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We analyze the light-scattering spectrum of a suspension in a viscoelastic fluid under density and
velocity gradients. When a density gradient is present, the dynamic structure factor exhibits univer-
sality in the sense that its expression depends only on the reduced frequency and the reduced density
gradient. For a velocity gradient, however, the universality breaks down. In this last case we have
found a transition point from one to three characteristic frequencies in the spectrum, which is
governed by the value of the external gradient. The presence of the viscoelastic time scales intro-

duces a shift in the “critical” point.

I. INTRODUCTION

Modern developments in optical technology have made
light-scattering techniques a powerful tool in the investi-
gation of the dynamic properties of a variety of complex
systems such as suspensions,! colloidal dispersions,’ or
viscoelastic liquids.> Although light scattering occurs as
a result of correlations over space and time in the fluctua-
tions of the dielectric tensor of a condensed medium, the
origin of these fluctuations strongly depends on both the
specific features of the system and the nature of its state.
For instance, it is well known that the light scattered in
simple fluids in equilibrium arises from density fluctua-
tions. The theory of this phenomenon was developed
long ago, and its validity has been confirmed many
times.*> On the other hand, in the case of complex fluids
the fluctuations of the local density as well as the anisot-
ropy of the dielectric tensor give rise to the scattering
properties of the system.® As a result, the scattered light
is, for specific geometries, a superposition of two com-
ponents, namely, an isotropic one due to the density fluc-
tuations and an anisotropic contribution arising from
orientational fluctuations.

Actually, the theoretical treatment of light scattering
from complex fluids has taken two basic approaches. On
the one hand, statistical-mechanical formulations of the
Mori-Zwanzig’ type have been extensively used to de-
scribe light scattering from viscoelastic liquids.> On the
other hand, from a macroscopic point of view, different
phenomenological theories have been formulated for the
same purpose. In fact, one of the first approaches within
this latter class of theories treats liquids consisting of an-
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isotropic molecules as relaxing solids.’ In this theory, the
fluctuations of the dielectric tensor are due to deforma-
tions, temperature fluctuations, and to the internal relax-
ation of parameters in the system. Other phenomenologi-
cal descriptions are built upon irreversible thermodynam-
ics and consider that in order to describe highly disper-
sive systems additional variables should be introduced to
characterize the relaxing processes occurring in
them.!0™ 13

Although the hydrodynamical theory describing the
observed spectra generated by equilibrium fluctuations is
well established,!* the corresponding theory for non-
equilibrium fluctuations in simple and complex media is
still being developed. A large variety of approaches has
been used to study fluctuations away from equilibri-
um,'*!3 however, among these, fluctuating hydrodynam-
ics has been particularly fruitful in describing those pro-
cesses near equilibrium for many physical systems.'® The
main purpose of this paper is to use this latter approach
to study the light-scattering properties of a dilute suspen-
sion of spherical particles immersed in a viscoelastic
(Maxwell) solvent. The system is driven to a nonequili-
brium steady state through the action of a hydrodynamic
flow and a concentration gradient separately. More
specifically, we first calculate the nonequilibrium density
correlation function for the suspension and, in terms of it,
we subsequently evaluate the dynamic structure factor of
the isotropic component of the spectrum. We find that in
the case of a density gradient, the Rayleigh central line is
no longer symmetric, with a maximum shifted with
respect to its equilibrium position by an amount deter-
mined by the magnitude of the density gradient and the
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viscoelastic relaxation time scales. We will also show
that in the case in which the distribution of particles is
spatially homogeneous but the system is subjected to a
stationary Couette flow,!”!® the central line may also
display a dip whose depth and width depend on the mag-
nitude of the velocity gradient generating the flow as well
as the viscoelastic characteristic of the suspension.

