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We compute nonequilibrium correlation functions about the stationary state in which the fluid
moves as a consequence of tangential stresses on the liquid surface, related to a varying surface ten-
sion (thermocapillary motion). The nature of the stationary state makes it necessary to take into ac-
count that the system is finite. We then extend a previous analysis on fluctuations about simple sta-
tionary states to include some effects related to the finite size of the sample.

I. INTRODUCTION

Recently, a considerable amount of work has shown
that fluctuating hydrodynamics provides a consistent
scheme to analyze fluctuations in systems away from
equilibrium (see, for example, Refs. 1 and 2 and refer-
ences quoted therein). The procedure to arrive at the
correlation functions from that theory has become stan-
dard. One formulates the stochastic differential equa-
tions for the fluctuating fields as Langevin-like equations,
where the random sources are related to the random
parts of the dissipative currents, accounting for fast vari-
ables. Then one formally solves such equations and com-
putes the correlations in real or Fourier representations.

Although systems in stationary states are essentially of
finite size, because of the energy or mass transfer through
their boundaries, it turns out that the penetration lengths
for fluctuations or the mean-free path of collective modes
are sometimes much smaller than a characteristic length
of the system. Thus for practical purposes one assumes
that the system is infinite. This is what is normally as-
sumed when dealing with density fluctuations in a fluid
under a temperature gradient. In that case the preceding
condition is ¢ /D,k2 << L, where c is the sound velocity in
the medium, L the length between plates, and
D,=(4/31+&)/p, with p the mass density and 7 and &
the shear and bulk viscosities, respectively. Such a condi-
tion imposes the cutoff wave number k; =1/L.’

There are a number of interesting situations in which
the preceding assumption cannot be made. This is what
happens, for example, when the boundaries themselves
act not only by providing simple boundary conditions but
by modifying the nature of the stationary states or adding
sochastic sources of noise.>~° In Refs. 3-6 fluctuating
hydrodynamics was applied to get correlation functions
in finite systems.

The purpose of this paper is precisely to provide an ex-
ample of those cases in which the stationary state is a
consequence of the existence of a temperature-dependent
surface tension. Our work is distributed as follows. In
Sec. II we comment on the nature of the stationary state.
We also establish the stochastic differential equations for
the evolution of the fluctuations. In Sec. III we give our
expressions of the velocity and temperature correlation
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functions, which follow from an extension of the method
used in.””® We also evaluate the nonequilibrium correc-
tions. In Sec. IV we will be concerned with some discus-
sion remarks. In particular, we will stress some analogies
and differences between the correlation functions in our
system and in fluids under external gradients, such as the
ones studied in Refs. 7 and 8.

II. FLUCTUATIONS ABOUT THE STATIONARY STATE

To study fluctuations we must, first of all, specify the
nature of the stationary state. Let us consider a thin lay-
er of an incompressible fluid of infinite extent in the x and
z directions. In a realistic case the surface tension a of
the liquid will depend on temperature. Then the action
of a constant temperature gradient parallel to the surface
will give rise to tangential stresses and, as a consequence,
a motion of the fluid layer (referred to as thermocapillary
motion®) will be produced. The temperature and velocity
profiles then follow from the differential equations of
nonequilibrium thermodynamics.!® If the imposed tem-
perature gradient VT is sufficiently small the velocity of
the liquid will be also small. Therefore the convective
and viscous heating terms of the internal energy balance
equation can be neglected and the stationary temperature
T, reads

T,(x)=Ty+x |VT | , (1)

where T, is a reference temperature. The stationary ve-
locity follows from the Navier-Stokes equation when im-
posing the conditions

dv, v,
Uy ax <V ay2

U, <<y, , (2)

where v is the kinematic viscosity. The first condition is
a consequence of the fact that the thickness of the fluid
layer & is small compared with a characteristic length L
along the x direction, in which thermocapillary motion
takes place. The second condition is accomplished when
R(h/L)<<1, R being the Reynolds number equal to
uh /v, with u =(h /47)3a/3x. In view of the preceding
hypothesis about the aspect ratio, Reynolds numbers of
the order of 1 or smaller will satisfy that inequality.
When considering the boundary conditions
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avx oa
v, =0 (y=0), nay o (y=h), (3)

together with the incompressibility condition written in
the form

fhvxdy =0, (4)
0

where we have assumed that the total flow is zero, one ar-
rives at’
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where we have taken into account that the fluid is in-
compressible!? and linearized around the stationary hy-
drodynamic fields. Here 8v, 8p, and 8T are the velocity,
pressure, and temperature fluctuations, X the thermal
diffusivity, and c, the specific heat at constant volume.
The square brackets denote the symmetric and traceless
part of a tensor. The stochastic sources IT* and J ff satisfy
the fluctuation-dissipation theorems

