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Several problems in the theory of photon migration in a turbid medium suggest the utility of calculat-
ing solutions of the telegrapher’s equation in the presence of traps. This paper contains two such solu-
tions for the one-dimensional problem, the first being for a semi-infinite line terminated by a trap, and
the second being for a finite line terminated by two traps. Because solutions to the telegrapher’s equa-
tion represent an interpolation between wavelike and diffusive phenomena, they will exhibit discontinui-

ties even in the presence of traps.

PACS number(s): 05.40.+j, 42.20.—y, 42.10.—s

I. INTRODUCTION

The persistent random walk, whose diffusive analog is
described by a telegrapher’s equation, is possibly the sim-
plest mathematical model allowing one to incorporate a
form of momentum in addition to random or diffusive
motion. A persistent random walk, in its simplest setting
in discrete time and on a one-dimensional lattice, is a
walk in which at each step, one chooses a probability
which determines whether the random walker takes a
step in the same direction as the immediately preceding
one or whether the direction of motion is reversed. On
appropriately scaling the lattice spacing, the time, and
the persistence probability, one can derive the
telegrapher’s equation from the discrete evolution equa-
tion of the persistent random walk. The persistent ran-
dom walk differs from the ordinary random walk in that
the probabilistic element used at each step is the proba-
bility of continuing to move in a given direction rather
than the probability of moving in a given direction in-
dependent of the direction of the immediately preceding
step. Thus the process remains a Markov process, but of
second rather than first order.

Such a model was first introduced by Fiirth as a model
of diffusion in a number of biological and physical prob-
lems [1] and shortly thereafter by Taylor in the analysis
of turbulent diffusion [2]. The solution to a variety of
forms of the telegrapher’s equation on a line unbounded
in both directions has been given by Goldstein [3]. Kra-
mers [4] and Wang and Uhlenbeck [5] gave early analyses
of Fokker-Planck equations in the presence of absorbing
boundaries, which allow for both spatial and momentum
variables. A variety of models of photon migration in a
turbid medium that include forward-scattering effects
[6,7] can be formulated in terms of a telegrapher’s equa-
tion. There is considerable literature [8] on physical pro-
cesses, particularly in the field of thermophysics, leading
to a mathematical formulation in terms of a telegrapher’s
equation. The physics behind such applications implies
that the signal propagation speed is finite rather than
infinite as in the case of ordinary diffusion.

The use of a similar mathematical formulation in the
design of studies of the scattering and absorption of laser
radiation from human tissue [9,10] suggests that it is of
some interest to study properties of the telegrapher’s
equation, rather than the diffusion equation, in the pres-
ence of one or more absorbing boundaries. There is little
literature related to the telegrapher’s equation in the
presence of either absorbing or reflecting boundaries. An
expression has been found for the mean first-passage time
of a particle, whose motion can be described by a
telegrapher’s equation, to escape from a finite interval
[11]. In the present paper we derive the solution of the
telegrapher’s equation for the probability density of the
displacement of a particle diffusing on a line in the pres-
ence of one and two absorbing boundaries. The solution
of the second of these allows one to calculate the survival
probabilities for the same systems, and thereby recover
the results of Ref. [11]. A more interesting qualitative
feature to our solutions is the appearance of discontinui-
ties in the concentration profile in the presence of traps,
which illustrates the fact that the telegrapher’s equation
can be regarded as an interpolation between the wave and
diffusion equations. Our analysis is for the case of a one-
dimensional process since there is no unique multidimen-
sional extension.

II. FORMULATION OF EQUATIONS,
INITIAL AND BOUNDARY CONDITIONS

In order to derive the proper boundary conditions for
the telegrapher’s equation in the presence of traps, it is
convenient to decompose the probability density for the
position of the diffusing particle into two components, de-
pending on whether the particle is moving along the line
to the right or to the left. This corresponds to treating
the persistent diffusion process as a two-state diffusion
process in the sense of Ref. [12]. Let a(x,t|x,) be the
probability density for a particle that moves in the direc-
tion of increasing x at time ¢ to be at x at that time hav-
ing been at x, initially, and let b(x,t|x,) be the corre-
sponding density when the particle moves in the direction
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of decreasing x. These functions satisfy the coupled set
of equations
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where ¢ and T are parameters having the dimensions of
velocity and time, respectively. By eliminating b(x,¢|x,)
in terms of a(x,t|x,) in Eq. (1a) one finds that a(x,#|x)
is the solution to a telegrapher’s equation which is writ-
ten
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It is convenient, in the following analysis, to introduce
dimensionless parameters 7 and y through the transfor-
mations t=T7 and y=x/(cT), which is equivalent to
setting both the coefficient ¢ appearing in Egs. (1) and (2)
and the parameter T equal to 1. Since in most physical
applications one cannot distinguish between right- and
left-moving particles, we will be interested in calculating
the probability density for the position of an arbitrary
particle at time 7

