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Insight toward the first-passage time in a bistable potential with highly colored noise
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The exponential coefficient in the first-passage-time problem for a bistable potential with highly
colored noise is predicted by be = by all existing theories. On the other hand, we show herein
that all existing numerical evidence seems to indicate that the coefficient is actually larger by
about %, i.e., that the numerical factor in the exponent is approximately 3. Existing data cover
values of tVo/D up to ~20, where Vo is the barrier height, 7 the correlation time of the noise,
and D the noise intensity. We provide an explanation for the modified coefficient, the explanation
also being based on existing numerical simulations. Whether the value 7 predicted by all large-
= theories is achieved for even larger values of 7Vo/D is unknown but appears questionable (ex-
cept perhaps for enormously large, experimentally inaccessible values of this factor) in view of

currently available results.

A number of theoretical approaches have recently been
used to obtain the mean first-passage time from one well
to the other of a bistable system driven by highly colored
noise.'"® The generic system of interest evolves according
to the dynamical equation

X)) =aX —bX3+f@), a)

and the noise f(¢z) is assumed to be zero centered and
Gaussian with exponential correlations

(f(t)f(t'))-e—e""""'. 105

D is the noise intensity and 7 its correlation time. The
‘““potential”
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implicit in Eq. (1) has two minima separated by a barrier
of height ¥o=a?/4b. The noise f(z) is said to be highly
colored when /D is large compared to the deterministic
quantity Vg !

wVo/D>1. 4)

A number of methods have been used to calculate the
mean first passage time T from one well of the potential
(3) to the other.” Although these methods are all approx-
imate and different from one another, there seems to be
universal agreement as to the dominant features of the re-
sult in the “large-7” limit — oo. In this limit [cf. Eq.

40

(4)] all the large- theories lead to!~’
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Furthermore, there also seems to be universal agreement
that the asymptotic result is achieved very slowlg' and re-
quires extremely large values of the exponent. 2>

The approximations that lead to Eq. (5) are typically
not systematic expansions in any parameter; consequently,
there exists considerable disagreement and uncertainty as
to the corrections to this result with decreasing z, both in
the prefactor and in the exponent. It should be stressed
that these differences notwithstanding, all the corrections
consist of (small) additions to the exponent 8¥1/27D
(and less importantly and not of particular interest here,
small additions to the 7'/? prefactor). We have also re-
centlg' developed an argument that leads to such a correc-
tion.® Our argument is based on the approach of Tsironis
and Grigolini,? who obtain (5) by assuming that a transi-
tion from one well to the other occurs when the noise f(¢)
reaches the critical value u.=(16V¢/27) /2 at which the
“effective potential”

Ver(X,f) =V(X) — Xf )

first ceases to be bistable. We note that this argument is
valid only when 7— oo, whence f(¢) is essentially con-
stant and u. marks the separatrix between the two wells of
Ver(X,f). With decreasing 7 one must consider the vari-
ation of f(¢) with time, and f(¢) must in general reach a
value greater than u. for a successful transition to

4157 © 1989 The American Physical Society



RAPID COMMUNICATIONS

4158

occur.*® We do not repeat the detailed argument here,®
but simply state our result, which replaces Eq. (5) with

#;g) ‘r] . @))]
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Equation (5) corresponds to the choice u(7) = pu. while we
obtain

p(@)=pu (1+1/7)=(%5)2(1+1/7). (8)

In (8) and frequently henceforth we have set a =b =1, so
that Vo= % .

In Ref. 6 we have plotted our simulation results® for the
mean first passage time in the form In(7/7) vs (¢/
D)(1+1/7)% Our simulations were carried our for three
different values of D in the range 5 < (¥o/ D)(1+1/7)?
< 20, and all our points fall close to the same line on this
plot, thus confirming the functional dependence on
1 (1) 1/D predicted in the exponent of (7) (see Fig. 1).