The paper is organized as follows. In Sec. IT the model
is defined and the equations governing the stochastic dy-
namics of the suspended particles and the solvent are set
up. The specific nonequilibrium states generated by the
externally imposed gradients are identified as stationary
states of these dynamical equations. Then, in Sec. III the
density correlation functions are calculated to different
orders in the magnitude of these gradients and the corre-
sponding structure factor is evaluated. In Sec. IV the
features of the obtained spectra are analyzed for the case
of Brownian particles moving through a Maxwell viscoe-
lastic fluid.

II. GOVERNING EQUATIONS

Consider a dilute suspension of noninteracting identi-
cal particles of mass m and radius @ moving through a
viscoelastic solvent which itself may flow with velocity
v(r,t). Furthermore, since in general a fluid may be re-
garded as incompressible if the temperature perturbations
are sufficiently small,'® under isothermal conditions we
may consider the solvent to be incompressible. Hence, if
the suspension is so diluted that the presence of the parti-
cles does not appreciably perturb the motion of the fluid,
the dynamics of the latter is described by

V-v=0 (2.1)

and

a—v+v~Vv =—Vp+ ' n(t —t")Viv(r,t')dt’ .
Pl —

(2.2)

Here p(r,t) and p (1, ¢) denote, respectively, the mass den-
sity and the hydrodynamic pressure of the fluid and 7(¢)
is the time-dependent shear viscosity.

Let us now turn our attention to the suspended parti-
cles. If no chemical reaction occurs, the number of parti-
cles is conserved and their local number density #(r,t)
obeys the conservation equation

on(r,t)

——=+V-J(r,t)=0,
ot

where J(r,¢) is the flux of particles given by

Jr,n=—[" D(t—t')Vn(r,0'ydt'+n(r,0)v(r,1) .

(2.3)

2.4)

The first term on the right-hand side is the diffusive flux,
which generalizes the usual Fick’s law by allowing the
diffusion coefficient D (¢) to depend on the previous times,
t' <t, due to the viscoelasticity of the suspension. Clear-
ly, the explicit time dependence of D is determined by
both, the properties of the suspended particles and the
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type of viscoelasticity of the fluid. On the other hand, the
second term on the right-hand side of (2.4) is the convec-
tive flux of particles due to the state of flow of the sol-
vent. Thus from Egs. (2.1), (2.3), and (2.4) the diffusion
equation describing the time evolution of n (r,?) is

L 4 vie,0-Vn(r,0= [ Dt~ )Win(r,)dr’
ot —w

(2.5)

The stationary solutions of Egs. (2.1), (2.2), and (2.5)
correspond to nonequilibrium steady states determined
by the boundary conditions imposed on the system. Here
we shall only analyze those nonequilibrium states corre-
sponding to the following stationary solutions, that is, a
concentration gradient Vr, in a fluid at rest for which

nyr)=ny+r-Vn

s

(2.6)

and Couette flow for the unperturbed solvent with homo-
geneous distribution of particles n,

ng(r)=nq ,
v(r)=r-Vv, , 2.7)
with constant pressure
p,(r,t)=const , (2.8)
where Vv is defined as
000
Vv,=B{(1 0 0], (2.9
000

B being the constant shear rate. The deviations from this
steady state will be denoted by 8,

(2.10)
(2.11)

on(r,t)=n(r,t)—n(r),

ovir,t)=v(r,t)—v(r) .

Within the framework of Landau-Lifshitz fluctuating
hydrodynamics,'® we shall now introduce fluctuations
into the dynamic equations (2.2) and (2.5). This is accom-
plished just by adding a momentum-fluctuating source
I1 ®(r,) into (2.2) and a stochastic current JR(r,?) to the
flux (2.4). If in addition we linearize the resulting equa-
tions with respect to the deviations (2.10) and (2.11), we
arrive at the Navier-Stokes-Langevin equation

p %‘S—I‘L+VS-V8v+8v-VvS

=—vp+ [’ R —1")V2v(r,t")dt' + V-1 ’(r,1) ,

(2.12)

together with the incompressibility condition
V-6v=0 (2.13)

and at the fluctuating diffusion equation



41 LIGHT SCATTERING FROM SUSPENSIONS UNDER EXTERNAL ...

@-1- ;*Vén +6v-Vn,

ot
- f D

Notice that D(t—t') represents the bare diffusion
coefficient; consequently, J® and 8v are not coupled. The
influence of the convective term, however, can be con-
sidered in a renormalized diffusion coefficient.’® When
particles are Brownian the bare diffusion coefficient is
zero; therefore diffusion comes from velocity fluctua-
tions.?! The fluctuating sources are stochastic processes
with zero mean

