculate

AC(B)==2 [ “F(2)(1—®(Bz))dz . (C3)

An integration by parts gives

=_ﬂ ®  —pz? _ _ o
AC(B)=~= fo e P G(z2)dz —2G (2)[1—D(B2)]IE .

(C4)
where

G(2)= [ Flxdx . (C5)

This function G (z) diverges as 1Inz when z >>1, so the
surface term vanishes, taking into account that 1—®(z)
goes as exp( —z2)/(V/mz). The remaining integral can be
evaluated by expanding the function G (z) in powers of z,

© 2k

Giz)=3 =

(— k=12 =D —1)1 . (C6)
=, (k)

Substituting (C6) into (C4) and making the Gaussian
integrals, one obtains a power series which can be
summed for 8> 1 and, by analytic prolongation, defines
the function AC(f) for all B as
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=—1In (C7)

1+2
D

This result, which has been obtained for simplicity for the
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relaxation of x? in dimension n =1, is actually general
for any moment x™ and for arbitrary n. It has a simple
interpretation as the time needed for the process to
broaden up to a width D’ from a fixed initial condition, in
the linear regime (D and D’ small).
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