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A calculation of passage-time statistics is reported for the laser switch-on problem, under the
influence of colored noise, when the net gain is continuously swept from below to above threshold.
Cases of fast and slow sweeping are considered. In the weak-noise limit, asymptotic results are
given for small and large correlation times of the noise. The mean first passage time increases with
the correlation time of the noise. This effect is more important for fast sweeping than for slow

sweeping.

I. INTRODUCTION

Our interest in this paper is the description of a general
situation in which a system undergoes an instability when
the appropriate control parameter is continuously swept
from below to above the instability point. The basic
question addressed in the determination of the time at
which the instability is observed. This question appears
in two alternative situations. One of them, associated
with slow sweeping rates, aims at determining a dynami-
cal bifurcation point. Such a dynamical instability is
known to be delayed with respect to the static instability
point. Recent reviews on delayed bifurcations are avail-
able.! A second situation is associated with fast sweeping
rates. It appears in studies of transient dynamics describ-
ing the relaxation from unstable states. Both situations
have been recently analyzed in some detail in the context
of the dynamics of the laser switch-on.2”7 Experimental
results are available for Ar™ lasers,” semiconductor
lasers,*® CO, lasers,” and CO, with saturable absorber.’
A general point of view® to address the problem of the
dynamics when crossing an instability is to identify it as a
stability problem which, in a dynamical sense, is associat-
ed with the concept of the lifetime of a state. The life-
time is determined by fluctuations and it can be calculat-
ed by stochastic methods as a mean first passage time. In
this paper we follow this point of view extending our pre-
vious analysis® to the case in which the noise—which is
responsible for the decay of the state becoming
unstable—has a finite correlation time (colored noise).
Although our general methodology and results have a
broad applicability, we present our analysis, for
definiteness, in the context of the dynamics of the laser
switch-on.

The stochastic analysis of the problem at hand admits
two alternative approaches. In the first approach, the
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focus is on the calculation of the time-dependent mo-
ments of the relevant variables.®° For instance, in the
laser case one calculates the time-dependent intensity. In
the second approach, one follows the individual stochas-
tic realizations of the process up to a given prescribed
value of the intensity. One can then evaluate the statis-
tics of the time at which the individual realizations reach
that value of the intensity.'® A general comparison of the
two approaches in the case of white noise is given in Ref.
11. The second approach has been followed in Refs. 3-6.
Its most important advantage is that all the statistical
properties of the passage time can be calculated and not
only a mean characteristic time scale to reach a
prescribed intensity value.” For example, the variance of
the passage-time distribution is associated with the time
jitter of the laser switch-on* and it also gives an indirect
way of measuring the total gain.’ However, useful results
for passage-time statistics are generally obtained only in
the weak-noise limit. Another important question con-
cerning a stochastic analysis of this sort refers to the
preparation of the system (initial conditions). We will
follow here the criterion® that the system is initially in a
steady state determined by the noise acting on the sys-
tem. An initial condition specified independently of the
noise was considered in Ref. 8 and a comparison between
the two situations is given in Ref. 9. Such preparation
effects are more important in the colored noise situation
considered here due to the non-Markovian character of
the dynamics.'> As a separate matter which we will not
discuss further, we mention that the consequences of hav-
ing an initial state very close to threshold have been ana-
lyzed in Ref. 6.

The problem of the sweeping dynamics involves several
time scales that have to be considered simultaneously.
These are fixed by the noise intensity €, the square root of
the sweeping rate a'!’?, the final value of the pump pa-
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rameter a, and the inverse of the correlation time of the
noise 7~ !. We will always consider the weak-noise limit
in which €7! is the largest time scale of the problem.
Passage-time statistics have already been calculated for
three limiting cases. The first one corresponds to the
well-known instantaneous switch-on (a—oc) in the
white noise limit (7=0).!%!> The second situation'? con-
siders an instantaneous switch-on (¢— o) with colored
noise (770). This case corresponds to a!/>7— . Final-
ly, a third case® is the one of finite sweeping with white
noise (7=0). It corresponds to a'/>r=0. In this paper
we analyze situations with «'/?7 finite in the cases of fast
sweeping a S a'/? and slow sweeping a'/? <<a.