(Ti R(r,2)) =0

W2bn(r,t')dt'—V-J R(r,) . (2.14)

(2.15)
(JR(r,1))=0,
and satisfy the following fluctuation-dissipation
theorems:
(B, ONE, (0, 6) =2k Tylt —t'DS(r—1")Ay,,
(2.16)
(JR(r,)IR(r', 1)) =2n(0)D ([t —¢'NS(r—1)1,  (2.17)

where T is the equilibrium temperature T the unit tensor,
and

lj[m 8118m-+_6 6 3 ,Jalm . (2.18)

In order to calculate, in Sec. III, the density correla-
J

>
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tion functions, it is convenient to recast the stationary
solutions (2.6) and (2.7) in the form!®

nr)=nq+ sin(q,'r) ,
(2.19)
v, (r)=¥sin(q,r) ,
where we have identified
q,i=Vng,
(2.20)
Qszvvs

It is clear that up to first order in q; and q,, Egs. (2.19)
reduce to (2.6) and (2.7), respectively. However, it is
easier to carry out the calculations using (2.19) and to
take the above limit at the end. Furthermore, if we define
the Fourier transform of an arbitrary field 4 (r,¢) as

0)=[dr[” die ¥ e A(r,1) (2.21)
n (k,w) space Egs. (2.19) read
n,(k)=(27)’ nOS(k)+%[S(k—ql)—S(k+q1)] :
(2.22)
vs(k)=(2ﬂ)3%[8(k—q2)—8(k+q2)] . (2.23)

Similarly, the Fourier transforms of Egs. (2.12), (2.13),
and (2.14) are, respectively,

sv(k,0)=G"(k,0)(T—kk)-{ik-Il R(k,0)—pVn,-8v(k,0)+ Lpv-k[8v(k+ gy 0) —8v(k—qp,0)]} , (2.24)
k-6v(k,0)= (2.25)
6n(k,w)=G(k,w){%V-k[&n(k+q2,w)“6n(k—q2,w)]—Vn‘-6v(k,w)—ik~JR(k,w)} . (2.26)

Here k is the unit vector along the direction of k and
(2.27)
(2.28)

GUk,0)=[—iop+nwk?]™!
Gk,0)=[—iw+D(w)k?]!

are the Green functions in Fourier space associated with
Eqgs. (2.12) and (2.14). Also, from Egs. (2.16) and (2.17) it
follows that the fluctuation-dissipation theorems read in
Fourier space

(TR (k,0)IR(K',0"))

=2(2m)Re[D(w)] n,(k+k') 8w+ )T,
(MR (k,0)R (K',0"))

=2(2m)*k, T Re[n(w

(2.29)

)]8(w+w’ )8(k+k')Aiﬂm .

(2.30)

It should be pointed out that to arrive at Eq. (2.24) we
have applied the operator (1—kk) to the equation ob-
tained after Fourier transforming (2.12). Furthermore,
use has been made of the fact that ¥-q, =0, which follows
from the incompressible nature of the solvent.

III. NONEQUILIBRIUM CORRELATION FUNCTIONS
AND DYNAMIC STRUCTURE FACTOR

Our purpose in this section is to calculate the density
correlation functions in three different situations, corre-
sponding to equilibrium and to the stationary states given
by Egs. (2.6) and (2.7), respectively. From these correla-
tion functions we will proceed to obtain the dynamic
structure factor which becomes the relevant quantity
when dealing with nonequilibrium fluctuation theories,
because it can be compared with the experiments.

