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We consider mean-first-passage times and transition rates in bistable systems driven by dichotomous
colored noise. We carry out an asymptotic expansion for short correlation times 7. of the colored noise
and find results that differ from those reported earlier. In particular, to retain corrections to O (7.) we
find that it is necessary to retain up to four derivatives of the potential function. We compare our
asymptotic results to existing ones anc also to exact ones obtained from numerical integration.
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I. INTRODUCTION

In recent years a great deal of attention has been devot-
ed to the study of mean-first-passage times (MFPT’s) and
transition rates in bistable systems driven by colored
noise [1-11]. A number of different techniques, at least in
part designed according to the nature of the noise, have
been applied to this problem. These include methods
that are particularly suited to handle Gaussian noise with
short correlation times (slightly colored noise) [1,6,9] and
others that are especially useful for intermediate or long
correlation times (highly colored noise) [1,7,8]. The com-
parative success of these techniques has been studied via
extensive numerical simulations. Methods to deal with
noise that is not Gaussian have also been developed [1-4].
Among these is the “stochastic trajectory analysis tech-
nique” (STAT), which is particularly useful when the
noise can only take on a small number of values, e.g., di-
chotomous noise [12] and shot noise [13].

Herein we use the STAT to study the mean-first-
passage time and the related transition rate problem for
bistable systems driven by colored dichotomous noise.
Such systems evolve according to the dynamical equation

X(t)=—V'"(X)+g(X)F(t), (1

where V(x) is a bistable “‘potential” function (see Fig. 1).
In previous work we have obtained formal results for
mean-first-passage times for this problem [12], but the ex-
plicit representation of the formal results was only con-
sidered for linear systems for which ¥V (x) is a harmonic
(quadratic) potential and g(x)=1. In the bistable case,
—V’(x) has three real roots. Two of these, x, and x,,
are minima and therefore correspond to stable points of
the potential [i.e., stable points of the system in the ab-
sence of the noise F(t)]. The third root, x,, is a max-
imum and therefore corresponds to an unstable point of
the potential. The noise F(z) is a dichotomous Markov
process that can take on the values *a(a >0). The
length of time that F(¢) retains either value is assumed to
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be governed by an exponential distribution,
W(r)=nre M, (2)

so that A ™! is the mean time between switches from one
value of F(t) to the other. The function g(x) embodies
the coupling between the deterministic system and the
noise and reflects the fact that this coupling may in gen-
eral depend on the state of the system. For later conveni-
ence we rewrite Eq. (1) in the form

X()=f(X)+g(X)F(t), (3)

where the drift term is given by f(x)=—"V"(x). In gen-
eral, we restrict the functions f(x) and g(x) to be
smooth and such that the solution X (¢) of Eq. (3) never
becomes infinite in a finite time. We further restrict g (x)
to be positive.

In the absence of noise (a=0) the system evolves ac-
cording to the dynamical equation
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FIG. 1. The symmetric bistable potential function of Eq. (10)
with ¢ =d=1. Note that the theory does not require the func-
tion to be symmetric.
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X()=f(X), &)  Fig. 2(a)], so that
+ ty—
i.e., it evolves monotonically towards one of the minima f(xg)tag(x7)=0 (8)
x; or x, of the potential V(x), the choice being deter- 4
mined by the initial condition X (0). Once a minimum is
reached, no transitions between minima can occur since lim X, (¢)=x" . 9)

the minima of the potential are the asymptotically fixed
points of the system.

In the presence of dichotomous noise, the random pro-
cess X (¢) alternately evolves according to one of the two
deterministic dynamical equations

X()=f(X)+ag(X), (5a)
X()=f(X)—ag(X) . (5b)

The stochastic element enters through the random
lengths of time that each of these two dynamical equa-
tions alternately describes the evolution. The two
effective ““force” functions governing the evolution are
now

