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We derive nonlinear diffusion equations and equations containing corrections due to fluctuations
for a coarse-grained concentration field. To deal with diffusion coefficients with an explicit depen-
dence on the concentration values, we generalize the Van Kampen method of expansion of the mas-
ter equation to field variables. We apply these results to the derivation of equations of phase-
separation dynamics and interfacial growth instabilities.

A rich variety of dynamic phenomena in pattern-
formation theory!~® is described by phenomenological
nonlinear partial differential equations. Nonlinear
diffusion equations appear, for example, in interfacial
growth instabilities,! spinodal decomposition in phase-
separation dynamics,? and shock-wave propagation.?
Other phenomena, such as the dynamics of fronts in
liquid crystals,* flames and chemical reactions,> and con-
vection in hydrodynamic flows® are described by
reaction-diffusion or more complicated equations. The
connection between a microscopic description of the sys-
tems and the corresponding macroscopic equations is a
difficult task and has only been considered in a reduced
number of simple situations.”’ "' This is the case of the
derivation of the Cahn-Hilliard-Cook equation for spino-
dal decomposition’ based on a coarse-grained procedure
on a lattice-gas model. Other recent examples are the
derivation of reaction-diffusion equations from lattice-gas
models with the combination of conserved and noncon-
served dynamics® and hydrodynamic equations from cel-
lular automata. '°

In the nonlinear diffusion equations, the diffusion
coefficient is usually assumed to be a constant indepen-
dent of the field variables. In the context of spinodal
decomposition, it has been estimated'' its expression is
based on physical grounds, and it really depends on the
field concentration variable. This explicit dependence
might produce quite important changes on late-stage spi-
nodal decomposition at low temperatures.!! More re-
cently, it has been pointed out!>! that the study of the
effects of a uniform external field, such as gravity in spi-
nodal decomposition!? and interfacial growth instabili-
ties,! may require the same type of generalization, giving
rise to modified Cahn-Hilliard equations. The introduc-
tion of fluctuations in these models, by means of the stan-
dard coarse-grained derivations, presents a number of
problems generated by the appearance of a multiplicative
white-noise term in the resulting modified nonlinear
Cahn-Hilliard-Cook equation.

In this Brief Report, we present a systematic method
for deriving macroscopic nonlinear diffusion equations
for coarse-grained fields and equations for the probability
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of fluctuations around the macroscopic evolution. The
results are completely general, and they can be applied to
situations that include field-dependent diffusion
coefficients.

The standard phenomenological coarse-grained pro-
cedure’ starts from a master equation governing the
lattice-gas dynamics of interacting particles and derives a
functional Fokker-Planck equation for the probability of
a field concentration variable. To do so, the lattice is di-
vided into cells of N sites and a coarse-grained concentra-
tion variable is defined for each cell. A main assumption
in this derivation is that a master equation is also obeyed,
at the coarse-grained level, by the probability of the
configuration of cells. The corresponding Langevin equa-
tion could be immediately obtained from the Fokker-
Planck equation. For example, in the case of a lattice-gas
model with Kawasaki (conserved) dynamics, the result
corresponds to the familiar B model of phase-separation
dynamics, ? also called the Cahn-Hilliard-Cook equation.

More recently, De Masi et al.® have addressed, from a
more mathematical point of view, what conditions are re-
quired to obtain macroscopic equations from microscopic
models. They have considered a lattice model in which
two dynamics, Glauber (nonconserved) and Kawasaki,
were competing. They have proved that if Kawasaki dy-
namics takes place in a microscopically faster scale than
Glauber dynamics, a macroscopic reaction-diffusion
equation is obeyed by the coarse-grained concentration
field. Furthermore, the fluctuations of the concentration
variable around the deterministic evolution have been ob-
tained. They obey Gaussian statistics.

An interesting aspect of this derivation is that it exhib-
its an explicit implementation of the usual phenomeno-
logical assumptions at the level of the microscopic model.
In this way, we can interpret the Kawasaki microscopic
fast dynamics as inducing a local stirring, destroying
correlations of spins inside the cells, and implying a situa-
tion of local equilibrium in the system. At the present
moment, the rigorous method has not been applied to
more general situations and, in particular, to the case for
which only Kawasaki dynamics is considered, but a dis-
cussion on general aspects involved in this procedure has
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been presented in Ref. 9.

