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Temperature and velocity correlation functions in a fluid subjected to conditions creating both a
temperature and a velocity gradient are computed up to second order in the gradients. Temperature
and velocity fluctuations are coupled due to convection and viscous heating. When the viscosity
goes to infinity one gets the temperature correlation function for a solid under a temperature gra-
dient, which contains a long-ranged contribution, quadratic in the temperature gradient. The veloci-
ty correlation function also exhibits long-range behavior. In a particular case its equilibrium term is
diagonal whereas the nonequilibrium correction contains nondiagonal terms.

I. INTRODUCTION

Recently many efforts have been devoted to the study
of fluctuations about nonequilibrium steady states.? It
seems well established that at least in the most simple
cases, as for example systems under constant external gra-
dients, different theories come to identical results. Thus
from the fluctuating-hydrodynamics,* kinetic-theory,* and
master-equation approach,® one arrives at the result that
density correlation function in a fluid under a temperature
gradient consists of the equilibrium result plus a correc-
tion which includes the external gradient imposed to the
system.

Until now, nonequilibrium statistical mechanics
theories for fluids, have been used primarily to get expres-
sions of the density autocorrelation function, the reason
being that it can be measured by means of light-scattering
experiments. Exceptions are for example® in which the
velocity autocorrelation function of a Brownian particle in
a shear flow is computed or’ where the velocity autocorre-
lation function in a fluid under shear is given. In this last
reference, temperature effects are eliminated by assuming
that, at each point of the fluid, it is possible to extract the
heat generated by the viscous heating term (homogeneous
shear). In this paper this assumption is removed.

The paper is organized as follows. In Sec. II we intro-
duce the temperature and velocity steady-state solutions.
The latter corresponds to the velocity of Couette flow
whereas the stationary temperature is quadratic in the
shear rate due to the viscous heating term. Fluctuations
are analyzed in the framework of generalized fluctuating
hydrodynamics.> Section III is devoted to the study of
temperature fluctuations. A general result is given up to
quadratic order in the external gradients. When only the
temperature gradient is present the static or equal-time
temperature correlation function is computed. It contains
a cutoff wave vector due to the perturbative expansion we
used. When either the viscosity or Prandtl number are in-
finite one gets the static temperature correlation function
in real space which introduces an algebraic correction to
the local term characteristic of equilibrium. In Sec. IV we
compute the velocity correlation function also to second
order in gradients. For a fluid under a temperature gra-
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dient the convective term vanishes, then a nonperturbative
solution of the static correlation function is found. The
static velocity correlation function in real space is com-
puted in some particular cases.

II. FLUCTUATIONS AROUND NONEQUILIBRIUM
STEADY STATES

Our starting equations are the differential equations for
the evolution of mass, momentum, and entropy which
come from balance equations for such quantities and
nonequilibrium thermodynamics linear laws. If the fluid
is incompressible® they write

Vov=0, (2.1)
p | v Tv =~V 49V, 2.2
pT‘%va-Vs =AV2T +29(VW)S(Wv)S ,  (2.3)

where v is the velocity, p the mass density, p the pressure,
T the temperature, and s the entropy per unit mass. The
transport coefficients 7 and A, known as shear viscosity
and thermal conductivity, respectively, come from linear
laws of nonequilibrium thermodynamics. They are as-
sumed to be constant.”!® The superscript (S) in (- -+ )
stands for taking the symmetric and traceless part of a
tensor. Equations (2.2) and (2.3) are coupled because con-
vection and viscous heating take place.

In general and as stated in Ref. 11 the fluid can be con-
sidered as incompressible if temperature perturbations are
sufficiently small. Then variations of density are only due
to variations of pressure which can be neglected if the
velocity is much smaller than the velocity of sound in the
fluid. On the other hand, if the thermal expansion coeffi-
cient V_’(aV/aT)p, V being the specific volume, van-
ishes the fluid can also be considered as incompressible.
In fact, using

9, 9
sp= Ll op+ | L5 4
P |, p + 3s L S (2.4)
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and the thermodynamic relations

‘9& __|e] 8] [or 25
ds » dv oT » as »

9 =c?, (2.6)
dp |,

where c is the adiabatic sound speed, one concludes that
in this case the variations of density are only due to varia-
tions of pressure which can be neglected for the same
reason as in the former case. In these circumstances one
also has c,=c,, where ¢, and c, are the specific heat at
constant pressure and volume, respectively.