d eﬂ‘ — ’ —_
—Vix)=V'(x)Fag(x) . (6)
dx —
In general, one might encounter one of two situations
which must be distinguished before we can proceed. If
the value a of the noise is too small, then the effective po-
tential functions still exhibit two minima and one max-
imum, albeit shifted from those of the original potential
V(x). [We assume that g(x) does not introduce new
minima, i.e., we assume that Ve_f(x) and V°%(x) have no
more minima than does ¥V (x). The discussion can be
generalized to situations where this is not the case.] An
example is shown in Fig. 2(a). As the noise changes be-
tween its two possible values, the bistable potential alter-
nates between VT and VT and hence the precise loca-
tions and depths of the minima also alternate. Neverthe-
less, once the process is in one of the wells, i.e., near one
of the minima, it will always stay in that well. The entire
dynamics occurs within the well and simply involves a
readjustment of the process to the local changes of the
well. In particular, transitions between minima are not
possible since the dichotomous noise in this case is not
sufficiently strong to cause transitions. This situation is
therefore uninteresting from our point of view. The in-
teresting situation arises when the noise is sufficiently
strong to cause one of the two wells to disappear, as indi-
cated in Fig. 2(b). Now the noise can clearly cause transi-
tions to occur: the well in which the process finds itself
suddenly disappears as the noise changes to its other
value, causing the process to “roll down” the potential
ramp towards the other well. It is this situation that we
consider further in this paper.

Let X (¢) and X _(¢) denote the solutions of Egs. (5a)
and (5b), respectively. Under our assumptions about the
behavior of the functions f(x) and g (x), it then follows
from the comparison theorem [14] that for all time

X, ()=X_(1). (7)

We define x* to be the asymptotically fixed points of the
deterministic equations (5a) and (5b) [e.g., the minima of

t—

Note that x,~ (x,") lies below x, (above x,). Also note
that the process X (z) always lies within the interval
[x,7,x.], provided that X (0) does.

In general, the transitions discussed above can occur if
fx)+ag(x)>0 and f(x)—ag(x)<0 for all
x €[x,7,x,7]1[15]. A case of particular interest is that of
additive noise [g (x)=1] and a symmetric potential of the
form

—_ € 2.d 4
Vix) 2x +4x . (10)

Transitions from one well to the other of this bistable po-
tential will occur if
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FIG. 2. The effective potential Vf=V(x)—a with V(x)
given by Eq. (10) with ¢ =d =1. (a) a=0.2; (b) a=0.5.
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With these preliminaries, we can now proceed to the
calculation of the transition rates between the metastable
states and other related quantities. The paper is organ-
ized as follows. In Sec. II we apply STAT to the system
(1) to evaluate the transition rates from one stable state of
the potential to the other. In Sec. III we present higher-
order corrections to the asymptotic results given in Sec.
II. Here we also check our results against known limits
and compare them with those of other approaches. Our
conclusions are presented in Sec. IV.

II. MEAN-FIRST-PASSAGE TIMES
AND TRANSITION RATES

In our previous work we used STAT to obtain exact
analytic expressions for the mean-first-passage time
(MFPT) to either one of two critical levels, say z; and z,,
bounding a region, i.e., we calculated the mean time to
first exit a region bounded by these values [1,4,12]. In bi-
stability problems, on the other hand, one is interested in
the MFPT to a single critical level, such as, for example,
a metastable or an unstable state. The expressions that
we have previously derived can be used for this latter
case by careful limiting procedures that take into account
that we are now interested in the MFPT to a single level.
However, instead of using our previous expression, we re-
peat the derivation for the single-level case in Appendix
A and arrive at the result

eMD(x) —AD(x’)

x , e
ag(x)+f(x) fx;dx ag(x')—f(x")

—A[D(x)—D(x)]
e

ag(x")+f(x") |’
(12)

T,(xo)=2A [“dx
o=2f

1 %o .,

+(1-B) —}t+2fxs_dx

where S is the probability that F(0)=a, X (0)=x, is the

initial value of the process, and the “effective potential
function” ® is given by the indefinite integral

o(x)=—2 [ax'—5TE (13)
a‘gi(x")—f4x")

To proceed further, let us assume that the process ini-
tially lies in the neighborhood of one of the minima of the
potential, i.e., xo~x, of xo~Xx,. As a final state we con-
sider two cases that have been extensively discussed in
the literature. In one, x ~x,, i.e., the final state is the
maximum of the potential V(x) [9]. This quantity has
been denoted by T,,(x() to indicate passage to the “top
of the barrier,” although it should be noted that in the
presence of the fluctuations x, is no longer the maximum
of any instantaneous “potential” experienced by the pro-
cess (this fact has elicited some discussion in the litera-
ture concerning the merits of calculating T, at all when
the noise driving the system is not white [16]). From Eq.
(12) we have
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x Ad(x) —AD(x")
u e x e