The outline of the paper is the following. In Sec. II we
define our model, we set the opportune notation, and we
review the instantaneous switch-on case with colored
noise for later reference. Section III is devoted to fast
sweeping situations. This seems to be the case of interest
for switch-on of CO, lasers in Ref. 5. The variance of the
passage-time statistics turns out to be independent of 7 in
this limit. The mean passage time increases monotonical-
ly with 7 and decreases with a. We find that the first
correction to the white noise limit is of order (a'/?7)%. In
the limit of large correlation time a'/?>r>>1 the mean
first passage time diverges logarithmically with a!/?r for
at>>1. Results related to the instantaneous limit are
also given. In Sec. IV we discuss the case of slow sweep-
ing a'/?<<a. In this case the variance of the passage-
time statistics is reduced with respect to the white noise
limit. The qualitative effect of the finite correlation time
of the noise is the same as for the fast sweeping situation,
both for small and large 7, but its quantitative conse-
quences are now much weaker. In Sec. IV we discuss the
slow sweeping case. Our results for the mean first pas-
sage time are related to an analysis for the time depen-
dence of the mean intensity.” Actually, a close compar-
ison does not seem feasible, not only because of the
different definition of the characteristic time, but also due
to the different parametrization of the problem. Howev-
er, a basic agreement exists in the general importance of
preparation effects and the scaling with «'/? as well as in
the results concerning the growth of the characteristic
time with a!'/?r for a'/>r<<1 and its divergence for
a'?2r>>1. Two appendixes contain details of the
mathematical calculations.

II. LASER THRESHOLD MODEL
AND INSTANTANEOUS SWITCH-ON

Our analysis is based on the following model equation
for the evolution of the complex electric field
E=E,+iE, corresponding to a single model laser in the
good cavity limit:

3,E=a(t)E+N(E)+e€'%&(t) . (2.1

The parameter a(¢) is the net gain parameter and N (E)
represents the nonlinear saturation terms. The parameter
€ measures the strength of the complex noise
E(t)=&,(t)+i&,(¢). In the good cavity limit we consider
a reduced dynamics for the field, obtained after an adia-
batic elimination of other variables. The noise driving
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the instability £(¢) is assumed to be Gaussian with zero
mean and correlations

<§i(t)§j(t') ) =8ij2_17.e —ft—t‘l/‘r,
where 7 is the correlation time of the noise. The origin of
a nonvanishing correlation time may be diverse. Before
taking a good cavity limit, the Langevin forces appearing
in the field equation are associated with external noise
sources and thermal background radiation.!*!* On the
other hand, spontaneous-emission noise is modeled by
white noise added to the polarization equation.'*!
Nonwhite noise in (2.1) can then be associated either to
external noise or to spontaneous emission since the elim-
ination of the polarization variable introduces, in princi-
ple, a nonwhite noise in the reduced dynamics for the
electric field.
We will consider a dynamical instability in which a (¢)
varies from below to above threshold

i,j=1,2 (2.2)

a, <0, t<0
a(t)= japt+at, 0<t<t,
a, t>t,.

(2.3)

In a static sense, the instability would occur at the time
T=lay|/a such that a(f)=0. The dynamical instability
has been considered in a deterministic framework and
also in the white noise limit 7=0 in Ref. 3. We are here
mainly concerned with the role of the parameter 7, in the
onset of this dynamical instability. We are interested in
describing the switch-on process. The time at which the
intensity takes an observable value is identified with the
lifetime of the unstable state. This is known to be largely
independent of the nonlinear terms in (2.1), which are
essential to describe the saturation to the final state. Our
analysis is, thus, independent of the nonlinearities.
The linearized version of (2.1) admits the solution

E (t)=h;(t)exp (2.4)

fo’a(z')dz'], i=1,2

where A;(¢) plays the role of an effective random initial
condition

h,—(t)=E,~(0)+e“2fot§,-(t’)exp

—f"a(t”)dt" ]dt’ .
0

(2.5)

The initial value of the field E;(0) is itself a random vari-
able. The system is assumed to be at ¢ =0 in a stationary
state associated with the value @y <0 of the pump param-
eter. For times ¢ <0, E;(?) satisfies the equation

3,E(1)=ayE;(t)+€'%,(1), (2.6)

so that
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E;(0)= lim €'"%exp [foaods’
s

§— — 0

fsogi(s')exp

—fsyaods" ]ds’ .

M. C. TORRENT, F. SAGUES, AND M. SAN MIGUEL 40

(2.7

The complex number h =h, +ih, is described by a bivariate Gaussian process. The stochastic properties of the intensi-
ty I(¢)=|E(t)|* are determined by the stochastic properties of h2=h?+h3:

I(t)=h*t)exp

2f0'a(t')dt'] .

(2.8)

The strategy we follow to calculate the passage-time statistics corresponding to a prescribed intensity value I consists in
inverting (2.8), obtaining ¢ as a random function of I. The procedure is then formally the same as in the white noise lim-
it 7=0. The difference arises as a consequence of the different form adopted by A %(t).