Stationary solutions of Egs. (2.1)—(2.3) are the solutions
of those equations by setting the time derivatives equal to
zero. Obviously such solutions will depend on boundary
conditions or in other words on external gradients. Let us
consider our system bounded in the y direction and infin-
ite in the x and z directions. Both a thermal gradient and
a velocity gradient are then applied. Under such a situa-
tion boundary conditions are

T(x,y==%L/2,2)=Ty+AT/2,
U (x,y=xL/2,z)=%u/2, (2.7)

1

y:Uzzo y

L being the width occupied by the fluid in the y direction
and AT the temperature difference between both plates.
The stationary solutions of (2.1)—(2.3) with (2.7) are'?

Ty (r)=To+ +¢u’+1-VoT —(r-Vov)?, (2.8)

vi(r)=r-Vyv, 2.9

ps=const , (2.10)
where y=7/2A and the external gradients are

VoT =AT/L%, , (2.11)

Vov=7€,¢; , (2.12)

y being the shear rate equal to u/L and €, and €, the
unit vectors along x and y directions, respectively. Equa-
tion (2.8) can also be written'?

T,(r)=To++(PE)AT +ATy/L —5(PE)AT y?/L?,
(2.13)

where P and E are, respectively, Prandtl and Eckert num-
bers defined as

P=v/a, E=u’/(c, AT), (2.14)

v being the kinematic viscosity, and a the thermal dif-
fusivity. Therefore if the product PE goes to zero the sta-
tionary solution (2.13) coincides with that of a fluid under

J

k-dv(k,0)=0,

8v(k,0)=G"k,0)(1—k k) {ik-&(k,0)—pVq,-8v(k,0) + +p(¥-k)[5v(k +qq0) —Sv(k—qpw)]} ,
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a temperature gradient. This is essentially due to the fact
that in such a case viscous heating can be neglected.

In the framework of generalized Landau-Lifshitz fluc-
tuating hydrodynamics,’ fluctuations evolve according to
nonequilibrium thermodynamics equations in which fluc-
tuating sources are introduced. Thus one has

V-6v=0, (2.15)
P ot +pv, Vv +pbv-Vv,=—Vép+nV6v+V-7,
(2.16)
a—;ZJrv,-vaT +6V-VT,
=aV?8T +4n(pc,)~(Vv,):(VEv)S
—(pc,) "'V g, 2.17)

where & and g are the fluctuating sources of momentum
and internal energy, respectively, and 8A=A— Ay, A be-
ing an unspecified hydrodynamic field. The fluctuating
sources satisfy the following stochastic properties:

(6)=(g)=0, (2.18)
(04(5,00 4 (£',1')) =2k p Ty (X)) 4 8(r —1')8(2 —1') ,

(2.19)
(gi(r,00g;(r',t")) =2kpATI(1)8;8(r—1')8(t —t')
(2.20)
(58)=0, (2.21)
where
Nijim =188 jm +8im8j1) . (2.22)

To calculate correlation functions in Fourier space, we
will write Egs. (2.8) and (2.9) in a more convenient form?

T,(r)=To+ +u’+8T sin(q,-r)— v *sin’(q,r) ,

(2.23)

v,(r)=¥sin(q,'r) , (2.24)
where we have defined

q18‘7’= VOT ’ (2.25a)

qQvV=Vyv, (2.25b)

with q;=¢;€, and q,=g¢,€,. Obviously in the limit
q;'r<<1 and q,'r<<1 both sets of equations coincide.
Then calculations can be performed using Egs. (2.23) and
(2.24) instead of (2.8) and (2.9) and taking the former lim-
its at the end.

In (k,w) space, Egs. (2.15)—(2.17) can be written,
respectively, as

(2.26)

(2.27)



2718

A. PEREZ-MADRID AND J. M. RUBI 33

8T(k,0)=GT(k,w) ili[81r(k+qz,a>)—zsrm_qz,w)]-as”’qu-esv(k,m)+m(pc )~ 12(q,¥) S :kbv(k,0)
2 P

+iPi g, [8v(k+qp,0) —8v(k—qy0)]—ilpc,) " 'k-gk,0) | ,

where k is the unit vector along the direct of k and

GUk,0)=(—iwp+nk?)~! (2.29)

GTk,0)=(—io+ak?)™! (2.30)
are the equilibrium Green functions in (k,w) space associ-
ated to the differential equations for the evolution of
momentum and temperature, respectively. To arrive at
Eq. (2.27) we have applied the operator VXV X to Eq.
(2.16) and we have taken into account (2.15). Moreover,
the Fourier transform of an unspecified field A(r,t) has
been defined as

Ako)= [~ dr [T die=*m A .