Xo) xo “ ag (x)+ f (x) fx; * g (x)—f(x")

o HON =]

ag(x')+f(x")

Ttop (

1 *o .,
+(1—PB) -5\—+2fxs_dx

(14)

In the other case z=x, and xy~x; (or vice versa), i.e.,
we are concerned with passage from the vicinity of one
minimum of the potential ¥ (x) to the other. This quanti-
ty has been denoted T, ,(x,) and is given by

—Ad(x’)

e}ab(x) x , e
ag (x)+ £ (x) fx;d" ag (x')—f(x")

Too(x0)=2A [ “dx
X0

—A[@(x") = D(x)]
e

1 *o .,
+1=h x+2fx;dx ag(x)+f(x")

(15)

The expressions given above can easily be calculated
numerically for any value of the parameters A and a. In
fact, if f(x) is odd the double integral in Eq. (15) [but not
the one in Eq. (14)] can be written in terms of single in-
tegrals because of symmetries when one takes xy,=x,
[17] (see Appendix B). In any case, our interest here lies
in obtaining analytic expressions for the mean-first-
passage times and in comparing them with existing re-
sults. For this purpose we find it necessary to implement
the weak-noise approximation, according to which [18]

D=ad?r =a—2<<1 (16)
< 2M ’

where 7. =(2A) ! is the correlation time of the noise F(t)
[15]. In this limit the major contributions to both T,
and T, come from the vicinity of x =x,. The terms
proportional to (1—/) in both expressions are then negli-
gible (and in any case vanish if 3=1) and the remaining
integrals can be evaluated using Laplace’s method. To
leading order one obtains well-known results obtained
earlier by other authors [2,3]:

o 2
To = 1+0(Ti/2) e(a /2D)A (17)
top (a1|aul)l/2[ ]
and
2 2
TO:. 1+0(r.) (a /ZD)A’ 18
bot (a]lau,)1/2[ Te ]e ( )
where
A=d(x,)—D(x,) (19)

is the effective potential barrier and
ay,=—f(xy,,). (20

As observed before, the first 7. correction in T, is of or-
172

der 7./%, whereas that of T is of order .. Moreover,

up to order 7./2 we have



S

Tyoe ~2T

top *

21

We will see in the next section that this simple relation is
no longer valid when one includes higher-order correc-
tions.

With the assumptions outlined so far, the relationship
between the MFPT and the transition rate from one well
to the other of the bistable potential is [11,19,20]

1
Tbot

r~ (22)
Therefore to the order of approximation considered so
far and in agreement with previous results [2,3], the tran-
sition rate is given by

(a;la, )72 2
o~ u e—(a /2D)A . (23)

2

III. MEAN-FIRST-PASSAGE TIMES
AND TRANSITION RATES:
HIGHER-ORDER CORRECTIONS

Our main purpose in this paper is to consider the
corrections to Eqgs. (17), (18), and (23) that result from a
finite correlation time 7, in the weak-noise approximation
(16). To simplify the presentation, we restrict our results
to the case of additive noise [g (x)=1], although the gen-
eral expressions obtained in Appendix B do not imple-
ment this restriction. We consider the times T}, and
T, separately.

A. Transition rates

Consider first the higher-order corrections to T, and
to the corresponding transition rate. Here we compare
our results to those of L’Hereux and Kapral [2], who
themselves reported an incorrect prefactor in the transi-
tion rate given earlier by Van den Broeck and Hanggi [3].
The asymptotic expansion detailed in Appendix B yields
up to second order in the correlation time 7,

_ 21

T =z [1+ AT +0(D)]e 208 (24)
(aqla, N

where
2 2
1 avy, avy,
A=— |a;t|a,|+3 -3
e R
a2 a’pB
TR Rl B ML 25)
6 o 6 6|a,|
and
Bru=f"(x1u)s Yiu=—%f"(x1.) - (26)

The effective potential A is defined in Eq. (19).
In the “Gaussian white-noise limit,” denoted by the
subscript GW,

7,—0, a—w, D=a’r,, Q7

where D =a?r, is finite, Eq. (24) yields the known correc-
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tions to the Kramers result [11,21]

21 D Yu Y1
Tow=—2 11+ |3 -
oW (allaul)‘“l 4 la, > af
L5 (B, A
6 |ai la,l®
+0(D?) ]eAV/D , (28)
where
*1
AV=[ dx f(x)=V(x,)—V(x,), (29)