(TR (r, NI(r, 1)) =2k T, (£ (r —1')8(2 —1')

Va 2
This stationary solution clearly indicates that the motion (J R.(r,1) g R ('t ")) =2kp T (r)A8,;8(r—r1")8(t —1t')
is due to the existence of a nonconstant surface tension. (10)

Moreover, that equation reveals the appearance of the
characteristic frequency w= | Va | /1, which will be also
present in our analysis of the correlation functions.

The velocity and temperature fluctuations evolve ac-
cording to the stochastic differential equations dictated
by fluctuating hydrodynamics!!

V-8v=0, (6)

a—;‘L+v -V8v+8v-Vy, ——;lV8p+vV26v—iV-]1R ,
p

@)

where kg is the Boltzmann constant, A the thermal con-
ductivity, and the fourth-rank tensor 7;;, is equal to
1864 +6;8;). The stochastic differential equations
and the fluctuation-dissipation theorems introduced
above where also used in Ref. 8 to compute correlation
functions in the presence of external gradients.

III. CORRELATION FUNCTIONS

Our aim in this section is to compute the velocity and

¥+ V8T +6v-VT, temperature correlation functions. To arrive at the ve-
t locity correlation function we will apply the operator
—_yw? 4 . 1 VXV X to Eq. (7) and Fourier transform that equation in
XVioT + pc, LVv, [ Vov] pc, ®) the vector parallel to the surface r;. We then obtain
J
3’ 32 v,
k- — k:—— | |1+—¢6,¢, |8
‘ % [ SR e | R e

1 d d 9’
=——| |k 8, +—=-¢, | |ik,e,+-¢, k:—— |1 |-v-I®, (11
o i ,e,+ayey tze,+ay + |k; 3’ v an

where e;, with i =Xx,,z, are the unit vectors and 1 the unit matrix. For simplicity’s sake we have considered wave vec-
tors such that k, =0. Because our system is finite in the y direction we need to use Fourier series for the fluctuating
fields. We will follow the steps outlined in Ref. 13. Thus we consider a mirror image of our system between —hA and O
and split the velocity fluctuation and its corresponding random source as

0

. 1
Sv(kz,y,co)—Zh > bv

n=-—oo

n(kz,w)ein‘rry/h , (12)

V-IIR(K,,p,0) = lh S FR(k,w)e" ™/ (13)

n=-—oo

where 8v, and FX are the Fourier components of the fluctuating fields corresponding to the nth mode.
If (12) and (13) are used in (11) one arrives at

N i 3 x 1=2(—1)k"" A
k2 |[Glk,,0)] '8V, +~2#a—i‘k2 Ii_n) dv, €8,
Pl
:_% k8, + 5%, | ike,+ 0%, |+EIL|FE, 14

where we have defined the discrete propagator
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~ 1

Gk, 0)=——"—5, (15)
e —io+vk?

with & 2 =kﬁ +(nm/h)% In the discretized version of the fluctuation-dissipation theorem (9) we must replace the wave
vector along the y direction by nw/h and use the Kronecker 8. We then obtain

nm

k261,2+-_61,y l l ’ (16)

kzsk,z + n—hqiak,y

(FE(k,,0)FR(k,,0'))=2nD75, _,, [Eﬁak',, + .

where use has been made of the definition
D =2k, T0(21r)36(w+a)’)6(kz +k;).