Likewise we have used the fact that V-q,=0. Transform-
ing also Eqgs. (2.23) and (2.24) we obtain

T,(k)=(2m)(To+ +9u?)8(k)
2 )3 18T

(2.31)

+( [8(k+q,)—8(k—q,)]

+(27T)3¢T[8(k+2q2)+8(k—2q2)~28(k)],

(2.32)
V,(k)=i§‘(2#)3[5(k+Q2)——5(1(—(]2)] . (2.33)
From Eq. (2.19) and using (2.32) one gets
(01(k,0)0 4 (K',0") ) =AD + AT+ A, (2.34)
where
Alfim =2kp(To+ 591> jm (27)*8(0 +0")8(k + k') ,
(2.35)
Ai,,,{,’_zk,,aTn,,,,,,(zw) dw+w')
X[6(k+k'+q,)—6(k+k'—q,)], (2.36)
A,ﬂ,,, kg 1],_,1,,,(27) *S(w+w’)
X [8(k+k'+2q;)+8(k+k'—2q,)
—26(k+k")] . (2.37)

(8T (k,w)8T (K", "))
=GT(k,0)GT(K,0")

(2.28)

r
Finally, from Eq. (2.20) and by using the Fourier
transform of T2(r) we obtain

(8i(k,0)g;(k,0)) =E2+£8T 4+ £8TV 1 29 (2.38)
with
C =2kpMTo+ 19u?)?8;;(2m)*8(0 +w")8(k + k') ,
(2.39)
8T =2k pAi( T+ +9u28T8,(2m) (w0 +0')
X[8(k+k'+q,)—8(k+k'—q))], (2.40)
E8TH = LkpA8T 26,(27)*8(0 +00')
X[28(k+k')—8(k+k'+2q;)
—8(k+k'—2q,)], (2.41)
T = kM5 u+ To Wi 28,(2m)*8(0 +0')
X[ —28(k+k')+8(k+k'+2q,)
+8(k+k'—2q,)] . (2.42)

In Eq. (2.38) we have neglected terms of order greater
than two in the external gradients.

III. TEMPERATURE CORRELATION FUNCTION

In what follows we will calculate temperature correla-
tion functions up to quadratic order in velocity and tem-
perature gradients.

A. General case

From Eq. (2.28) one can obtain 8T (k,w) as a function
of dv(k,w), 8v(ktqyw), 8T(ktqyw), and gk,w).
Squaring and averaging one gets

I k‘—)k,
x 1= lzk gk, 0)g(K,0")) — H(pe,) " | Tk ([8T (k+q0) — BT (k—qu0)lik-g(k'0 ) + |,
pPCp
VV:kk’ kek’
+-——4———<[8T(k+q2,w)—8T(k—q2,w)]>< >+6T q:1q::{8v(k,0)dv(k’,0’'))

—n(pe,) ~22(g,¥) Ok 8v(k,0)8v(k ,w’)>k':2(qﬁ)<s>‘.

(3.1
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Equation (3.1) shows that temperature and velocity correlation functions are coupled to quadratic order in the gradients.
In writing Eq. (3.1) we have dropped correlations between velocity and temperature. This is due to the fact that the heat
flux and stress tensor are uncorrelated [see Eq. (2.21)]. For wave vectors such that ¥-k=0 the second and third terms of
the right-hand side of Eq. (3.1) vanish and this equation simplifies appreciably.

By using Eqgs. (2.34) and (2.35) and the perturbative solution of Eqgs. (2.27) and (2.28) we get from Eq. (3.1) the tem-
perature correlation function to zeroth order in the external gradients

2kgA
(8T(k,w)8T(k‘,w'))‘°’=( B)z

(To+ +u)?*GT(k,0)GT(K,0' ) —k-K)2m)*8(k+ k' )80+ ') . 3.2)
PCp
Equation (3.2) is similar to the equilibrium temperature correlation function except for the fact that there is an increase
of temperature due to the viscous heating. The nonequilibrium correction up to quadratic order in gradients are also ob-

tained from (2.27), (2.28), (2.34), (2.35), (2.38)—(2.42), and (3.1). One arrives at the linear term