The transition rate associated with the MFPT (24) is

(ay]a, )17

- —(a?/2D)A

=— . 0
" 2m(1+ 4,) G0
For the symmetric potential (10), Eq. (30) reduces to

F=— 4 e—(az/ZD)A . (31)
V2m[1+ (3¢ /4)1,+(3d /2¢*)D]

Equations (24), (30), and (31) are the principal results of
this section and indeed of this paper. We compare (31)
with the corresponding result of L’Hereux and Kapral
[2], whose lowest-eigenvalue method yields the expression

=__ ¢  _—(a?n2DA
THK T (1t 3er,) ¢ ' 62)
We argue that (31) is the correct expression: for dichoto-
mous noise the weak-noise assumption necessarily implies
a small correlation time because the intensity of the noise
cannot be arbitrarily small if one is to have transitions at
all [cf. Eq. (11)]. Therefore, the contributions in 7, and D
are necessarily of the same order of magnitude.
Specifically, for the symmetric potential (10) with (11) we
must satisfy D >a?r, and hence ¢, and dD /c? are of
the same order of magnitude. Both terms must therefore
be retained in the denominator of Eq. (32). In the asymp-
totic analysis detailed in Appendix B these effects arise
from the appearance of fourth derivative terms of the po-
tential in the expansion to first order in D. The usual
procedure expands the potential V' (x) to second order,
which leads to an incomplete calculation of the contribu-
tions of O (D) to the MFPT. We find that the harmonic
approximation is only valid at lowest order, i.e., in the
calculation of the Kramers time, but that higher deriva-
tives of ¥ (x) must be retained in the calculation of any
corrections to the Kramers time. This conclusion is bol-
stered by the fact that ryx does not go to the rate

4 e—AV/D (33)

OV T 1 +(3d /2¢0)D]

in the ‘“Gaussian white-noise limit,” whereas our result
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(32) does.

A final interesting point to note is that all asymptotic
corrections to the Kramers time in the weak-noise limit
occur only in the prefactor, i.e., the Arrhenius (exponen-

tial) contribution remains unchanged.
J

apB,

3|aul3/2

Tiop="—"2" 1+@2/m)2 ||, |2+
(a1|aul)

172

where A is given in Eq. (25) and A is defined in Eq. (19).
The 7./? dependence has been obtained analytically [9]
and numerically [22] for Gaussian colored noise. Note
that the ratio

T,
2 o[ 1—prl P+ P2+ 0 (7372)] (35)
Ttop
where
ap
- 172 172 u
u=(2/7) la, |12+ Ve, [ (36)
is equivalent to order 7, to the exponential form
T 172
L R (37)
Ttop

This dependence has been conjectured from computer
simulation results for a bistable process driven by Gauss-
ian colored noise [22,23]. We stress that Eq. (37) contains
no more information than Eq. (35) since both are restrict-
ed to small values of 7, and valid only to the order explic-
itly shown in Eq. (35). In the Gaussian white-noise limit
(35) reduces to

T

%:2[1—MGWD1/2+,LL%;WD +0(D3¥?)], (38
top

where

B
— 172 u
MHcw (2/77) 3| u|3/2 . (39)

For a symmetric potential 8, =0 and one obtains the
simpler result

T
—=24+0(D*?) . (40)
top
Thus, even in this limit there are corrections to the fre-
quently invoked relation T, =2T,,, when the diffusion
coeflicient is not vanishingly small.

top

IV. RESULTS AND CONCLUSIONS

The principal results of this paper are embodied in Egs.
(24) and (34) [see also Eq. (31)]. These are asymptotic ex-
pressions for the mean-first-passage times for transitions
in a bistable potential when the correlation time of the di-
chotomous fluctuations driving the transition is short but
nonvanishing. Equations (24) and (31) apply to transi-

JOSEP M. PORRA, JAUME MASOLIVER, AND KATJA LINDENBERG

FS

B. MFPT to top of potential barrier

Next consider the time T,,. The asymptotic evalua-
tion of the integrals appearing in Eq. (14) when g(x)=1
as detailed in Appendix B leads to the result

Ti/2+ Arc+0(ri/2) e(az/ZD)A’ (34)

tions from one well to the other while (34) describes a
transition from one well to the top of the barrier of the
(noiseless) potential. Our results recover the correct
white-noise limiting behavior, which is identical to that
of a bistable system driven by Gaussian white noise. We
find that the corrections to the zero-correlation-time limit
up to O (7.) require the retention of derivatives of the po-
tential function up to fourth order, contrary to the har-
monic approximations that have been implemented in the
past.