Notice that the effects of the temperature gradient disappear in (16) as a consequence of the fact of considering wave
vectors such that k, =0. On the other hand the geometry of the problem, or in other words the absence of the convolu-
tion term in (7), enables one to compute the different components of the velocity correlation function matrix without
any approximation. For the same reason only some components of that matrix will contain nonequilibrium corrections

which are proportional to the surface tension gradient. Then Eqgs. (14)-(16) lead to the velocity correlation function
matrix

(80,80, YO+ (8v, 8v, ) (S, dv, )" (8v, v, )"
(8v, 80, ) (80,80, ) (6,80, |, an
(&v,8v, )" (80,60, )% (8v,6v, )"

where a superindex specifies the order in Va. Then only the x-i or i-x components, with i =x,y,z, exhibit nonequilibri-
um corrections. Furthermore, the correction to the x-x component is quadratic, and therefore can be neglected in our
approximation, whereas the remaining components vanish at equilibrium. To illustrate their behavior let us compute,

as an example, the static correlation function {8v,(k,,t)8v,(k;,t)). The analysis of its discrete modes yields

, 0, n=—m
(80, (k,, )80, (k,, 1)) = hi 2A_1ytm_i k2 ) (18)
—4— ) k), —m .
417227rkBT0|Va[ W m I (k,+k,), n®—m

To study the nonequilibrium corrections originated from
the surface tension gradient we will compare it with the
equilibrium correlation function

(v, (k,,1)80,,,(k;,1")) .
Then we compute the quantities B, ,, defined as

(Svnxsvmy> _pVa 2(_1)n+m_l 1

Bym= n+m

(8v,,80,,,) ki+k,

(19)

= 7”'2

which are essentially proportional to the ratio between
the characteristic frequency w,, defined above, and the
frequencies related to the viscous modes vk 2. One ar-
rives at

4 |2=1+mo1 1
:'—7{ P —
Bum=7 nam | hAR2+K2)
g%ﬁ[hz(lz%tlzé)]“ (20)

from which we conclude that the most important correc-
tions will occur for the lowest modes and at small viscosi-
ties, provided that the condition (2b) is fulfilled. To
evaluate the corrections let us assume a fluid layer under

[

a temperature gradient of 0.1°C/cm. If the fluid is water
at 20°C and h =0.3 cm, w,=1.5 s~ ! and # =3.4, then if
k,=100 cm™! the correction is about 0.72%. That
correction increases for mercury at 50°C (6.2%) and is
very important when the viscosity decreases dramatically
as occurs for liquid CO, at 20°C (80%).

The temperature correlation function can be also com-
puted by means of the procedure outlined above. In this
case we need to use the Fourier series

S 8T, (k™™ 21

n=-—o

1
T L
8T (ky,y,w) o
V-Jff(k“,y,w)———zlh S OXkj,wem™ (22)

n=-—oo

From inspection of Eq. (8) we conclude that, due to the
fact that the stochastic sources are not correlated, the
terms containing the stationary velocity introduce correc-
tions of first order in Va, whereas those proportional to
the velocity fluctuations give rise to corrections of second
order in the expansion parameter that will be neglected.
As a consequence, in order to obtain corrections to the
temperature correlation function we must consider in this
case wave vectors for which k,5£0. Our final expression
for the temperature fluctuation corresponding to the nth
mode is
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1 1 R ik, h | Va | I i
8T, (k,,0)=— o, G,(k,,0)0, +WGn(k,,,w)
oS A=D1
X ———————G ky, )
k=2_w (k——n)2 KTk
ks£n

XQRkp,0)+ -+, (23)

where now the propagator is defined as G/[(k,,o)
= —iw+«k %, this last expression we have indicated by
elipses those terms that give corrections to the equilibri-
um temperature correlation function of second order or
higher in Va [or VT due to the relation
Va=(3a/3T)VT].

As before, the fluctuation-dissipation theorem for the
discrete modes reads

J

(2m)2hkp T3 _ri—ik?
——e¢
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(QR(k),0)QR (K|, 0'))
=2hAE(q)5,, _, [ l—"hl 2-—ku-k|’| Slo+o'),
(24)

with the definition
E(q)=2kp(2m)*{T58(k,+k))—iTo8T[ 8(k,+k;+q)

—8(k,+kj—q)]}

(25)
in which we have used the form of the temperature gra-
dient VT =i8Tq, q being a vector in the direction of the
gradient.’

The temperature correlation function in the k-t repre-
sentation then follows from Egs. (23)-(25). The equilibri-
um contribution and the first correction in the surface
tension gradient are given, respectively, by

(8T, (k,1)8T,, (kj,t')) V= p "8(ky+k})8, _pm (26)
4h’kp TG Ve Ky (1Ml xe-okE -k}
A T2_f2 2
(8T, (k,, 3T, (kj,t')) V=] kn—km (ntm)
x8(k,+k;) (ns=—m) 27

0 (n=—m).