A. Dynamic Structure Factor in equilibrium

Equilibrium can be reached when all the gradients are
zero (in our notation v=0 and 7# =0), then (2.26) trans-

forms into
dn(k,w)=G (k,0)[ —ik-JX(k,0)], (3.1
with
(JR(k,0) TR (K", 0"))
=2(27)*nyRe[D(0)]15(k+k")8(0+a)1 . (3.2)
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Squaring and averaging (3.1) we obtain where S (k,®) is the dynamic structure factor in equilib-
(5n(k.0)5n(K.0")) rium and the asterisk denotes the complex conjugate.
n(k,w0)dn(k',0

=2(27)*Re[ D (0)]ny( —k-k')G(k,0)G(K',0’)

B. Dynamic structure factor in the case

X6(k+k')dw+w) . (3.3) of a density gradient
The only nonzero contribution of Eq. (3.3) to the struc- In this case the density fluctuations follows from Eq.
ture factor is given by k'=—k and o'=—w. We then  (2.26) by setting v equal to zero. Then one arrives at
obtain
= —ik- R - .
k,0){6n(k,0)5n(—k, —o)) dn(k,w)=G(k,0)[ —ik-J*(k,0)—Vn,-dv(k,w)] . (3.5

=2(27)*n,6*0)k’Re[D(w)]G(k,w)G*(k,w) , (3.4)  The fluctuation-dissipation theorem given in (2.29) is now
|

(JR(K,0)IR(K',0') ) =2(27)*Re[ D (0)18(0+ )1 |nyd(k+k') —[6k+k —q,)—8(k+k'+q))]1]| , (3.6)

where use has been made of (2.22). The nonequilibrium density correlation function is obtained following the same pro-
cedure outlined in Sec. III A. Using the fact that J® and 8v are uncoupled, we obtain

(dn(k,w)dn(k’,0')) =G(k,0)G k', o' ) —k-(JR(k,0)JR(K',0')) k' +Vn - (Sv(k,w)dv(k',0))-Vn,] . (3.7)

Clearly, in the case of tagged particles the nonequilibrium state of the system introduces a coupling between n and 8v
through Vn,. However, as shown in (3.6), {8n(k,»)8n(k’,»')) also depends on Vn, through the correlation of the sto-
chastic fluxes. This dependence is of first order in the density gradient, while the coupling with the velocity fluctuations
is of second order. For small gradients, this last term turns out to be negligible in front of the first-order contribution.
Then we obtain

(8n(k,0)8n(k',0'))=—G(k,0)G(k,0') |2(27)*Re[D (0)]8(0+ ")k k' n08(k+k’)+—2ﬁ7 S ebdlk+k'—eq,
e=*1

(3.8)

Notice that the first term on the right-hand side (rhs) yields an equilibrium contribution identical to (3.3). Then, in this
section we will calculate only the nonequilibrium contributions, that is, those proportional to Vn, through #. In order
to arrive at the spectral density, we have to substitute

I 1
k—k+ 5 , k'—=k'+ 3 (3.9)
in the nonequilibrium part of (3.8). We then get the nonequilibrium part
7l € €
(n(k,w)on(k,0)g, =~ 3 e22m'Re[Dle)]blo+a 5k+K)1- k+—2q—‘ k‘+%
e=x*1
XG k+—g—1— G k'+ (zll,a) (3.10)

From Eq. (3.10) one can see that the nonzero contributions to the structure factor verify k+k’=0 and o +o'=0. Mak-
ing use of Eq. (2.28), Egs. (3.4) and (3.10), we finally arrive at the dynamic structure factor

S(k,0)=(8n(k,w0)dn(—k, —w)) .+ (8n(k,0)dn(—k, —o))y,

_ 2(277)4Re[D )1n,8%0)k? . 20 Re[D (w)]k-Vn, /no 51D
T [—io+D()kJ[io+D*(@)k?] k2] '

[—io+D(w)k?*][io+D*(

f

This last expression is analogous with the one corre- real quantity, D(—w)=D*(w); then, Re[D(—w)]
sponding to the case in which a temperature gradient is =Re[D (w)], that is, Re[ D (w)] is an even function of the
present in the system.!® Our result (3.11) deserves frequency. Using the same kind of arguments one can see
some comments. Due to the fact that D(¢) has to be a that G (k,w)G*(k,w) also is an even function of w. Ac-
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cording to this, we can conclude that the nonequilibrium
correction is an odd function of @ that introduces an
asymmetry in the shape of the structure factor, shifting
the maximum to the region of negative frequencies. The
shape and the magnitude of this shift depends, clearly, on
the density gradient and the viscoelastic time scales in-
volved in D (w).

