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Impossibility of the ground-state total angular momentum taking any value
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We prove that for any nonrelativistic rotationally invariant two-particle quantum system whose
interaction is velocity independent the total angular momentum of the ground state is bounded by

the sum of the spins; i.e., j., =5 +5,.

There are basic (and old) questions in nonrelativistic
quantum mechanics which, surprisingly, seem to not
have been answered in its 60-plus years of existence. A
survey of the literature and an oral sampling indicate that
one of them is the following: what are the possible
ground-state total angular momentum values j of a sys-
tem of two particles of spin s; and s,? It is known that if
the interaction is velocity-dependent j can take any value.
We therefore restrict ourselves to velocity-independent
potentials. For s; =s, =0 one knows the answer: due to
the centrifugal barrier /=0 and thus j=0. For
5;=0, s,=1 the answer is j=1.! For s;=s,=1 the
answer is, restricting oneself to parity and time-reversal
invariant interactions, j =0, 1.! One might think that this
is what one expects for / =0 but, of course, neither is / a
good quantum number nor, as shown in Ref. 1, does the
ground state necessarily have a component with /=0.
Indeed, the ground state can be a pure / =1 state.

In this paper we do three things. We streamline the
proof of Ref. 1 very much by working in a suitable basis.
We extend the proof for s,=s,=1 to any type of
velocity-independent interactions. The result remains the
same: j=O0 or 1. And, most importantly, we generalize
the proof to any values of the spin of the particles. The
result is j .. =s; +s,.

Consider the most general rotationally invariant Ham-
iltonian describing the velocity-independent interaction
between two spin-1 particles,

2
H=p3+1r“;+ V(r)+V, (r)A,+Vp(r)Ar

+V, (P A, +V,(r) A, +V(r) 4, , 1

where
A;=(8,+8,)T=ST=S,=JT,
A,=8,-S,=(28*-3)/4,
Ar=38,1S,T—8,'S,=(352—8?)/2, 2
A,=8,X8S, T,
A,=(8,—8,)T,

with 8; =0; /2. No parity or time-reversal invariance has
been assumed. Consider the set of mutually commuting
operators

40

3%,J,,8%,8, 3)
with common eigenstates
Plj,m;s,hy=j(j+Dlj,m;s,h), j=0,1,2,...
Jiljsmis,hy=mlj,m;s,h), me&[—j,j]
S?|j,m;s,h ) =s(s+1)|j,m;s,h), s=0,1
S, lj,m;s,hY=h|j,m;s,h), @

h€e[—s,s], j>0, =0, j=0.
As
[H,J*1=[H,J;]=0 (5)

it is enough to consider the m-independent matrix ele-
ments

(j,m;s",hn’'|H|j,m;s,h)={j,m;s,h|H|j,m;s',h')* (6)

which for j >0 correspond to a 4X4 and for j=0 to a
2 X2 matrix. Now, the five operators given in (2) form a
closed algebra. Indeed

[Sr7 Ad]:() ’
(S, 4,1=0,
[Sls Ad]=4lAp > (7)

(8%, 4,]1=—id,,
[4,, 4;]=i(S}—8*+1) .
The important point is that J*> commutes with all these
operators and does not appear in the algebra. In fact, it
cannot. Thus the matrix elements of these operators are j
independent (with the proper choice of phases). Let us
see this explicitly.
The first four commutators of (7) imply, in a simplified
notation,
(h'—h)(s'h'| Aylsh ) =0,
[s'(s"+1)—s(s+1)](s'h’| Ay|sh ) =4i(s'h’| A,|sh ) ,
(8)
(h'—h)(s'n’| A,|sh)=0,
[s'(s"+1)—s(s+1)]{s'h’| Ap|sh Y=—i{s'h’'| Aylsh ) ,
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from which it follows that there is only one independent
nonvanishing matrix element

(10 4,4]00)=2i(10| 4,00) , 9)
The last commutator of (7) finally leads to
[{10] 4,100} | =1 (10)

so that absorbing the possible j-dependent phase of the
matrix element (9) into |j,7;0,0) no j dependence enters
through the spin part of H. Thus the whole j dependence
comes from L2 It is not difficult to study the matrix ele-
ments of L? in the basis (3). This is best done with the
help of

[L%8%]=0,
[S,,[S,,L?]]=L?—J*>—8*+2S5?,
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[s'(s’+1)—s(s+1)]{s'h'|L?sh )=0,
[(h'—h)?—11{s'h'|L?|sh)

=[—j(j+1)=s(s+1)+2hr218 ) - »

(12)
(h+h"){s'h'|(L?*)?sh ) —2{s'h'|L2S,L?|sh )

=2(h+h"){s'h'|L*sh) .