Notice that in this case the nonequilibrium correction
vanishes for t =¢’. The fact that the temperature correla-
tion function is now a development in powers of | Va |
introduces a restriction in our theory which follows from
the calculation of the quantities

(8T, (k;, 18T, (k;,t"))"

Com= (28)
mT T (8T, (kD8 T, (kj, t") )
Using (26) and (27) one arrives at
_ hkepe, | Va| [2=1)"Ftm4
A (n+m)?
X(e—t'Nk2—k2)
X 1—e <«<1 (29)
k2 k2 ’

which shows that the quantities C, ,, are proportional
not only to the ratio between w, and the frequencies cor-
responding to the viscous modes but to the quantity hk,.
As before, the corrections increase for the lowest modes.
Then to satisfy the inequality in (29) it is sufficient to im-
pose
k. , . ,

Cl,OZE;Z—mc(t“‘t )=t —-t") <1, (30)
from which we conclude that the relaxation time 7 de-
pends on the wave vector and constitutes an upper bound

for times in our theory. This quantity can be evaluated
for some liquids. For a layer of water of h =0.1 cm at

f

20°C, under a temperature gradient of 0.1°C/cm, the
characteristic frequency is w,=1.5 s~!, then for wave
vectors of the order 1000 cm~! we have 7=0.07 s. Un-
der the same conditions and for glycerin the value of 7 is
about 140s.

IV. DISCUSSION

To clarify and elaborate on some of the points raised in
this paper the following comments may be useful. We
have shown how to extend the formalism of fluctuating
hydrodynamics outlined in Refs. 7 and 8 to compute
correlation functions for finite systems. The stationary
state is a consequence of the presence of a temperature
gradient parallel to the surface of the fluid. For real cases
the surface tension depends on temperature, therefore the
existence of tangential stresses will induce motion of the
fluid layer. Our case provides an example of a system
away from equilibrium in which the physics depends cru-
cially on the existence of a finite dimension in the prob-
lem. The domain of applicability of the present theory,
HR(h/L)<<1, illustrates our contention. In fact, the
larger the aspect ratio, the smaller the Reynolds number,
therefore the thermocapillary motion fades away when
increasing h /L.

It is interesting to realize that the nonconstant surface
tension introduces a natural frequency w.= | Va | /7 in
our problem. In fact the capillary and viscous effects can
be contrasted through the relation

-
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Va/n

Vv |’ GD

| Fo| /| Fy| =

where F,, and F, are the forces related to surface tension
and viscous effects. Such a frequency constitutes the ex-
pansion parameter in which the correlation functions
should be developed and plays a role similar to that of the
velocity gradient in fluids under external gradients.®

As a consequence of the chosen wave vectors our ex-
pression of the velocity correlation function is exact as
follows from the fact that the component k, enters the
convolution term in Eq. (7). Our result (17) illustrates the
contention that some components of the correlation func-
tion matrix are different from zero due to the surface ten-
sion gradients. The nonequilibrium corrections given
through the quantities B, , are essentially proportional
to R(hk )72

To study the temperature correlation function we need
to keep the terms proportional to k, since they provide
the nonequilibrium corrections up to first order in Va. A
convolution term is then present and therefore an expan-
sion in Va is involved. As a consequence, we must intro-
duce a cutoff frequency 7! and a cutoff wave vector
(fiw,t)~'. Our theory is then valid for @>>7"! or
k, <<(ho,t)~!. Notice that in this case we have found
an upper cutoff wave vector instead of the ones usually
encountered when dealing with fluids under external gra-
dients’8,
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It is also interesting to realize from (27) that the none-
quilibrium part corresponding to the static temperature
correlation function vanishes and therefore no long-range
correlations are present at equal time. This result should
be compared with that for a fluid under a temperature
gradient for which we have correlations of the form
1/|r—r'|% On the other hand, the leading terms of
some components of the velocity correlation function ma-
trix given in (17) are nonequilibrium contributions pro-
portional to Va. This result is a consequence of our sta-
tionary temperature and velocity profiles given through
(1) and (5).

Finally, we will point out that the nonequilibrium
corrections to the correlation functions we compute are
the result of a nonconstant surface tension. Our situation
is then different to what happens when considering light
scattering from a liquid surface subject to a temperature
gradient, in which surface tension is assumed to be con-
stant.'
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