C. Dynamic structure factor in the case
of a velocity gradient

The case in which the fluid is under flow is a much
more interesting situation. To single out the effect of the
external gradient let us consider the steady state given in
Egs. (2.7). In this case, the density fluctuations can be
obtained from (2.26) with Vn, =0,

8n'%k,w)=—G(k,0)ik-JX(k,0) ,

sn'V(k,w

)=——>

2i e==1

nVko)=—% 3

€,€==1

S eGk,0)G(k—eq,w)k—eq,):

€€’ {G(k,0)G(k—€'qy0)G(k—(e+€)q,0)(k-V)} [k—(e+€)q,]-TR(k—

1927

sn(k,0)=—Glk,w) |~kV S €dn(k—eqyo)
2 e=*1
+ik-JR(k,0) (3.12)
Setting #=0 in Eq. (2.22) and substituting it in the
fluctuation-dissipation theorem given in Eq. (2.29), it
reduces to
(JR(k,0)JR(K, "))
=2(27)*n,Re[D(©)]8(w+ 0" )8(k+k')T (3.13)

Notice from Eq. (3.12) that 8n(k,w) is coupled with the
shifted modes &n(k —eq,,w) through the velocity gra-
dient. In this situation we can formally solve Eq. (3.12)
as an expansion in powers of the velocity gradient?? Vv,
through v. Up to second order, we have

(3.14)

JR(k—eq,,0) , (3.15)

(e+€')qyw)} .
(3.16)

From these formal solutions one may obtain the density correlation functions. Up to quadratic order in ¥ one has

(8n(k,w)dn(k',0'))=(8n""k,w)dn ¥k
+(8nV(k,0)6n V(K0

The first term on the rhs corresponds to the equilibrium
density correlation function which was given by Eq. (3.3).
Its contribution to the structure factor is identical to
(3.4). The second and third terms are the first-order con-
tribution to the structure factor. They can be calculated
by following a similar procedure to that leading to Eq.
(3.11). We find that these first-order terms vanish. The
second-order contributions are represented by the fourth,
fifth, and sixth terms on the rhs of (3.17). It turns out
that from Eqgs. (3.14)-(3.16) all the second-order contri-
butions occurring in (3.17) are proportional to
6(k+k'—(e+€')q,). In order to obtain the contribu-
tions of these density correlation functions to the none-
quilibrium structure factor, we follow the standard pro-
cedure introduced in Sec. III B. We substitute

ks k+(e-;e)q2,

(3.18)
+ (e+¢€')

2‘12

into the terms of Eq. (3.17) that we are analyzing. The
nonzero contribution to the structure factor is

Sp=(8n""(k,0)8n " (—k, —w))
+(8n Ok, 0)8n' P (—k, —0))
+(8n'Y(k,0)8n V(—k,—w)) .

k'—k’

(3.19)

k', 0'))+ {812k, )80 Mk
"))+ (8n'Ok, w)Snm

"))+ {(8nV(k,0)8n Ok, w))

kK, 0'))+(8nP(k,0)8n Ok, 0'))+0(¥)}
(3.17)

I
To evaluate the above correlation functions we have to
develop all the expressions up to second order in q,. An
important simplification can be made if we specialize to
the case in which k-q,=0. Using the definition of
G (k,0) given in Eq. (2.28) and denoting by ¢ an
unspecified constant coefficient, one obtains up to second
order in q,,

G(ktcq,0)—Gk,0)[1—c2qiD (0)G(k,0)] ,
(3.20)

G(—k*cq,, —w)—»G‘(k,w)[l—czq%D‘(w)G"(k,w)] .