It is always difficult to assess on an analytical basis the
range of validity of an asymptotic expansion of the sort
that we have implemented here. Figures 3, 4, and 5 show
a comparison of our analytic results for T, and those
obtained by exact integration of Eq. (15) with B=1 for
the potential function (10) with additive noise. Our result
in this case reads

Tou=V27 |14+ 257 + 2L p [oa>/20 (41)
4 2c
1.40 4
s
7/
s
130 4 7

0.90 T T T 1
0.00 0.0l 0.02 0.03 004

- 2
D=a°t¢

FIG. 3. Ratio of T, /T for the bistable potential of Eq. (10)
with ¢ =d =1 and additive noise of amplitude a=0.5. X, exact
results obtained by numerical integration of Eq. (15) with B=1.
, our asymptotic expansion as given in Eq. (42); — — —,
results of L’Hereux and Kapral [2]; - - . ., results of Van den
Broeck and Hiénggi [3].
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FIG. 4. Same as Fig. 3 but with a=1.0.

In all the figures we have taken the coefficients ¢ and d in
the potential function (10) to be unity. We have plotted
the ratio of T, to its value when the correlation time 7,

vanishes, ie., to the “Kramers time” Tk
=V2mexp(a®A/2D):

T

—%=1+%n+%p : , 42)

We also show the results of L’Hereux and Kapral [2] and
those of Van den Broeck and Hianggi [3]. The value of a
for transitions to occur must exceed the critical value
given in Eq. (11), a,=0.385. The three figures corre-
spond to different values of a: a=0.5, 1.0, and 5.0. The

0.50 T . .
000 010 020 030

_ a2
D=a Tc

040 050

FIG. 5. Same as Fig. 3 but with a=5.0.
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agreement of the exact results with our asymptotic ones
is excellent at small values of 7., and is clearly better than
that of other theories. As a increases, the regime of
agreement is pushed to lower values of D and hence to
proportionately lower values of 7.

We note in the exact results shown in Fig. 5 the even-
tual saturation of T, /T and its subsequent decrease
(which is of course not predicted by the low-order asymp-
totic analysis since the saturation-decrease behavior is a
long-correlation-time result). When B=1, the process
starts at x =—1 from the configuration shown in Fig.
2(b) and begins to “roll down the hill” toward x=1. As
time proceeds, a change in the value of the noise may
take place and cause the ramp to slope in the opposite
direction, holding the process captive near x = —1 if it
has not rolled down the hill sufficiently far before this
change occurs. After a while, another switch occurs and
again the process rolls toward the desired final state x=1.
The frequency of these switches is precisely the reciprocal
of the correlation time 7., and the fate of the process de-
pends on the magnitude of the correlation time compared
to the time it takes for the process to roll downhill. As
the correlation time increases, the transition will be
completed with ever greater probability during the initial
configuration of the potential. This “ballistic” time even-
tually reaches a limiting value T, dependent on the
slope of the ramp:

1 X

Tbot(fc—mo)—>Tba,=fhldx—f(fx(H)_a : 43)
This time is extremely short compared to Tk (in all the
cases shown in the figures a?A /2D > 10) and hence the
ratio drops precipitously for long correlation times. If we
average over the initial value of the noise (e.g., B=1),
then eventually the rate-limiting step in the process for
long correlation times will be the time it takes for an ini-
tially unfavorable configuration to switch to the favorable
one, namely, 7, itself:

Toot—Tc » v (44)

since T\, is then short in comparison with 7.. In this
case the ratio T, /Tk also drops precipitously with in-
creasing 7.
Finally, consider T
c=d=1:
T

top

top for the potential (10) with

=m{1+(2/m) 2712+ 37, + D]\ 2P | (45)

As said earlier, a 7./ term in T, has also been found for
Gaussian fluctuations, but the coefficients of the various
powers of 7, differ from those given in (45): in the Gauss-
ian case 7./ is multiplied by (2/7)'/?A,, where A, is the
“Milne extrapolation length” with numerical value
Ay =1.460354. . . related to the Riemann § function [9],
and the coefficient of 7, is 3.