- 2kgh _
(8T (k,)8T(K',0") )87 = 2 (T + L yu)8TG T(k,0)G (K, 0" ) —k -k ) 2780+ ')
(pc,)?
P
X[8(k+k'+q;)—8(k+k'—q)] (3.3)
and at the nonlinear terms
- 2kgh .
(8T (k,0)8T (K',00') YTV = =22~ (27)%8(0 + 0")G Tk, )G T(K',0")8T 2
(pc, )?
14

X |[k2/24P(To+ +9u?)p’, G'(k,0)GY (K, 0 )k?q,q; T—k k) 18(k + k')

k-k’

+—4—[8(k+k'+2q1)+8(k+k'—2q1)] (3.4)

and
2Uph
(pcy)?

(8T (k,0)8T(K',0") )7 =

2m)*8(0+ 0" )G T(k,w)GT(K',0' )52

X[ —k*p+Pn?/c,k*G(k,0)G (K0 )(k-q)*)(To + +Yu2)d(k+k')

— 5 (To+ +9u)(k-k)[8(k+k'+2q,) +8(k+k'—2q,)]} . (3.5)

For the sake of simplicity, all the nonequilibrium correc-
tions have been given for wave vectors such that ¥-k=0.
The total temperature correlation up to quadratic order in
gradients is then obtained by adding the right-hand sides
of Egs. (3.2)—(3.5).

The poles of (8T (k,w)8T (k',w’)) in frequency deter-
mine the characteristic time scale of thermal fluctuations.
From Egs. (3.2)—(3.5) we find two time scales, one associ-
ated with the thermal diffusion 77 =(ak?)~! and the oth-
er one associated with the viscous dissipation
1,=(vk?)~!. In the same way the poles in wave number
determine the characteristic length scales Ly ~(a/w)'/?
and L, ~(v/w)'”2. One should notice that at equilibrium
the characteristic time 7, and length L, are not present.
This is due to the fact that in such a case thermal and
velocity fluctuations are not coupled. In other words, at
equilibrium the terms responsible for convection and
viscous heating vanish. The characteristic length Ly and
L, represent also the penetration depth of thermal and
velocity fluctuations, respectively. When we Fourier
transform according to Eq. (2.31), we have tacitly as-

[

sumed that, in order that our system be considered as in-
finite, L+ and L, must be much smaller than the size of
the system. This leads to restrictions over frequencies.
However, integrals over all frequencies can be performed
since the leading contributions appear in the poles of
Green functions.'

The above results are valid in the following limits:

Y2 v,T | | Vv |

min(a,v)k? vk?

S
Tp

«<1, (3.6)

b

where T4=T,+ +yu>. Notice that the above inequalities
introduce a cutoff in wave vector. Therefore if any of
those inequalities is not satisfied we would obtain diver-
gences in correlation functions.

B. Fluid under a temperature gradient

Now we apply the general result of Sec. III A to the
case of a fluid in which the only external perturbation is a
constant thermal gradient.



2720

We are interested in computing the equal-time correla-
tion function. Then we will Fourier transform Egs.
(3.2)—(3.4). Due to the fact that the temperature correla-
tion function is delta correlated in frequency, one arrives
at

(8T (k,08T (K',1)) = [l dodakke), 6D

1
(2m)?
where A4 (k,k’,w) is obtained by adding the coefficients of
S(w+w') in Egs. (3.2)—(3.4) and changing o' —o.
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8T
——(27)’8(k+k’). (3.8
PCp

(8T (k,1)8T (k',1)) V=

The nonequilibrium linear correction, which we obtain
making ¢?=0 (see Appendix A), can be written
(8T (k,1)8T (K',1) )T

k ~
=p_cg‘iToaT(zﬂ)3[8<k+k'+q1)—5(k+k'*ql)] ’
4

Making use of Eq. (3.7) we find the equilibrium static (3.9)
correlation function and the nonequilibrium nonlinear correction is
|
/6T _ (87°?%) : 2 2 : :
(8T (k,t)8T (k’,1) ) e =2 (2m)3 4 {28(k+k')—(1—2q7/k“)[8(k+k'+2q,)+6(k+k'—2q,)]}
P
ot VoI¥Vol R R)s(k k") (3.10)
P+1 '
r

Equation (3.10) contains a term proportional to | VT |2
cp | VoT | *To/a’k* which leads to a divergence if we in- (8T (r,)8T(r',t)) = THD)8(r—1') + ———r
tegrate over k. To avoid this divergence and as pointed PCy 4m|r—r'|

out before we must introduce the cutoff wave number
k(2)=(cp /T)V?|VoT | /a. Then the static correlation is
valid for k >>kqo. The cutoff appears as a consequence of
the coupling between the temperature and velocity fluc-
tuations. In fact, the third term of the right-hand side of
Eq. (3.10) can be rewritten in such a way that it is propor-
tional to P/(P +1); therefore if P goes to zero that term
is not present.