Having confirmed the expected functional dependence
in the exponent, our next question (and the central ques-
tion of this Rapid Communication) is to investigate the
value of the slope 8V¢/27 = % predicted in Eqgs. (5) and
(7) and in all other large-t theories as well. To explore
this question we sought the best fit of our simulations for
the parameters a and B arbitrarily introduced as follows:

1/2 2
27xDt 1 2 1 1
T “[ 28 ] (1+1/T)CXP[—E/3_D—{1+1'] J
)

Equation (7) with (8) corresponds to the choice a=pg=1.
We find the best agreement between simulations and (9)
to occur for the choices a=6.17 and f=1.29=~ %. In

Fig. 1 we have plotted our simulation results for In(7/7)
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FIG. 1. In(T/7) vs (z/D)(1+1/7)2 for t=0.9. The symbols
denote numerical simulation results with D =0.083 (squares),
D=0.114 (triangles), and D =0.153 (rhombuses). Solid line:
Eq. (9) with a=6.17 and = %. Dashed line: the same function
with =1 and the same abscissa.
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for three values of D as a function of (z/D)(1+1/7)? (as
we did in Ref. 6). The results fall on a straight line of
slope 28/27 = +r, indicated as a solid line. On the same
graph (arbitrarily starting at the same point on the abscis-
sa simply to highlight the different slopes) we show the
dotted line whose slope is %, representing the large-t
theoretical predictions.

Note that the difference in the slopes between the
theoretical predictions and the numerical simulations re-
ported in Fig. 1 represents a change in the coefficient of
the leading term in the exponent of T, a coefficient about
which no question has been raised heretofore. In view of
this unexpected behavior, we returned to some of the ex-
isting (far from plentiful) numerical data to be found in
the literature and found confirmation of the behavior re-
ported here. Fox® reports two large-7 simulations in the
range 1 <7<10 for D=0.1 and D =0.2. These values
correspond to TV o/D withing the same range of values as
we have considered. For D =0.1 Fox obtains a slope of
1.0 from his simulations, whereas the large-z theories
would have predicted 8V (/27D =0.74. For D =0.2 Fox’s
simulations give a slope of 0.5 instead of the predicted
value 0.37. Note that the ratios 0.5/0.27 and 1.0/0.74 are
indeed approximately 3. The numerical results of Jung
and Hinggi'®!' for the lowest eigenvalue A of the two-
dimensional Fokker-Planck operator are restricted to the
range tVo/D =< 2.5 and therefore may not be in the re-
gime appropriate for our large-z analysis. Nevertheless,
we observe that in this case the slope of In(A ~!/7) vs
(zVo/D)(1+1/7)? exceeds & by an amount not incon-
sistent with our value of B.

We thus conclude that the existing numerical evidence
points to a dependence of T on 7 which is exponentially
larger than that predicted by the large-7 theories. It may
of course be possible that the predicted large-t result is
recovered [i.e., that B in Eq. (9) — 1] if tV/D greatly
exceeds the values presently accessible to numerical com-
putation. On the other hand, we note that the exponent in
Eq. (9) achieves values of O(10) in the available results.
The explanation of the observed results, we believe, can be
found in the numerical studies of Mannella and Palleschi®
and their analysis of the results. To describe their
analysis, we first note that the large-t theories are all
based on the notion that the process first reaches a partic-
ular curve in (x,f) phase space in time 7, and that the
further passage of the process from that curve to the other
well occurs deterministically in essentially zero time. The
agreed upon curve that must be reached is the (z depen-
dent) separatrix between the wells. Since the separatrix
cannot be specified analytically for large z, approxima-
tions are made; different theories specify this curve in
different ways. In spite of these differences, all the
theories lead to the same exponential coefficient for 7 in
the large-7 limit.