A new situation appears when one tries to generalize
the standard phenomenological coarse-grained pro-
cedure’ to derive equations of models with field-
dependent diffusion coefficients. In a direct application
of this method, the resulting Fokker-Planck equation
would give rise to a Langevin equation with a multiplica-
tive white noise instead of the usual additive white noise.
In this equation, the correct equilibrium solution, im-
posed by the fluctuation-dissipation theorem, would be
ensured by the appearance of the diffusion coefficient in
the fluctuating term. The interpretation of this multipli-
cative white-noise term requires a fixed prescription to
resolve the Ito-Stratonovich dilemma. From both the
Langevin and the equivalent Fokker-Planck equations it
is possible to derive equations for dynamic properties,
such as moments and correlation functions. In the reso-
lution of these equations for the spinodal decomposition,
the available theory'! introduces an artificial dependence
on the coarse-grained lattice constant. This is a simple
way for avoiding the divergences induced by the special
6-correlated noise in this case of a nonlinear Langevin
equation with additive noise. No renormalized equations
have been obtained yet to avoid such a problem. In the
case of nonlinear Langevin equations with multiplicative
noise, it would not be surprising that problems of this
type will increase. Here, we take a different approach.

One of our basic ingredients is the Van Kampen expan-
sion of the master equation.!’> This method has been
mainly used in situations without spatial inhomogeneities
and here we generalize it to field variables. Our approach
consists of two main steps. The first one is an expansion
of the master equation for the probability of the cell
configurations in powers of a small parameter that
governs the size of the fluctuations. This parameter is the
inverse of the number of spins in each cell, N ~1. The
basic idea is that, in the limit of N going to infinity, no
fluctuations would be present in the concentration of a
cell. This would correspond to the deterministic macro-
scopic regime. In the next order of the expansion, we will
obtain the first corrections due to fluctuations. The
second step of our procedure deals with the particulari-
ties of the field variables. We have to introduce the mac-
roscopic limit both in the spatial and temporal scales.
Before implementing this step, we are at the level of the
discrete cell space and we are describing the temporal
scale of the individual occupancy cell dynamics. An in-
teresting aspect of the method is that the same parameter
N ! controls the fluctuations in concentration and also
the spatial and temporal rescaling. In this sense, we can
talk about a unified macroscopic limit.

We start from a stochastic lattice-gas model of in-
teracting particles. The dynamics of this model is given
by a master equation for the probability P({o},t) of a
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configuration {o0}={0,,0, ...}, where o,=1,0 indi-
cates an occupied and an empty site of the lattice, respec-
tively. Here, we will study Kawasaki dynamics, but the
method could be, in principle, extended to Glauber dy-
namics or a combination of both. By using the standard
coarse-grained procedure, one divides the lattice into reg-
ular cells of N sites and defines the concentration of the a
cell by

Co=Nc,=3 o, (1

I, ea

where C, and ¢, are “extensive” and “intensive” quanti-
ties, respectively. By considering a Markovian assump-
tion, one can write a master equation for the probability
P({C},t) of a configuration of cells, {C}={C,,C,, .. .}:

9,P({C},1)= 22E[W({C]“"q{C})P({C}"“,t)

—W({C}—{C}*)P({C},D],
(2)

where the indexes a and i numerate the cells and their
next neighbors respectively, € is the concentration inter-
changed between two cells, and W ({C}*—{C}) is the
transition probability between initial configuration
{c}“={c,,...,C,—¢€C,.;+e¢, ...} and the final one
{C}={C,,...,Cy,Cpy;s...}. By assuming that the
fluctuations are small, we express the intensive concentra-
tion ¢, in the form

Cuo=ca+NV2E,, (3)

where ¢, is the macroscopic concentration (N — o) and
&, takes into account the corrections due to fluctuations.

In order to apply the expansion method, it is required
that the transition probabilities have well-defined
behavior for large N. Then it is natural to assume an ex-
pansion of W in powers of N ! when W is expressed in
terms of the intensive variable c¢. If one uses the fluctua-
tion variable £ instead of the variable ¢, from
Eq. (3), one obtains, in general, an expansion of
W({C}* > {C})=®((c+N12£)% ai,e) in powers of
N ~1/2 as follows:

O=T(N)(Dy+N 2®, ,+N &+ ---), @)

where T (N) is a global factor that will be used to define a
macroscopic time scale and ®; are general functions to
be specified in each particular case. A similar expansion
is valid for W({C}—{C}*)=®((c+N '2&);ai, —¢).
Equations (3) and (4) are the basic ingredients of the ex-
pansion method. By taking into account that Eq. (3) im-
plies that P({c},t)=II({&},t) and substituting Egs. (3)
and (4) in Eq. (2), we obtain

'a_Q]()(al)