C. Solid under a temperature gradient

Temperature correlation functions in a solid body can
be computed from the fact that since for a solid v can be
considered as infinite, the Prandtl number is infinite too.
Therefore in (k,w) space, the temperature correlation
function comes from Egs. (3.2)—(3.4). In (k,?) space the
only difference with respect to the set of Egs. (3.8)—(3.10)
is that the third term of Eq. (3.10) cancels. Therefore we
do not need to introduce any cutoff in wave vector.
Fourier inversion can be made to get the temperature
correlation function at different positions and equal time.
One arrives at the result'*

J

(3.1D

which shows that the nonequilibrium corrections are
quadratic in the temperature gradient and exhibits long-
range behavior. Temperature correlation function (3.11)
is similar to that obtained for a finite system, using a mul-
tivariate master equation'® or using fluctuating hydro-
dynamics.> Some details of the derivation of Eq. (3.11)
are given in Appendix B.

IV. VELOCITY CORRELATION FUNCTIONS

In this section we calculate velocity correlations up to
quadratic order in velocity and temperature gradients by
following the procedure outlined in Sec. III.

A. General case

For the sake of simplicity we consider wave vectors
such that ¥v-k=0. From Eq. (2.27) one can obtain
Sv(k,w) as a function of &v(k+q,w), 6vik—qyw),
Sv(k,w), and dlk,w). After neglecting terms proportional
to V-k, if we square and average the expression of év(k,w)
one arrives at

(8v(k,)dv(K',0")) =G (k,0)G K ,»') l—(T—if()k:w*(k,w)&*(k',w')):k'(T~i'i')

+p ¥ Vq,q,:( 8v(k,0)8v(K,0')) l .

(T—kBk:(5(k,w)v(K,0') ) -qsV +

k—k’
wew’

By using Eqgs. (2.34)—(2.37) and the perturbative solution of (2.27), Eq. (4.1) gives

(8v(k,w)8v(K',0") ) O =2kp(To+ +9u>mG¥k,0)G" k0 kA T—kk)(27)*8(w + 0" )8(k +k') ,
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which is similar to the equilibrium velocity correlation function with a temperature To+ 34u>% The nonequilibrium
corrections up to linear order in gradients are

(8v(k,w)8v(k',@') ) = —2kg(To+ +yu>mpG (k,0)G* K ,0')

X [GUK, 0 )(T—kk)-q¥+ G k,0)¥q, (T—k k) 1k227)*8(0 + 0" )8(k + k') 4.3)
and
(8v(k,0)8v(k',0")) 8T = — ik s6TG"(k, )G (K',0 (T -k Kk’ (T—k 'k )(2m)*
X 8w+ )[8(k+k'+q)—8(k+k —q,)] , 4.4)
where 7 has been defined through Eq. (2.22).
The nonlinear corrections to the equilibrium result are
(8v(k,0)8v(k',0') ) 8TV =ipkp 8T 5G"(k,0)G"(k',0')
X[GU(K,\0 ) T—k Rk (T—k k") 0+ G¥(k,0)7q, (T—k Kk (T—k & )]
X (27)*8(w +")[8(k+k'+q;)—8(k+k'—q;)] 4.5)
and
(8v(k,0)8v(K’;0") ) ¥V = GY(k,0)G"(K',0) 2
X { — 3kp¥(T—k & kepk'(T— k' k)[8(k+ k' +2q,) +8(k + k' —2q,) —28(k +k')]
+2p%kgn(To+ L9u?)G(k,0)G (K, 0k 5 5 (g3 — (g, K18k +k)} 27 (w0 +0') ,  (4.6)

where 5 is the unit vector along the direction of V. The analysis of Egs. (4.2)—(4.6) runs parallel to that made for tem-

perature correlation function.