The detailed analglsis of individual trajectories by Man-
nella and Palleschi’ reveals the problem with this view-
point: In reality there is considerable dynamics in the re-
gion of the separatrix, as shown in Figs. 2 and 3. These
figures show that once a trajectory reaches the region in
(x,f) space from which the theories assume immediate
passage to the other well, the actual trajectory spends a
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FIG. 2. A number of trajectories in phase space for D =0.5
and 7=15. Note the dynamics in the region of the separatrix.
The first vertical bar indicates the distribution of values of f(¢)
in the vicinity of the separatrix. The second vertical bar is twice
as long as the first and indicates that even in the process of
crossing, the trajectories spread.

considerable time crossing and recrossing this region be-
fore moving on. This “residence time” contributes ex-
ponentially to the mean first passage time.

To estimate the effect of the residence time of the pro-
cess in the region of the separatrix we follow the reasoning
of Mannella and Palleschi and write the mean first pas-
sage time T as

T= [auTWPW). (10)

Here T (u) is the mean first passage time for £(z) to first
reach the value u and is given by %!

T(u) = o/7{l +erfl(z/2D) 2 ul}e P’ F(¢/2D) V4]

(z/2D) Y2y
) dyF
an

[cf. Eq. (7)1, where erf(x) is the error function and F(x)
is the Dawson integral.!> The second expression follows
from the first when a steepest descent analysis is carried
out for large u?7/D. The long-7 theories identify (11)
with the transition time from one well to the other, each
theory with a particular choice of . P(u) in (10) is the
probability density for a crossing to the other well to actu-
ally occur when f(¢) reaches the interval (u,u+du), and
the bar in T indicates the average over this distribution.
Mannella and Palleschi find the distribution P(u) from
their simulations. They observe that it is centered at a
value that decreases towards u. with increasing 7, that it
has a width that also decreases with increasing 7, and that
it falls off more rapidly than a Gaussian in the wings of
the distribution. Their simulations do not reveal whether
P(u) eventually (i.e., with increasing t) becomes a &
function at u. or whether it retains a finite width. Only if
the former occurs would T eventually reach the value (5)
with the exponential slope & .

No one has yet developed a theory that leads to an ana-
lytic prediction of the distribution P(u). We may never-
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FIG. 3. Expanded view of Fig. 2 in the region of the separa-
trix.

theless deduce its qualitative effects via phenomenological
arguments. For this purpose we choose P(u) to be a
Gaussian centered at u. and of width o. Since the sto-
chasticity manifest in P(u) must of course arise from the
random nature of f(¢), the width ¢ must be a function of
the parameters of f(¢). Thus, it seems to be reasonable to
write o=cD/t where ¢ is an unknown coefficient whose
value we expect to be of O(1). This admittedly ad hoc
choice for the width is consistent with the numerical re-
sults of Mannella and Palleschi and causes P(u) to have
the observed narrowing tendency as t increases. Thus we
write

P(u) =QreD/t) 2e ~¢ ~#e)eleD 12)

[we require that ¢ < 1; otherwise (10) leads to unphysical
results and the distribution (12) must be modified to have
a sharper cutoff as observed in the simulations]. The in-
tegral (10) with (11) and (12) can be evaluated approxi-
mately using a steepest-descent procedure to yield for the
mean passage time

Fo_ (ZIZDT)I/Z 12 #37
T =) e | 50—
1/2
27xDt 8V
~ | 2207 (| — —° _.|. a3
8V, || C)] *P127D(1—0) T] a3

The effect of the residence time reflected in P(u) is thus
to increase the slope in the exponent from % to
8/27(1 —¢). The choice ¢ =% [which corresponds to
P(u) having half the width of the Gaussian distribution
for £(¢) itself] leads to a slope of + X %+ =32 consistent
with our numerical simulations.

In conclusion, we have argued that the finite residence
time in the region of the separatrix and the resultant dis-
tribution of first passage times leads to exponentially large
effects in the mean first passage time for a bistable system
driven by highly correlated noise. In all the large-7 simu-
lations carried out to date the exponential correction of
the theoretical mean first passage time is approximately
%. Whether the existing large-t theories correctly predict
results for values of = well beyond those presently accessi-
ble remains an open question.
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