Taking all of these considerations into account, the first
contribution gives

(8n'V(k,0)8n (—k, —w))
=(2m)*Re[D(w)]ny8*0)|G(k,w)|*B*k?, (3.21)
whereas the second contribution yields
(8n'%(k,0)8n ' P(—k, —w))
=(27)*Re[D () ]ny8*(0)B%k |G (k,»)|}[G*(k,w)]?
X {1—2k’Re[D (0)]G(k,w)} . (3.22)

One can easily show that the remaining nonequilibrium
term also is given from Eq. (3.22) replacing k by —k and
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® by —o. Since this amounts to conjugate the propaga-
tor G(k,w), we have that

(8n'P(k,0)8n'(—k, —w))

=(8n'"Vk,0)6n'Y(—k,—w))* . (3.23)

Thus, putting together all the contributions given by
Egs. (3.4), (3.21), (3.22), and (3.23), we arrive at the final
expression for the dynamic structure factor

S(k,0)=S.(k,0)+Ssk,0)
=2(27)*nyRe[D (0)16%0)k? G (k,0)|?
X[1+1B84|G(k,w)|*+2 Re[G*X(k,0)]
X {1—2k’Re[D (0)G(k,w)]})] .

(3.24)

Expression (3.24) is general because it does not depend on
the form of D(w). A discussion of a particular case cor-
responding to a simple viscoelastic model will be included
in Sec. IV.

1V. DISCUSSION OF THE RESULTS

In order to analyze the effect of the external gradients
in the suspensions we will specialize to the case in which
the suspended particles are Brownian and the viscoelastic
fluid follows Maxwell’s rheological equation of state,
characterized by a single relaxation time. This case is in-
teresting because one can obtain a simple expression for
D () which depends on the frequency through both the
nonstationary motion of the particles and the viscoelasti-
city of the fluid.

Our first goal will be the obtention of D (w) for a dilute
suspension of spherical identical Brownian particles. It is
possible to show that the hydrodynamic force exerted by
a viscoelastic fluid of frequency-dependent viscosity 7(w)
on a spherical particle of radius @ moving with velocity
u(w) is given by

Flo)=6mp(w)a[l+alw)a +Lta*(w)a?lu(w)

9
=Ewhlo), 4.1)

where &(w) defines the frequency-dependent friction
coefficient and « is the inverse penetration length

) 1/2

—iwp

alw)= @)

4.2)

Our result (4.1) constitutes a generalization for the ex-
pression of the force exerted by a Newtonian fluid on a
particle.?

Now, we are able to write a Langevin equation for one
isolated particle (provided that the suspension is diluted).
As is well known, the forces acting on the particle are, on
the one hand, the friction with the fluid due to the
motion of the sphere and, on the other hand, the random
force which originates in the internal fluctuations of the
fluid. We then obtain

du

m—=FH(1)+FR(1) ,

ar (4.3)

or, in frequency representation,

—iomu(w)=F¥w)+FRw) . (4.4)

The random force FX satisfies the fluctuation-dissipation
theorem

(FR(OFR(1")y =2k TE(|t —t')T (4.5)

or

(FR(0)FR(w')) =22m)k, T Re[£(0)]8(o+0')T . (4.6)

If we define the time-dependent diffusion coefficient as

D (t)=1Tr[{u()u(0))]6(1) , 4.7)

where O(¢) stands for the Heaviside function and the
symbol Tr for the trace of the tensor, then, from Egs.
(4.3)-(4.7), making use of the causality principle, we ob-
tain for D (w)

D(@)=4Tr | [ “dr e Cultu(0))

T Tiom+E@) @8

At this point we will consider the viscoelastic model for
the fluid, introduced through Maxwell’s rheological equa-
tion of state®*