B. Velocity fluctuations in a fluid
under a temperature gradient

In this subsection we apply our general result of Sec.
IV A dropping the contribution from Vyv or equivalently
by setting PXE=0. We start from Egs. (2.15), (2.16),
(2.19), and (2.23). Now Egs. (2.16) and (2.23) are written
in the form

p% — _V8p+nVV4V-F, 47)
T,(r)=To,+8T sin(q,'1) . (4.8)

From Eq. (4.7) one can see the fact that the convective
current is zero; this allows us to find a nonperturbative
|

(8v(k,w)Sv(K’,0") ) 1) = — ik p8TG"(k,w)G (K0’ (T —k
X [8(k+k'+q;)—8(k+k'—q)] .

In the same way that we did in Sec. III B we can com-

pute the equal-time velocity correlation function in the
form

<z5v(k,t)z3v(k',t)>=617 JdoBkK,0), @12
v

where B (k,k’,w) is obtained by adding the coefficients of

solution for the Eq. (4.7). In (k,w) space that solution is
written

dv(k,0)=iG'k,0)1—kkk:5k,0), (4.9)

which coincides with Eq. (2.27) by setting 7=0. To ob-
tain Eq. (4.9) we have multiplied dv(k,») by the trans-

verse operator (T—kk) and use has been made of Eq.
(2.26). From Egs. (4.2) and (4.4) we obtain

(8v(k,w)dv(k',0') )@

~

=2k TonG'(k,w)G (K", 0" kX T—k k)

X (27)*8(0 +w")8(k —k') (4.10)
and the nonequilibrium contribution
Dkyk'(T—kk)(2m)*8(0+0")
(4.11)

dw+w') in Eqgs. (4.10) and (4.11), and by changing
o'<>—o. Then from Eq. (4.12) we find the following re-
sult:

k T - A
(5v(k,t)5v(k',z)><°>=-:—°u_kk)(zqr)3a(k+k'> ,

(4.13)
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(8v(k,1)6v(K’, 1)) 8D

X[8(k+k'+q;)—8(k+k'—q,)]

(4.14)

To find Eq. (4.14) we have neglected terms of the order g3
in developing the coefficient of the delta functions.

As we did in Sec. III C, Fourier inversion can be made
to get velocity correlation function at different positions
and equal time. To accomplish that we consider two par-
ticular cases.

(a) We suppose k=(ky,k;)=0 and transform back the
k, component of k. Our result is (see Appendix C)

(8v(k”=0,y,t)8v( i|=0,y',t)>

10
kp
—’;—T,(y’)(27r)8(y —y)10 0

00

From Eq. (4.15) one can see that (v,8v,)=0. This is
due to the incompressibility of the fluid, which implies
v, (k;=0,k,,w)=0. Notice that in this case the correla-
tion exhibits a typical equilibrium behavior, namely, it is
local in position. However, the temperature is the station-
ary one, then translational invariance is broken.

(b) We consider in this case x =x’' and y =y’, then
r—r'=(z —z')¢, being €, the unit vector along the z
direction. One gets the following result for z >z’ (see Ap-
pendix D):

0
0. (415
1

(8v(x,y,z,t)0v(x,p,z',1))

B 1 © aaa
=——T,()———5(1-3%,)
p Y ar|z—-2'|? o
00 0
ks |%T
—B—;u-'—,z 0 1 (4.16)
p 8Tz 1y _1 0

In this case the velocity correlation function contains a
nonequilibrium contribution which is proportional to the
temperature gradient instead of that quantity squared, as
we got in Eq. (3.11). Moreover, such a correction intro-
duces nondiagonal terms which also come in other prob-
lems® when nonequilibrium fluctuations are considered.
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APPENDIX A
We first consider the integral

1
I =
(27)?

[ 06T kw)G K, —0) (A1)
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which is the only integral in frequency that appears in the
derivation of Eq. (3.9). If we consider that w is a complex
frequency, the integrand of Eq. (A1) has a simple pole
w=iak'? in the upper half » plane. By computing the
residue of the integrand at this pole we find

1 1

= —_ A2
217'(1 k2+k:2 ( )

From Eq. (A2) the inverse Fourier transform of Eq. (3.3)
is written as

2k
(8T (k,1)8T (', 1)y = =2

iTo8T(27)}

v

k*+k-q
—————8(k+k’ )
2k?+2k-q+47 T

If we develop the coefficients of the delta functions in Eq.
(A3), we get up to order q; [Eq. (3.9)].

