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We have shown that the mobility tensor for a particle moving through an arbitrary homogeneous
stationary flow satisfies generalized Onsager symmetry relations in which the time-reversal transfor-
mation should also be applied to the external forces that keep the system in the stationary state. It
is then found that the lift forces, responsible for the motion of the particle in a direction perpendicu-

lar to its velocity, have different parity than the drag forces.

It is well known that Onsager relations follow from the
time-reversal symmetry principle, which is strictly valid
at equilibrium. In its derivation one combines the de-
tailed balance principle and the Onsager regression law,
for which fluctuations evolve on the average according to
nonequilibrium thermodynamics linear laws. Then one
gets the condition that the matrix of phenomenological
coefficients L is symmetric:'

L=+L%. (1)

Here T stands for the Hermitian matrix and 7 for the par-
ity. These relations have been corroborated experimen-
tally within acceptable error limits for widely different
phenomena, such as thermoelectricity, chemical reac-
tions, heat conduction in anisotropic solids, etc.?

The preceding result has been generalized in Ref. 3 to
the case in which the system is in a nonequilibrium
steady state. For the matrix L, one then obtains the rela-
tion

L=+L"r , (2)

where the overbar on L denotes that the time-reversal
transformation should also be taken over the external
forces responsible for the existence of a stationary state.
This formulation of the Onsager relations comes about
as a result of the difference in behavior between fluctua-
tions around equilibrium and nonequilibrium steady
states,* which could be intuitively illustrated in the fol-
lowing example. Consider that a spontaneous fluctuation
occurs in a point of the system, say point 1, and propa-
gates to point 2. In equilibrium this event takes place
with probability P(1—2), which is equal to P(2—1).
This result constitutes, essentially, the formulation of the
detailed balance principle, which, together with the On-
sager regression hypothesis, leads to the Onsager rela-
tions (1). Imagine now that fluctuations diffuse in and are
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convected by an external flow, whose origin is the pres-
ence of external “forces” (pressure gradients, motion of
boundaries, etc.). In this case, one readily concludes that
P(1—2)#P(2—1). This probability, however, will de-
pend on a parameter characterizing the motion of the
fluid (shear rate in the case of Couette flow). One then
arrives at the result that these probabilities will be the
same, provided that the fluid moves in an opposite direc-
tion: P(1—2;7)=P(2—1;—v), ¥ being the shear rate.
This equality formulates the detailed balance principle in
the presence of convection and constitutes the basis for
the derivation of the generalized Onsager relations (2).

Our purpose in this paper is to provide a specific exam-
ple of a system away from equilibrium for which the gen-
eralized symmetry principle (2) is satisfied. To this end
we will study the motion of a particle through a fluid
moving due to externally imposed gradients.

Before discussing the problem of the motion of the par-
ticle through the fluid, let us first of all specify the nature
of the flow in the absence of the particle. We will consid-
er that the stationary velocity of the fluid is given by

v,(r)=rF, 3)

where the tensor ﬁ is assumed to be the sum of the
elongational B and rotational Bz contributions:

B=B:+Bx - )
These quantities are given by
01o0
Bg=B|1 0 0,
00O
(5)
0 —10
Br=wy|1 0 0|=—wx,
0O 0 O
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where 3 and o, are the elongational and rotational rates,
respectively, and w,=1rotv. In Eq. (5), @yX should be
understood as an operator. The decomposition (4) may
therefore describe a great number of stationary flows
ranging from pure elongation (w,=0) to pure rotation
(B=0). The case B=w, may then be identified as the
shear flow.

To arrive at the value for the mobility or the friction
on the particle, it is convenient to write the equations of
motion in a reference frame corotating with the rotation-
al part of the unperturbed fluid motion in such a way that
the flow is purely elongational. In the new frame, the
equations of motion for the fluid are

p‘fi +2pwyXv=—Vp*+nViv,
V-v=0, (6)
for [r—R(t)|>a .

Here p is the density, v the velocity, 7 the shear viscosity,
R(t#) the position vector of the center of mass of the par-
ticle, and a the radius of the particle, which is assumed to
be spherical. Moreover, 2pw,X Vv can be identified with
the Coriolis force density and p*=p — Lp[wfr’—(w,'1)?],
with p being the pressure, and the second term comes
from the centrifugal force density. Likewise, use has
been made of the incompressible nature of the fluid,
which is consistent with the form of the stationary flow
given through (3)—(5).

The boundary-value problem posed through (6) can be
reformulated by introducing an induced force density
F,nq(r,2),% accounting for the presence of the sphere in-
side the fluid. We then extend the flow field within the
particle in such a way that the Navier-Stokes equation
reads

p% +pv-Vv+2p0oXv=—Vp*+nViv+F, 4

forallr. (7)

Due to the assumption of stick boundary conditions on
the surface of the sphere, the induced force is taken such
that

vir,t)=u(t)—[Q(t)—wy] X1, for [r—R(t)|Za, (8)

where u(z) and Q(¢) are the translational and rotational
velocities of the sphere, respectively. In order to simplify
our analysis, we can take the motion of the sphere to be
torque free, so that ) =w,,

Our next step is to linearize the equations of motion in
the perturbation v—v,. We then obtain

av
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where p**=p* ——pr-EE-EE-r.
In Ref. 6 we have shown that the induced-force
method permits one to arrive at the expression for the

mobility

sin(ka )
Ka

G sin(ka )

i g’ (10)

__a

#y =y | 4x
where G; is the propagator

= {(T—ﬁk\)'[—iwp-l-nxz

p(Br+20,X)-(T—&R)} ™', (1)

which follows from (9) and_where & is the unit vector
along the direction of k and 1 the unit tensor. This prop-
agator can be rewritten in the more convenient form

G=3 (—iwp+nx*+ph;) " lefel , (12)
j==

where the nonvanishing eigenvalues are given by

=—BR.R, t[BRIR:+ (B —4ad)R 2], (13)

with K; being the ith component of the unit vector . On
the other hand, the corresponding left and right eigenval-
ues are found to be

:eri(ﬁ, _(00)
= { (B_za’o)( 1 —ﬁyzc )(ﬁz’O; _ﬁx )
T B+ 2w0)R K, + A4 ]
X(0,k,, —R,)}(n )7,

where n are the norms that satisfy the orthonormality
conditions ef-e;=8,~j, i,j==. The eigenvector associat-
ed with the zero eigenvalue is equal to K.