From here one readily obtains the only nonvanishing ma-
trix elements

(00|L?|00)=j(j+1),

(1R|LH1R ) =jj+1)+2—2h7%,
[(1h:1|L?1R ) |2=2jj+1) .

[L2,[L3%S,]]1=2{L3%S,} , (1) Thus, with a particular choice of phases of, say,
g r |j,m;1,1) and [j,m;1,0) and the ordering [00),
which imply [11), |10}, and [1—1), we find for j >0,
|
) jG+1) Ve
H;=p +V .+ T +——
r 4
-V, 0 Vd+z—2i 0
VitV 27GF1)
0 T Vs V2j(ji+1) 0
2 r?
+ —_—
V ‘/ Y Tl
Vd-iTp ((gz-f-l) % v, V{({2+1)
r r
2i(i+1) Vi—V,
0 0 \/21(12+1) r— Vs
r 2
(14)

from which it follows, using the Hellmann-Feynman
theorem,? that

H, <H,<H;< ‘- . (15)

This is seen immediately from the derivative of H; with
respect to j,

_2j+1

r2

2j+1

H!
V2iG+1) r

J

1
- (16)

o © © O
o~ O O
—_ O = O
o =~ O O

which is non-negative (recall j >0) for j=1 and positive
for j > 1 because

(H))yz 3 Hyl, j=1
k (i)

(17)

with strict noninequality for j > 1.3
One can extend this proof to any spin. Consider two
particles of spin s, and s,. The Hamiltonian will be more

complicated than in (1), as products of spin matrices do
not linearize as for spin 1. Still, there is only a finite
number of spin-dependent operators and they can all be
written as monomials in S,, S?, Ay, and 4,. Thus, the
generalization of (7) to arbitrary spins suffices for generat-
ing the whole algebra

[Sr’Ad]:O ’
[s,,4,1=0,
[S% 4,]1=4i4, , (18)
[8% 4, ]=i[s,(s, + D) —s,(s, +1D]S, —i{ 4,,8%} /2,
[4,, 4;]=i[s;(s; +1)+s5,(s,+1)]
—i(282—S2+ A42)/2 .
Again, J? does not appear. The first four commutators

lead to the following expressions for the only nonvanish-
ing matrix elements of 4, and A4;:



1&

s1(s;+1)—s,(s,+1)
s(s+1) ’

(sh| Aylsh)=

2 (19)
1 (s+1h|Ap|sh) .

(s+1h!Ad|sh)=s

With the help of (19) the last equation of (18) leads to
(2s+3)|(sh| Ayls +1h)|>—(2s —1)|{sh| A4ls —1h)]|?
=2[s,(s; + D) +s,(s,+1)—s(s+1)]+h2

[ D=sts 0 ?

s(s+1) 20)

This allows an easy computation of |{sh|A4,|s+1h)]|
which of course is j independent.

Equations (11) and (12) hold for any values of s; and
s;. They lead to the following generalization of (13):

(sh|Lsh)=j(j+1)+s(s+1)—2n?%,
|(sh|L?sh—1)]
=V[jG+D—hh—D]sGs+D—h(h—1)] .

Let us choose the states |j,m;s,h ) with A5~ —s such that
the phase of (sh|L%|sh—1) is zero, so that the right-
hand side of the second equation of (21) is the matrix ele-
ment (not its modulus). There are now only 2s, +1 (with
s, =s,) states with unfixed phase left. This is not enough
for fixing the phases of all {sh|A,|s+1k) and thus to
ensure that no j dependence creeps in through these
phases. In order to solve this problem consider the dou-
ble commutator

[L%[L2 4,11=2(L% 4, . (22)

(21)
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Using (21), with the above mentioned phase convention,
one obtains from (22), after a certain amount of algebra,

2
(s+12—h2 |7

(s+172—(h—1)?
X{(s+1h—1|Ay4lsh—1), (23)

(s+1h|Aylsh )=

which allows to fix the phases of all (s+1k|A,|sh ) in
such a way that no j dependence enters by taking the
phase of (s +1—s| 4,|s—s) to be zero. This requires an
appropriate choice of the phase of the states |j,m;s, —s)
for all s <s,+s,. Incidentally all matrix elements of 4,
can now be obtained from (20) and (23).

The upshot of this study is that all the j dependence is
contained in (21). The final stages of the proof go
through as before in (16) and (17). The equivalent to (17)
now reads

o Vst D)—h(h—1)
T2+ D—hh—1)

Vss+D—h(h+1)
2Vj(G+1)—h(h+1)

(24)
which holds for j=s,;+s,
j>s+s,.

Thus j ., =s; t5,.

and holds strictly for
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