P, 7lyo)=a(y,7lyy)+b(y,7ly,) (3)

in the presence of trapping sites at y =0 and L, where L
is now a dimensionless parameter which specifies the
length of the interval. For simplicity we will take the ini-
tial conditions appropriate for a symmetric process:

a(y,0ly,)=b(y,0ly,)=8(y —yy)/2 . 4)

A useful simplifying set of transformations for the
analysis is the following:

a=Ae "% b=Be "?. (5)

The new functions A and B are solutions to the same set
of self-adjoint equations (we give only the equation
satisfied by 4 ):
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The initial conditions on A4 and B are then identical to
those in Eq. (4). Initial conditions on the time derivatives
are found by returning to the dimensionless version of
Eq. (1). Since the functions a and b are initially equal by
Eq. (4), it follows from Eq. (1) that
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We need only concentrate on the calculation of the func-
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tion A(y,7ly,) since B(y,7|y,) can be found from it
through the relation

04, 04
or ay

We next consider the boundary conditions to be
satisfied by the functions 4 and B. In the case of a single
trap at y =0, only particles that move in the negative y
direction will actually be trapped when they encounter
the trapping site. Particles that switch directions on en-
countering the trap can be considered to be reflected
from the trap. That is to say, if a particle in the neigh-
borhood of y =0 switches from motion in the direction of
decreasing y to motion in the direction of increasing y,
then it will not be trapped since trapping implies that not
only does the particle arrive at y =0, but it must also be
moving in the right direction when it does so. A con-
venient way of thinking about this is in terms of a two-
state process, one state corresponding to motion towards
increasing y, and the other to motion towards decreasing
values of y. These considerations imply that the function
A(y,7|y,) must be found subject to the boundary condi-
tion

B =2 9

A(0,7|y,)=0. (10)

Because of the relation given in Eq. (9), we can solve the
equation for A4, and then calculate the function B. This
two-stage process is necessary in order to find p(y,7|y,).

In the case of two traps, one at y =0 and the other at
y=L we have

A(0,7|lyg)=B(L,7|ly,)=0. (an

These complete the set of conditions to be imposed on the
solution of Eq. (6), after which the probability density
for the position at time 7 can be expressed in terms
of the functions 4 and B as the sum p(y,7ly,)
=(A +B)exp(—1/2).

III. SOLUTION FOR THE SINGLE TRAP

Consider first the equation for the function 4 (y,7|y,).
Because of the boundary condition on A4 given in Eq. (10)
we make a combined Fourier-sine and Laplace transform
of Eq. (6) for the function 4, i.e., we calculate the func-
tion

A(w,slyy)= fomsin(wy )dy fom A(y,Tlyo)exp(—sT)dT

(12)

from Eq. (6) taking into account the initial conditions
from Egs. (4) and (8a). The boundary condition in Eq.
(10) is automatically taken care of by our use of the
Fourier sine transformation. An elementary calculation
yields the result

(s + 1 )sin(wyq )+ cos(wy,)
2(s2—%+a)2)

A(w,slyy)= (13)

The Laplace transform A(y,slyy)=L{A(p,7lyy)] is
readily found by calculating the inverse Fourier trans-
form of this expression. The result of this calculation is
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in which the functions p(s) and B(s) are defined by
s+4L
(s)=(s—1)'"2, =— (15)
pls s B(s) o5

The analogous transform B(y,s| Yo) is calculated by tak-
ing the Laplace transform of Eq. (9) leading to the rela-
tion

B(y,s|y,)=2 sZ(y,s|y0)+§;Z(y,s|yo) —8(y—y,) -

(16)

To find the Laplace transform of the total probab111ty
density P(y,s|y,), we add the two expressions 4 and B
found from Egs. (14) and (16). Notice that the transform
of the actual probability density for the position of the
diffusing particle at time ¢, p(y,sly,), is equal to

P(y,s+1Llyy). The function P(y,s|y,) is found in this
way to be
B(s) . —pts)ly =yl —p(s)(yy+y)
P(y,slyy)= 5 = —als)e 1, an
in which the function a(s) is
:s__M=4 — 2 18
st pls) [s—p(s))°. (18)