ACKNOWLEDGMENTS

The authors are grateful to Dr. R. F. Pawula for a
careful reading of the manuscript and for his suggestions



4872 JOSEP M. PORRA, JAUME MASOLIVER, AND KATJA LINDENBERG 4

for its improvement. Two of us (J.M.P. and J.M.) ac- z, and let p(i)(t;xo) be the conditional PDF’s when the
knowledge partial financial support by the Direccién initial value of the noise is specified, i.e., when F(0)=a.
General de Investigacién Cientifica y Técnica under Con-  Then

tract No. PB90-0012, and by the Societat Catalana de

Fisica (Institut d’Estudis Catalans). One of us (K.L.) +) (=)

gratefully acknowledge support from the U.S. Depart- p(t;x0)=Bp " (1;x0)+(1—=B)p" " (2;x4) , (A1)
ment of Energy Grant No. DE-FG03-86ER13606.

where 8 is the probability that the initial value of the

APPENDIX A: DERIVATION OF Eq. (12) noise is F(0)=a. Following the steps of Ref. [12] one
easily establishes that for x, <z the Laplace transforms

Let p(t;x,) be the first-passage time pair distribution  p ‘*)(s,x,) of the conditional PDF’s obey the integral
function (PDF) from the initial (=0) level x,, to the level  equations [24]

J

ﬁ(+)(s’x0):e*(A+s)r+)\2fordtle_(k+s"1fowdtze_()‘+5)’2p-(+)(S’X2(12,t1)) (A2)
[
and easily expressed in terms of the inverse functions
= [ Zdte MTE s, X (8))) (A3) X7
fo 1 p 18y T = f dx—— x)+ag(x) (A7)
where The integral equations obeyed by the mean-first-
_ fz d 1 (Ad) passage times from x to z associated with the PDF’s de-
T f(x)+ag(x) scribed above can be obtained from (A2) and (A3) via the
relation
and
X, (t)=X,[t, +Xx7' , A5
1(2y) +[ T (x)] (AS) Tz(xo):_g'ﬁ(s,xo) (A8)
Xty )=X_(t,+ XX [, +XT'(x)]}) . (A6) s s =0

Here, as in the Introduction, X (¢) are the solutions of  and its analogs for the superscripted quantities. From
the deterministic dynamical equations (5a) and (5b), most (A2) and (A3) we obtain

|

T\ (x,) Zl(l—e_)”)-i-?»zf di,e “‘f dtye “MT (X, (ty,1))) (A9)
A
and
_ 1 © — At
T! )=I+7‘fo dtje "'TIT(X (1)) . (A10)

Rather than solving the integral equation (A9) directly, we find it convenient to first convert it into an integral equa-
tion for the x,, derivative of T\ ")(x,) (together with an appropriate boundary condition). We solve this latter integral
equation and then integrate once more to obtain the desired MFPT. The conversion to a useful integral equation for
the derivative of T " )(x,) is best accomplished by introducing the change of variables

= 1 _—1 = -1 —_ -1 =
t fXO dxf(xH_ag(x) X7'x)—X7 (x)=t 4 (x1,%0) s (A11)
= [ ldx =X T )~ X T x )=t (xp%,) - (A12)

x f(x)—ag(x)

In terms of these new variables, we can write Eq. (A9) as

——At+(xl,xo) x= e—kt_(xz,xl)
e — 71" . A13)
(x1)+ag(x1) fxl *2 f(xy)—ag(x,) (x2) (

—At zxo)

+’(x0)=%(1— A2 [ dx,

An equation for the x, derivative of T} " /(x,) is obtained by taking the derivative of (A13),
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de(+)(x0) 1 X 1 —At_(x,,xq)
= —2H+AT{ P xg)—A* [~ dxy—m—————e 2 OT{MAx,) Al4)
dx, f(x0)+ag(xo) 2 (X0 fxo 2 f(xy)—ag(x,) 2 ‘
and integrating by parts noting that ¢ _ (x, ,xy)=+ oo:
dT{ (x,) - dT{"(x,)
z of _ _ 2 A f dx x,e At _(x4,x0) 2 ) (A15)
dx, S(xg)t+ag(xy)  f(xg)t+ag(xy) Yx; dx,
The information that has been lost upon taking a derivative is reinstated by introducing the boundary condition
T{Y(z)=0 (A16)
obtained directly from (A13).
The integral equation (A 15) can be solved exactly using the method of the resolvent kernel [25], to obtain
dT ) (xy) - x _ _
z o) _ 2 . 2A f fdxz 1 A®(x,)—Plxy)] ’ (A17)
dx, ag(xg)+f(xg) ag(xg)+flxg) Jx, ag(x,)—f(x,)

where ®(x) is given in Eq. (13). In turn, (A17) can be in-
tegrated directly and with the implementation of the
boundary condition (A 16) yields