Mo
=—0e
-

(1) e, 4.9)
1, being the zero-frequency shear viscosity and 7 the re-
laxation time characterizing the relaxation of the internal
degrees of freedom of the fluid particles. The Fourier

transform of Eq. (4.9) yields

Mo
1—ior

nw)= (4.10)

For low frequencies (of the order of the relaxation of
diffusion modes), the leading contribution to the frequen-
cy dependence of D (w) is given by the viscoelastic nature
of the solvent, the reason being the fact that in Eq. (4.1)
aa is much smaller than 1 and, in Eq. (4.8), the term iom
is smaller than £(w). In other words, the time scale intro-
duced by the relaxation of the perturbations of the fluid
and the time scale due to the inertia of the particle are
negligible compared with the time scales we are interest-
ed in. According to this, we finally arrive at

D =
(o) 6700

(1—ior)=Dy(1—iwT) . (4.11)

For future calculations it will be convenient to intro-
duce the dimensionless quantities

wzw—gok—z—Ew—o ) (4.12)

- Dyk?

S(@)=S(k,w0) i , (4.13)
2(27)*6*(0)n
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FIG. 1. Equilibrium dynamic structure factor is plotted vs
frequency. The solid line corresponds to liquid salol at
80.2°C (7,=11.54X10"* gcm ™3, and 7=89.9X 107 ¢ s, at the
same temperature), @ =107 c¢m, and k =107° cm. The dashed
line gives the result for the Newtonian case (7=0).

k-Vn,/ng

Vil =
V= s Do)

, (4.14)

B
Dok?’

=

(4.15)

which will be useful to analyze the results obtained in
Sec. I1I.

A. Equilibrium

The dynamic structure factor obtained in Eq. (3.4) can
be expressed in terms of the quantities given in (4.12) and
(4.13) as

Seq(&))262+1

(4.16)

Clearly, in this case the presence of the viscoelastic time
scale does not change the essential behavior of the sus-
pension. In fact, the dynamic structure factor is a
Lorentzian with a modified relaxation frequency for the
diffusion modes: D k?—>Dyk2/(1—Dok?*r). If 7 is
much smaller than Dokz, no effect will be seen, but in the
opposite case, the relaxation frequency of the diffusion
modes will be slowed due to the coupling with the inter-
nal degrees of freedom of the fluid particles through .
Notice that the maximum of the spectrum is placed at
@=0 and any modification due to the new time scales can
be found due to the fact that the viscoelasticity disap-
pears when the frequency goes to zero (see Fig. 1).

B. Density gradient

The dynamic structure factor given in Eq. (3.11) can be
also expressed in this case in terms of the dimensionless
quantities introduced in Egs. (4.12)-(4.14). We then ob-
tain

1929
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S@)= (4.17)

&t

@
1-2\Vv, | ———
) | ”15;2+1

Thus we also conclude that (4.17) has the same form as in
the case in which the carrier fluid is Newtonian. Due to
the asymmetry introduced by the gradient, it is expected
that the maximum of the dynamic structure factor is dis-
placed with respect to its equilibrium position. To calcu-
late the magnitude of this shift up to the lowest order in
the density gradient we must derive S(w) with respect to
@ and equate it to zero. We then obtain the equation for
the position of the maximum as a function of the dimen-
sionless density gradient (see Fig. 2)

&2

@ |1-2|Vy|—— | +|Vy| —1}— =0. (4.18)
@+1 @2+1

Up to first order in the density gradient one gets

a=—|Vv|. 4.19)

Therefore the maximum is shifted due to the presence of
the density gradient by an amount proportional to this
quantity, towards the region of negative frequencies. In
order to see the effect of the viscoelastic time scales, we
write (4.19) in terms of the old quantities
D-k-
= Vs e .20
(14+Dyk?r)?
From (4.20) one can see that in the case in which
7<<1/Dyk? the viscoelastic effect will be negligible and
the maximum will be located at the same point as if the
fluid were Newtonian. When T~1/D0k2, however, the
shift of the maximum is lowered because the relaxation
time of the diffusion modes increases due to the presence
of the viscoelastic time scale.
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FIG. 2. Nonequilibrium structure factor for liquid salol in
the presence of a density gradient [defined in (4.14)]
[Vv)|~107". The parameters are the same as in Fig. 1. The
solid line corresponds to the viscoelastic case, while the dashed
line refers to the Newtonian case.
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C. Velocity gradient