The function of physical interest, i.e., the probability den-
sity for the position of the diffusing particle at time 7,

FIG. 1. Curves of p(y,7/0.3) as a function of y in the pres-
ence of a single trapping point, as a function of y for

=1( ), 2(— — —), and 3( ). Notice that because of
the finite velocity of signal transmission the curves are truncat-
ed on the right. The discontinuities on the left are the results of
reflections from the trapping point, i.e., from particles which
reach the trap but reverse direction when they reach that point.
Note that we have omitted the &-function contribution to the
curves.

ply, leo) is related to the mverse transform of the func-
tion P by p(y,7lyy)=L '[P(y,s|y,)]exp(—7/2). No-
tice that the Laplace transform of p(y,7ly,) can be ex-
pressed more simply as P(y,s +1|y,). One can perform
the inversion of Eq. (17) in terms of known functions [15],
finding

filny+yo), (19)

Py, 7lye)=folmly —yol)—

where the somewhat complicated definitions of the func-
tions f, and f, are given in the Appendix. One finds
from either Eq. (17) or (19) that the survival probability
S(rlyg)= [Py, 7lye)dy satisfies lim,_, ,7'/2S(7|y,)
=const, as does the survival probability for ordinary
Brownian motion in the presence of a single trap. It is
also possible to find the solution for the survival probabil-
ity at early times, but the result is somewhat complicated
and is therefore omitted. Figure 1 shows a few curves of
p(y,710.3) as a function of y for different values of ¢.
There are two notable features of these curves. The first
is that the value of the probability density at the trapping
point, p(0,7|y,), differs from 0, in contrast to its behavior
for ordinary diffusion in the presence of a trap, and the
second is the appearance of discontinuities in the concen-
tration profile. There are two discontinuities in the
curves in Fig. 1. Those on the right-hand side of the
solution are a manifestation of the property of finite ve-
locity, and those occurring on the left-hand side of the
curves correspond to the reflection of particles that reach
y =0, but are not trapped because they are moving in the
wrong direction.

IV. SOLUTION FOR THE CASE OF TWO TRAPS

Let us now assume that there are two traps, one at
y =0 and the second at y =L. In this situation it is possi-
ble to restrict our attention to just the single equation for
A(y,7|y,) since, by the symmetry of the situation, we
can express B(y,7|y,) in terms of this function as

B(y,7lyg)=A(L—y,7|L—y,) . (20)

An expedient way to solve the equation for the function
A is to take the Laplace transform of Eq. (6). Since the
propagation velocity is equal to 1 in our system of coordi-
nates we need only find a solution for values of
T>max(yy,L —y,) because when 7<min(y,,L—y,)
there are no boundary effects, and when
min(y,,L —yo) < 7<max(y,,L —y,) the diffusing parti-
cle is influenced by only one of the traps, thus leading us
back to the single-trap result.

As before, we denote the Laplace transform of
A(y,7lyy) by A(y,sly,). This function satisfies the
equation
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where p(s) is defined in Eq. (18). It is easy to find the
Green’s function for the left-hand side of this equation
which, in turn, allows us to write a complete solution for
the Laplace transform of the probability density of posi-
tion. The solution, as in the case of the single trap, con-
sists of two parts depending on whether y is greater or
less than y,. Specifically, we find that the function
A(y,s| Yo is

plyo—2L)

Tously= | 2UTB —(1=B)e " l
’ 0

4(1—ae ~ L)

X(ePP—e M), y <y,

_ (1+B>e”y°—(1—3)e“’y°‘

4(1—aqe L)
X(e P —aefY L)) y>yo (22)

where a and f3 are the functions defined in Egs. (15) and
J

o
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(18). Equation (20) can now be used to calculate the cor-
responding expression for B(y,s| o). As before, we will
be interested in calculating the function P(y,s|y,), which
is the sum 4 and B. It is convenient to express this
transform in terms of the function

B(s)

2[1—al(s)e L]

in terms of which we find

e——p(s)§ (23)

U(§,s)=

P(y,slye)=U(ly —yol,s)
—Va[U(y+ypy,s)+UQRL—y—y,,s)]
+aUQL —|y—y,l,s) . (24)

The inverse of the function U(£,s) appearing in Eq. (23)
can be expanded in an infinite series of Bessel functions as
shown in the Appendix. One can invert the transform in
Eq. (24), writing it in a form of an infinite series remines-
cent of the series derived by the method of images. For
this purpose let f,(7,y) be the combination of Bessel and
other functions defined in Eq. (A3). The inverse of Eq.
(24) is readily shown to be expressible as

P(y,7lyo)= 3 {fax(m,2kL +|y —yoD)—fox +1(1,2kL +y +y,)

k=0

—For+1[120k + 1L —y —yo 1+ for 42[ 120k + 1)L — |y —y,l1} - (25)

Parenthetically we note that from the point of view of ac-
tual calculations it is somewhat more convenient to
evaluate the inverse by a numerical inversion of the La-
place transform.