(+) 2 ekd)(x)
T} (x0)=2kfxodx————————ag(x)+f(x)
—Ad(x’)
X ————-——. Al8
fx ag(x')—f(x") ( )

Use of (A18) in (A10) then also gives, after some algebra,

_ 1
T! )(x0)=—x+Tz(+)(xo)
—A[P(x") = D(x()]
+2 f dx’ (A19)

NHf(x

Finally, Eq. (12) is obtamed by combmmg these two ex-
pressions as indicated by (A1) and (A9):

T,(xo)=BT!V(x0)+(1—B)T (x,) . (A20)

APPENDIX B: ASYMPTOTIC EVALUATION
OF THE MFPT

In order to evaluate the integrals that appear in the
MFPT results of Sec. II we apply Laplace’s method for
the asymptotic expansion of integrals of the form

fbdx q(x)e——tp(x)

when ¢ >>1. Specifically, we make use of a theorem given
in Ref. [26] and stated here in a simplified form more
suitable for our purposes.

Suppose that the lower limit @ is the minimum of the
function p(x) in the interval a <x <b and that as x —a
from the right, the following expansions hold:

px)~pa)+ 3 pi(x —a)k*r

} k=0 (Bl)
gx)~ 3 qp(x —a) vl
k=0

Suppose also that the first of these relations is

[
differentiable.
Then as t — 0,

Here u, v, and p, are positive constants.

b - - e k+v a
dx q(x)e tp(x)~e tp(a) T ,
fa 9 k§0 U t(k+v)/y
(B2)
where
an= Po
[ v
.U'Po/“
_lg1 (v+1)pige 1
3 il I 2 (v+/p ° (B3)
u KPo Po
2. = 9, (v+2)pq,
,= | = — =T
p ©ps
2 (V+2)q0
+[(,U+V+2)P1_2#P0P2]T
2u°pg
1
Xpé)v+2)/,u ’

and we refer the reader to Ref. [26] for a general
definition of the coefficients a, .

The integrals appearing in the expressions for the
mean-first-passage times can be evaluated asymptotically
in the weak-noise approximation. As pointed out in Sec.
II, in this limit the terms proportional to 1—/ in Egs.
(14) and (15) are negligible. Thus we may write

Tiop~ ¢(x ) (B4)

and
(BS)

1
Ty = _D_¢(x2) ’

where D, a small parameter, is defined in Eq. (16). Here

¢(z)=fzdx q+(x)e(a2/2m¢(x)
X0

X fx_dxrq_(xl)e—'((12/20)‘1’()(') , (B6)
Xg
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d ~ [* (a2/2D)®(x)
an o(2) f"o dx q ., (x)e
p— a xu -
qi(x)_————_ag(x)if(x) . (B7) x fx,dx g_(x)e (a?/2D)®(x) (B9)

We observe that for D <<1, Hence the double integral in (B6) has been split into the

. ) , product of two single integrals that can be evaluated us-

J7 g (x")e (2D gy ing the procedure (B1)—(B4).
% We note that a decoupling of the double integral (B6)
achieves its maximum in the neighborhood of x =x, and  into the product of two single integrals (plus another
that it is therefore a slowly varying function of x, provid-  Single-integral term) in fact follows exactly when x,=x,

ed x,” <x <x,. Therefore and z =x,, provided that the function f(x) is odd (so
: that x; = —x,) [17]. To see this, let us first multiply the
f" dx'q_( x")e ~(a2/2D)0(x") numerator and denominator of the inner integral in (B6)
x5 by ag (x)+ f (x) and note that
X
[ g "\p —(a2/2D)(x") -
=~ [ ldx'q_(x"e™t ¥V, (BY) P —— 7 AC. (B10)
s a“gi(x)—f4x)
Introducing Eq. (B8) into (B6) we obtain Straightforward manipulations then yield
J
X3 2 x (2 ' D X3
- (a®/2D)®(x) ’ ’ ’ ’ (a®/2D)®(x') 4 =
q>(x2>—f_x2dxq+(x)e a x fxs_dxg(x )g 4 (x')g_(x")e™@ = f_xzdqur(x) . (B11)