APPENDIX B

The Fourier inversion of Eq. (3.8) gives

(0) kBT(Z’
(8T (r,0)8T (r',1)) V= —8(r—r') . (B1)
PCy
In the same way (3.9) in real space gives
kgiTo8T
(8T (58T (r',)) = 2" [I(g,)—I(—q))]
PCy
(B2)
where
I(q)=e """s(r—r) . (B3)
By substitution of Eq. (B3) into (B2) we obtain
- 2kgT
<8T(r,t)5T(r',t))‘5T’=p—‘z‘lr'-vora(r_r') : (B4)
v
To get Eq. (B4 we have used the fact that

sin(q,'r')~q;'r’ and Eq. (2.25a). To make the Fourier in-
version of Eq. (3.10) we take the limit P— . One ar-
rives at

(8T (r,1)8T(r',1) )T

kpdT*
= 4pc {11 +[12(q) +13(q)]+(qre>—qy)}
(BS)
where
I,=28(r—r1), (B6)
I(q)=—e % 8(r—r) , (B7)
I(q)=gle 07— (BS3)

27 |r—r1'|
Substitution of Egs. (B6)—(B8) into (B5) leads to
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(8T (r,0)8T (r',1) )T

kp | VT |?
" pe, |4m|r—r'|

+(r'-VoT)¥(r—1') |, (B9

where we have used the fact cos(2q;'r')~1—2(q,-r')* and
Eq. (2.25a). By adding Egs. (B1), (B4), and (B9) we obtain
Eq. (3.11).

APPENDIX C

The Fourier transform of (4.13) gives

T 100

(8v(p,8v(y", O =—2"%2210 0 0 |s(y —p").
P 00 1 ’

(C1)

The inverse Fourier transform of Eq. (4.14) splits in the
form

(8v(y,1)8v(y’,t) ) D

kgid
= Bp {[1:1(q))+12(q))+13(q)]—(q>—qy)} ,

(C2)
where
100
I,(q)=2me =47 |0 0 0 |[8(y —y"), (C3)
0 01
v 000
Iz(q])——z‘qul 2 010}, (C4)
000
and
I3(qy)=—1I,(qy) . (C5)
By substituting Egs. (C3)—(CS) into (C2) we obtain
(8v(y,0)8v(y',1)) 6T
1 00
kg
=—7y'|VoT |27 |0 O 0|8(y —y'), (C6)
P 001
and by adding Eqgs. (C1) and (C6) one gets Eq. (4.15).
APPENDIX D
We first compute the integral
> 1 hnd AN .
T= dk(1—kk)e'®s
o) ¢
1 End A l o
=7 Jax@—kkg [ dkk?cos(ksg)
1 oo a2
=— dk(1—kk)—&( (D1
et d k38 )
where £=k-¢, and s=(z —z')¢,. The tensor T splits in
the form

2723

?=T‘}' +Bee; .
To compute y and 8 we first contract T with (I
1 2 1 ) 92
pece) [, de f_1 dE(1—£ )-E)—g;&sg)

1
27rs3

(D2)

AAa

T=y+B=—

(D3)

Now if we contract T with €,€, we obtain

<->'A A 1 27 1 2 2
T e,=y=— Py fo do f_ d&[1—cos“p(1—£7)]
1
8( )=— .
6§2 s 4rs3
(D4)
From (D3) and (D4) one gets
T=——50-32,). (D5)
On the other hand, we compute the tensor
- q1 A AA eik's
C=0 Jaxkkk=
ql AN AA ©
= Jakkkky [~ dkiksintksg)
= k,kk—§8 D6
P [ dkk, 3£ 068) (D6)

From this last expression one can see that the only com-

?onént? qf ¢ c:)iffercnt from zero are C,, and C,, with C,,
= given by

i 27
Cp=— = I, dp [ desing(1—gDg agsug)
q,i
= D7
8ms? o7
Finally, we compute the tensor
o q o efks
D=
27)3 [ dkk p
dkk dk ik sin(ks§)
(211')3 f f :

As in Eq. (D6), the only component of the tensor D dif-
ferent from zero is Dy,. One has

iq 2 1 d
Dp=—"5 B d<pf_1d§§—ag

i
. (D9)
4rs

8(s&)

Transforming back Egs. (4.13) and (4.14) and employing
(D1) and (D6)—(D9) one arrives at (4.16).
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