Some qualitative features are apparent from an exam-
ination of the expression for the density given in Eq. (25).
For the purpose of this discussion, we define two spatial
parameters £, and &, by

ytyo, min(yg,L —po)=y,

§1= laL—y —Yo, min(yy, L —yo)=L =y, (26
and §,=2L —¢&,, as well as three (dimensionless) time pa-
rameters

lemin(yo,L_yo), T2=L_Tl, T3=L +T] . (27)
Then, for example, Eq. (25) implies that
P(y,7lyo)=fo(7,]y —yol) when 0<7< 7. Since 7 is less
than 7, this corresponds to propagation without the pos-
sibility of hitting a trap, i.e., diffusion in free space.
Indeed, the solution given is just that given, for example,
by Goldstein [3]. When 7, <7 <T,, the result in Eq. (25)
reduces to Eq. (19) which is the solution in the case of
diffusion in the presence of a single trap given in Sec. III.
The effects of both boundaries are found at longer times.

For example, when the times are restricted to be less than
2L we have

[

SolT, ly *Yo|)_f1(t’§1)f1(7'»§2) >

T, <T7<T3
P(y,lyy)= Folmly—tal = f1(6 €= F1 (1 &) (28)
+f2(T>2L_|y—y0|), T3<T<2L .

The discontinuities are a manifestation of the Heaviside
step functions that occur in the definitions of the f;’s.
When 7,<7<7; the discontinuity due to the term
folm, ly—yol) has vanished, but both f,(7,£,) and
f1(7,&,) contribute to the discontinuous behavior of the
profiles, the discontinuities occurring at y,=7—y, and
y,=2L—71—y,. When r=L, y,=y,, which leads to a
merging of the discontinuities, and the reversal in the
concentration profile shown in Fig. 2(a). One can also ob-
serve that when 7<L, one or both of the f,(7,§;) are
equal to zero, while when 7> L both of these functions
differ from  zero. Finally, when T73<7<L
+max(yy,L —y,) the rightmost discontinuity will vanish
as it passes into the trap. When max(y,,L —y,)=y, the
discontinuity at y, vanishes as it passes into the trap at
y=L and when max(y,,L —y,)=L —y, the discontinui-
ty at y, vanishes at y =0. At sufficiently long times the
discontinuities in concentration vanish and are replaced
by discontinuities in the derivative only. This is illustrat-
ed by the behavior of the curve in Fig. 2(b). When
7> L +max(yy,L —y,) all of the discontinuities vanish
and one gets a smooth profile for the probability density
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of the particle position as indicated in Fig. 2(b). The
discontinuities in the probability density also show up in
a curve of the probability that a particle originally at y,,
remains untrapped by time 7. This is defined by

S(rlyg)= fOLP(y,TIyo My . 29)

A typical curve of S(7|y,) plotted as a function of 7 is

(a)

0.05 |—

(b)

0.0150 =

0.0125 |—

0.0100 [~

p(y.T)

L0075 =

0.0050 —

0.0025 [~

FIG. 2. (a) Curves of p(y,7/0.7) as a function of y in the pres-
ence of trapping points at y=0 and 1 for 7=0.7(——),
0.97(——), 1(- - . .), and 1.03(— — —). The time 7=0.7 is
the earliest at which a particle can reach y =0 and at 7=1 there
is a reversal of the reflection discontinuities. (b) A curve of
p(»,7/0.7) as a function of y for 7=1.8, at which time the
discontinuities have disappeared. At much later times the
discontinuities in derivatives also vanish. This phenomenon is a
result of diffusion.
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S(7lyo)

0.2 —

FIG. 3. Plot of S(7|y,) as a function of the time for L=1
and y,=0.7. The discontinuities in this curve have the same
source as those in Figs. 1 and 2, i.e., they correspond to
reflected waves.

shown in Fig. 3. The discontinuity-free regime that ap-
pears in Fig. 2(b) corresponds to the tail of the curve plot-
ted in Fig. 3.