To study the time-reversal symmetries of the mobility,

we will start from Eq. (10). By using (12)-(14) in (10) the
mobility reads

e'(B, o)

(14)

3B, 00) = o= (efe))pad;(Bwg) , (15

where the mtegral I; depends on the inverse penetration

lengths a; _[(—tw+k )/v]'/?, with Re(a;)>0, and its
value is
“4 s1n sin“(ka) w
I;= Zaf e ~T(—aa+---). (16

Combining (15) and (16), one may conclude that the
mobility splits into equilibrium and nonequilibrium con-
tributions:

§+PEE'V+PT'EE'VV+ZPIDOXV ﬁ(w;Bra’O):ﬁeq+ﬁnoneq(m;ﬁ)w0) s 17
=—V¥*+9V>+F,,y, (9  where leq=(6mna )" T and
J
P 1.3 . m ,
Fnonea( @38, 00)=—(6mma) ™' = fo”desmefo de +(e]e§ 8,0, (@3 B @0) - (18)
j==
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To compute [Z,oneq(@; — B, —@p), one may also use (15)
with the corresponding expressions for the eigenvalues,
the eigenvectors, and «;. Because our purpose is to ana-
lyze the symmetries of ﬁmneq, let is introduce the change
of variable  =m—¢, which is equivalent to making the
transformation K, — —K,. We can show that the diago-
nal terms of the mobility matrix satisfy

,u‘ii,noneq(w;ﬁ’ wO):/J'ii,noneq(a); _B’ @y )’ = 172’ 3 ’
(19)
whereas for the nondiagonal elements one has
:uij,noneq(w;ﬁ7m0): —:u‘ij,noneq(w; =B, —wg) ,
Lj=1,2,3, i#j. (20)

These two equations or the ones corresponding for the
friction tensors formulate the Onsager symmetry princi-
ple. Notice that they are valid even in the nonstationary
case for any flow in the form of (3).

To analyze the symmetries in the stationary case, one
can also start from (15), setting @ =0 and taking the real
part. The stationary mobility will clearly depend upon
the sign of B2—4w3. These relations can be verified from
the explicit expressions for the mobility in the elongation-
al, rotational, and simple shear cases that were given in
Ref. 7. Notice that taking the time-reversal transforma-
tion is equivalent to a rotation R , around the y axis.

Let us go further in depth into the physical interpreta-
tion of our results. First of all, we should realize that the
nonequilibrium contribution to the mobility matrix has
nondiagonal terms different from zero. These terms are
responsible for the presence of lift forces”? that may give
rise to migration phenomena in suspensions, known as
the Segré-Silberberg effect.’ To illustrate our contention,
let us consider that the particle moves along the x direc-
tion with velocity u,. According to the equation

F=—E-(u—v,), 21)
where E:’T[—l is the friction tensor which simply follows
from (17) and (18), one has

FP=—& (v, , (22)

Fl=—¢, (u,—v,,) . (23)

As shown in Ref. 7, when the particle moves through a
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fluid at rest, §,, =0; consequently, the lift force FyL is not
present, and only the drag force F2 acts on the particle.
Moreover, F;‘ changes its sign when the direction of the
flow is inverted. The lift forces are then perpendicular to
the velocity relative to the stationary flow, and depend on
the inverse penetration lengths. From the symmetry rela-
tions (19), (20), (22), and (23) one concludes that the lift
force is an a variable, whereas the drag force is a B vari-
able.

The situation studied in this paper could be compared,
for example, with the phenomenon of heat conduction in
anisotropic crystals. In the absence of a magnetic field,
the heat-conductivity tensor must be necessarily sym-
metric. When a magnetic field acts on the system, On-
sager relations allow for the existence of an antisym-
metric part. These relations are then similar to the ones
obtained here [see Egs. (19) and (20)]. This fact is not
surprising, since in both cases (heat conduction and
motion of the particle through the fluid) time reversal is
performed not only by changing the sign of the momenta
of the particles, but by changing the sign of the magnetic
field or of the elongational and rotational rates. Our
equation (23) relating “fluxes” and “forces” in perpendic-
ular directions is then similar to the ones giving rise to
the Righi-Leduc or Hall effects,'® which are also a conse-
quence of the existence of nondiagonal contributions to
the heat conductivity and the resistivity tensors.

In summary, the generalized Onsager relations derived
recently in Ref. 3, based on a formulation given by
McLennan,!! have been found to be satisfied for the mo-
bility tensor of a particle moving through a fluid not in
equilibrium. These relations assign different parity to the
drag and lift forces acting on the particle, and are similar
to the ones encountered in thermomagnetic and gal-
vanomagnetic effects. The experimental verification of
these relations could be carried out by analyzing the pari-
ty of the lift forces. Our results indicate that those forces
should be invariant under the transformation
(u,,B,00)—(—u,,—pB, —wy).
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