Next, multiply the numerator and denominator of the outer integral by ag(x)— f(x) and integrate by parts. Several
terms cancel if f(x) is odd, leaving the expression

x ’
D(x,)= fﬁz dxg(x)q+(x)q_(x)e(“z/w’q"")fx_dx’g(x')q+(x')q_(x')e_‘”Z/ZDN’("’
X x;

2 x
+_D_e(a /2D)<I>(X2)f 2 dxg(x)q+(x)q_(x)e‘(az/w)d)(") , (B12)
a Xy
where we have used the fact that ®(x,)=®(—x,). Finally, note that the double integral is the integral of an even func-
tion of two variables over half a rectangle in the (x,x’) plane and is one-half the integral over the entire rectangle,
which gives

%2 2ot [ —(a22D)0
¢(x2): %f_xzdxg(x)qﬁL(x)q*(x)e(a /2DY (X)fx~ dxg(x)q+(x)q_(x)e (a“/2D)P(x)

D (a?2D)0(x,) *2
+—e 2 f
—x,

» dxg(x)q+(x)q_(x)e‘(“2/21))‘”(") . (B13)

The exact decomposition (B13) is restricted to potentials of a particular symmetry and to particular initial and final
conditions (the latter restriction makes it inapplicable to T, in any case), while the approximate decomposition (B9) is
more generally valid. We therefore prefer to use (B9), but we must be certain that in the appropriate special case (B9) is
equivalent to (B13). It follows from straightforward manipulations similar to those that led to (B13) that (B9) can be
rewritten as

X XS+
d(x,)= %f_z dx g(x)q+(x)q_(x)e‘”z/w’q""’f B dxg(x)q+(x)q_(x)e"“Z/ZD"D‘"’
x, x,

D —(a?/2D)®(x,)
+ e 2 f

x
- ——i dx g(x)q+(x)q~(x)e(a2/2D)d>(x) . (B14)
2

The difference between (B13) and (B14) occurs in the last term as a reversal in the exponential signs. Both of these
terms are exponentially negligible in the limit of small D that we are considering here and therefore the two expressions
are indeed equivalent.

Let us now return to Eq. (B9) and consider the application of the theorem (B1)-(B4) to each of the single integrals.
Since x, is the minimum of ®(x) in the interval x; <x <x,, we get from Eq. (B2)

47D 172
aZQH(xl )

—(a2/2D)®(x,

[ dx g_(x)e (@ 2000 < lq_(x;)+0D+0 (D], (B15)

where
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o2 [45GD P (n)@Mx) g G )®M) |5 g G @) 516
a’ | 29"(x,) 8[P"(x,)]? 2[®"(x,)]? 24 [®"(x))]
Further, recalling that x,, is the maximum of ®(x), we find
x 172 2
[Tax g, (rettrmem L __ATD | @0, (o Rp124SD +0(DY4)] (B17)
%o 2 |a%o"(x,)]
and
*2 2 47D 2 (22D,
[ Cdx g (x)ele? /2P0 5 | T “[g4(x,)+SD +0(D?)], (B18)
*o a’l®"(x,)|
[
where The appearance of the D!/? term in (B17) is a conse-
" q' (x,) quence of the fact that the upper limit of integration x,,
R=2/am ———m)“(x 172 coincides with the maximum of ®(x), while in (B18) [as
“ in (B15)] the maximum is within the interval of integra-
149+ (x,)®""(x,) (B19) tion. Substitution of the appropriate results into (B4) and
3 |@(x,)|3? (BS5) then yields the results given in Egs. (24) and (35).
and “ Note added. Near the time of completion of this paper
" (x) (x.)D™(x. ) " (x)D"(x. ) there appeared in the literature a closely related paper
S —2|_ 9+ 9+ Xy Xu 9+ Xu Xu that contains results that agree with ours: M. Kus, E.
a?| 2d9"(x,) 8[@"(x,)]? 2[@"(x,)]? Wajnyrb, and K. Wédkiewicz, Phys. Rev. A 43, 4167
u

(x, D" (x,) ]
_ 5 4xxrIex, )] ] (B20)

24 [97(x,)]
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