The analysis of a persistent random walk on a lattice,
which is the discrete analog of the telegrapher’s equation,
is most conveniently carried out by means of the method
of exact enumeration [15], which is basically exact within
the accuracy of the computer arithmetic. Some typical
results of such a calculation are shown in Fig. 2, for L =1
and an initial position at y,=0.7. Just as in the case of
the single trap, the probability density does not vanish at
the boundaries. Discontinuities appear in the solution
which, again, are related to the wavelike properties of the
equation and correspond to reflections from the trapping
point. Notice that when the discontinuities merge at
=L —y,, they become inverted. The discontinuities in
the probability density disappear for values of
7> L +max(L —y,,y,). If one fixes a point in space and
lets t=r, the central-limit theorem becomes applicable
[13], and discontinuities occur only at the end points of
the probability density.

It is evident from our calculations that the solution for
the probability density in the presence of trapping points
is not nearly as straightforward as is the case for ordinary
diffusion and would be even more difficult to find in
higher-dimensional analogs of the telegrapher’s equation.
Such a solution would, however, be useful in the analysis
of a number of problems involving the migration of pho-
tons in turbid media. For example, a multidimensional
generalization of the telegrapher’s equation has been sug-
gested by Ishimaru as furnishing a more accurate model
for this phenomenon than the ordinary diffusion equation
because it gives a crude model for forward-scattering
effects [6,7]. However, we note that the present analysis



is not readily extended to the solution of the multidimen-
sional telegrapher’s equation, nor is it certain that the
telegrapher’s equation contains the correct physics for
diffusion with significant forward-scattering effects. A
strong motivation for studying the effects of boundaries is
the fact that a number of measurements of biomedical in-
terest can be modeled in terms of this type of diffusion in
the presence of absorbing boundaries [9,10]. The present
article is merely a start in the investigation of the class of
models in which there is both diffusive and wavelike
motion and in which boundaries are included.
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APPENDIX: INVERSE LAPLACE TRANSFORMS
OF THE FUNCTION U(§,s) AND THE
DEFINITION OF THE FUNCTIONS f,(1,x)

To invert the transform of U(&,s) we first expand the
denominator into a power series

x)=—® > a'(s)exp[ —p(s)E+2nL)] .

n=0

(A1)
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The inverse of individual terms in this expansion can be
found in terms of the Bessel functions I,(x). Defining
the functions

m/2
_lTt—x (F2—x?)17?
8m(Tx)= p—— m > ], (A2)
one finds [14]
fn(T"x) —1 n
—T—E.L {[B(x)/2][s —p(s)]"exp[ —p(s)x ]}
=[g,,_1(7-,x)+2g,,(‘r,x)+g,,+1(1',x)]
XH_(%:"_)_’ n>1
A3
Folmx)= 8(r—x) (A
o\’ 2
T (r2—x2)!/2
+ |go(7,x)+ (Tz_xz)l/zll > ] ]
H(r—x)
X 4 .

These results may now be substituted into the expansion
given in Eq. (A1) to find the inverse Laplace transform of
the function U(§,s), which, in turn, can be used in Eq.
(24).

[1] R. Fiirth, Ann. Phys. (Leipzig) 53, 177 (1917).

[2] G. I. Taylor, Proc. London Math. Soc. 20, 196 (1921).

[3] S. Goldstein, Q. J. Mech. Appl. Math. 4, 129 (1950).

[4] H. Kramers, Physica 7, 284 (1940).

[5] M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17,
323 (1945).

[6] A. Ishimaru, Wave Propagation and Scattering in Random
Media (Academic, New York, 1978), Vol. 1.

[7] A. Ishimaru, Appl. Opt. 28, 2210 (1989).

[8] D. D. Joseph and L. Preziosi, Rev. Mod. Phys. 61, 41
(1989); 62, 375 (1990).

[9] R. F. Bonner, S. Havlin, R. Nossal, and G. H. Weiss, J.

Opt. Soc. Am. 4, 423 (1987).

[10] B. Chance et al., Proc. Natl. Acad. Sci. U.S.A. 85, 4971
(1985).

[11] G. H. Weiss, J. Stat. Phys. 37, 325 (1984).

[12] G. H. Weiss, J. Stat. Phys. 15, 157 (1976).

[13] J. Masoliver, K. Lindenberg, and G. H. Weiss, Physica A
157, 891 (1989).

[14] G. E. Roberts and H. Kaufman, Table of Laplace Trans-
forms (Saunders, Philadelphia, 1968).

[15] S. Havlin and D. ben-Avraham, Adv. Phys. 36, 695 (1987).