The dynamic structure factor (3.24) reads (see Fig. 3)

~ 1 1 oA +aly—1
S(@)= 1+=p2 , (42D
R 2P @y

where use has been made of (4.12), (4.13), and (4.15) and

A,=4COQT'_ 1 N
(4.22)
y=6(1—2ayr) .

Notice that in this case, since the relaxation time enters
the expression of the structure factor through A and v,
(4.21) does not exhibit universality as in the preceding
cases.

To proceed we will analyze the maximum of S(w) as a
function of the velocity gradient. Deriving S(@) with
respect to @ and equating it to zero we find

—ol(@2+1’+iBH @ A +aly —1)]

+a1B(2ha +y) @2+ 1) —3(Aa*+ya —1)]=0.

(4.23)

One solution of (4.23) is ®=0. This solution also is
present in equilibrium which means that there is no shift
in the maximum of the structure factor due to the veloci-
ty gradient. However, the presence of a velocity gradient
is responsible for new solutions of (4.23). This last equa-
tion gives

—[(@*+1’+1a‘r+a’y —1)]
+1B2Aa +y )@+ 1) —3(Ad*+ya’—1)]=0 .
4.24)

Proceeding as in the case of the density gradient, we will
find the lowest-order effect. To do that, we find the un-
perturbed solutions of (4.24),
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FIG. 3. Nonequilibrium structure factor for liquid salol in
the presence of a velocity gradient [defined in (4.15)] =0.750.
Again, the parameters are those of Fig. 1. The solid line corre-
sponds to the viscoelastic case, while the dashed line refers to
the Newtonian case.
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Q==i. (4.25)

Substituting @ for  in all the terms proportional to the
dimensionless velocity gradient, we finally obtain

&, =+223(1—wyr)'/

| 1/2
F2/3_
X |B 21— 3 (4.26)
Notice that in the case in which
B> 1 =, 4.27)

4(1—wyr)'?

the roots corresponding to (4.26) are real and the central
maximum splits into two symmetric peaks creating a dip
in the spectrum at ®=0. This effect is present even for
Newtonian fluids and is similar to what happens in the
harmonic oscillator when computing the correlation
function {(x(w)x(—)). In fact, in the overdamped case
the maximum is centered at =0, while in the oscillating
case, the maximum also splits into two peaks centered at
the frequency of the oscillations. From the preceding
analysis we may conclude that the system exhibits a tran-
sition from one characteristic frequency (@=0) to three
characteristic frequencies (»=0 and ®=&.). According
to (4.26) and (4.27) the critical value of B is BE—_—} for
Newtonian fluids. The effect of the viscoelastic time scale
is, on the one hand, to modify the positions of the maxi-
ma with respect to the Newtonian case, due to the lower-
ing of the relaxation frequency of the diffusion modes.
On the other hand, in view of (4.27), the effect is to modi-
fy the critical value of B, which tends to increase /3, (see
Fig. 4).

To conclude let us say some words about physical sys-
tems that could be used for testing our results. As far as
we know, there are no experimental data available in the
literature to check our results. However, according to
our preceding analysis, experiments should be made using
fluids with large relaxation times and low viscosities. A
good candidate would be a suspension of spherical parti-

b b b
0 02 c4 0.6 08 1
I

FIG. 4. Value of w, is plotted as a function of B. The solid
line corresponds to the viscoelastic fluid (salol), whereas the
dashed line refers to the Newtonian case.
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cles in liquid salol (the relevant parameters are those of
Fig. 1). In the nonequilibrium situations, possible values
for the external gradients belonging to the range of validi-
ty of our theory, have been proposed in Figs. 2 and 3.
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