Ept Q@)+ 1D EQy(ai) (1T, (5)
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where D¢ =(3/3§,,, —3/3&,) and
Q,,,(ai)=3 €"®,((c+N~"%);ai,e)l g (6)

are the moments of the transition probability (4).
Q,,, (i) could contain a dependence on D¢

At this point, we start the second step of our procedure
by taking the macroscopic limit in space and time. We
use the rescaling of variables in a d-dimensional space
given by

=tT(N)/N, x=x,/NV4. 7

The macroscopic time 7 and space x could be interpreted
as follows: in a 7 interval many interchanges between
different microscopic configurations are included to have
a noticeable change at the macroscopic level; further-
more, in an x interval many cells are contained to ensure
the spatial continuous limit. A similar rescaling was used
in Ref. 9.

Now, we consider the different orders in the continu-
ous version of the expansion (5). To the lowest order we
get the macroscopic conservation equation for the con-
centration field

d 7€ aovﬂlo( ) (8)

where a, is the lattice spacing and the flux Q4 is given by
the first moment of the transition probability W. The
next order gives a Fokker-Planck equation for the fluc-
tuations

M ) [ax—2— d

5:910(0)

E(x)+Q, ,(c)

+1lapt IV ——

Sg( on(c‘) l-[
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This is a linear equation with time- and space-dependent
coefficients that evolve according to the macroscopic Eq.
(8). Equations (8) and (9) are the main results of this pa-
per.

Now, we present an example which is a prototype of
field models in phase separation.? The transition proba-
bility is given by

W({C}"—{C})=M({C}* {C}lexp({AF), (10)
where AF =F({C}*)—F({C}) and F({C})=Fg.({C})
+F,({C}) is the Ginzburg-Landau functional free ener-
gy’ plus any contribution from an external field. Further-
more, M({C}*,{C]) has to be a symmetric function
of its arguments to ensure that detailed balance

holds. Here, we assume the simplest form
M{C}* {CH=m({C}*)m({C}). It has been ob-
tained'! from a phenomenological theory that

m({c})=m(c)=[c(1—c)]'/2 For late-stage spinodal

decomposition at low temperatures, the concentration
values fluctuate approximately from 1 to O and then a
reduction in the diffusion process could be present. In
the literature it is usual to take M =p(€), where p(€)isa
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symmetric function of the interchanges. This last as-
sumption implies a constant diffusion coefficient. From
Eq. (10), one can obtain the corresponding equations (8)
and (9) for this case.

In the standard phenomenological approach, and after
the Fokker-Planck approximation is obtained, an expan-
sion in powers of € and a truncation to the second mo-
ment of p (€) is done. To compare with these results, we
make now the same type of approximation in the result-
ing equations. Then, we obtain

de _ ¢ 2y 2+d 8F ()
i L(e2)al VM y(e)V—— 5, (11)
Bl
S =—1a3*i(e)
3 5F (c)
dexag( [ [M(,(c)v o '§(x)
F M V=211, (12)
O sE(x)|

where (€?) is the second moment of p (). Equation (11)
is a nonlinear diffusion equation for the macroscopic field
¢ with a diffusion coefficient M(c)=m?%(¢). It was pro-
posed by different authors.!"'2! Furthermore, our ap-
proach allows the study of fluctuations around the mac-
roscopic evolution by means of the Fokker-Planck equa-
tion (12). This is a linear equation with time- and
position-dependent coefficients and with additive white
noise obeying a fluctuation-dissipation theorem with a
diffusion coefficient My(c(x,¢))=M,(x,t). The presence
of an external field such as gravity is contained in Egs.
(11) and (12) thanks to the presence of My(¢(x,t)), as can
be seen by taking into account that the free energy of a
uniform gravitational field is linear in the spatial coordi-
nates. This contribution would be cancelled after two
consecutive spatial derivatives if M, did not depend on ¢.

To conclude, we have presented a systematic method
to derive macroscopic equations for field variables and
equations for the fluctuations around the macroscopic
solution. The treatment could be useful in situations for
which small fluctuations are needed to initiate the evolu-
tion of the processes that later will evolve around the
nonlinear macroscopic solutions. This is the case, for ex-
ample, in spinodal decomposition for which the evolution
from the initial unstable state is dominated by the macro-
scopic deterministic equation.!* These equations could
be applicable to describe late-stage spinodal decomposi-
tion and the effects of an external field in spinodal decom-
position and interfacial growth phenomena. The treat-
ment of nonlinear equations with multiplicative white
noise that could be derived by the application of the stan-
dard coarse-grained procedure remains open. Work on
this subject is in progress.
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