The bivariate Gaussian distribution P(k,h,) is completely determined by {4%(¢)). This quantity evolves dynamical-

ly according to a differential equation

—t/T 1

6,(h2(t))=266xp —lm
0

e

— fot’a(t")dt”

whose integration enables us to calculate (k2(z)) at any
time. The origin of the first term in the right-hand side
(rhs) of (2.9) should be remarked. It appears due to the
correlation of the initial condition E;(0) with the noise
acting for ¢t > 0:

(E;(Q)&;(1)) =

172
€ —t/T

2(1+la0|7)e

This correlation is a genuine non-Markovian effect of the
colored noise considered here. Equation (2.9) has to be
solved with initial conditions determined according to
2.7),

(2.10)

1 t o
+___f et ”/Texp
r

) (2.9)

_ f”a(tu)dtu ]dt'
0 0

Our general scheme, developed in the following sec-
tions, consists in the explicit solution of (2.9)-(2.11) for
different situations. We find that for times of interest
(h*(t)) can be approximated by {h%(«)), so that invert-
ing (2.8) the generating function W(A)= (e *) for the
passage-time statistics can be calculated. The moments
(t") of the passage-time distribution are calculated by
simply differentiating W(A) with respect to A at A=0.
The results in terms of (4%( <)) are formally the same as
for 7=0. The effects of having 750 are actually con-
tained in the explicit result for {h%()).

A limiting case which is of interest for later reference
and comparison corresponds to an instantaneous switch

2 = = €
(h%(0))=(1(0)) lagl(1+laglm) @10 (a— ©,t;—0").12 In such a case we have
J
2e —e 4] e latr iy 2er —(a4r!
h¥ 1)) ={(h%0))+ + + o —la+r 1y _
( y=(h¥0)) + » pr— (l+|a0|7')(1+a7')(1 e ), (2.12)

where the last term in the rhs of (2.12) originates in the cross correlation (2.10). For times ¢ >>a !, the quantity

(h%(t)) becomes time independent,

1 2T
(h2(2)) =(h¥ =(h?)= + + , i
Y=k ))=(h%) =e lagl(1+]aglm) '~ a(1+a7) ' (1+laglr)N1+ar) 2.13)
[
so that, inverting Eq. (2.8), where the white noise result is>
1 I 1 I 1
t=—In—, (2.14) o= —In——m——— —(1 2.17
> nh2 (). 2a ne(|a0|_1+a_1) zaw( ) ( )

and we easily derive an explicit equation for the generat-
ing function

—A/2a

A
—+1
2a

I
(h?)

This result is formally equivalent to the corresponding
one® for =0 but now with (h?) given by (2.13). Since
the variance of the passage-time distribution ((Az)?) is
independent of (4?2}, it is also independent of 7. For the
mean first passage time we obtain

|aola72
1+(a+]ag))r

Wr)=(e M)=I (2.15)

1

<z)—<t>,=0=51n 1+ =A, (2.16

and (1) is the digamma function.!> We note that the
correction to the white noise result is positive and in-
dependent of €. Its magnitude depends on 7 but it is gen-
erally small in comparison with {¢)__, for small enough
noise intensity €. In the limit of small correlation time of
the noise, a T << 1, we obtain from (2.13)

(h*)=(h?),_,—er*(a—ay)+0O() , (2.18)
so that
2
(t)=(t) o+ 2o +0(7*) . (2.19)

Thus the first correction to the white noise limit is of or-
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der 72. The vanishing of a term linear in 7 is a conse-
quence of the presence of the cross correlation (2.10). If
they were neglected, a correction of order 7 would ap-
pear. This specific feature will also apply to the more
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cally much larger than the time ¢, at which the pump pa-
rameter reaches a fixed final value a. A straight-
forward calculation yields a result for (h%(¢)) which
contains time-independent terms and terms propor-

tional to exp[—2a(t—t;)] or proportional to
exp[—(a+771)(t—t,)]. The time-dependent terms can
be neglected for times of interest t —¢; >>a ~!. This is
the same condition as for the instantaneous switching but
with an origin of time shifted to ;. In this case
(h%(1)) =(h*())=(h?) is explicitly written as

general cases considered below.

III. FAST SWEEPING

We consider now situations of fast sweeping. This
means that I(z) attains a prescribed value at times typi-

|
3 2 T i 1 2 12
D=+ €[ P(x,)— P 0@ (|yo )T 0+ ——— |-
o lagl(1+laglT) e[ P(xy)—Plxo)le (|y0|)a7_e 1+laglt | @
e[ 12 ‘|
o y ’ a , — ' ’
+: > e ?® o D(y(t'))exp | — E‘t 2+(00+’r Yt dt
) 172
€ T y Qa _
———H—ar{ o e Yexp | — —2—t%+(a0+r D, ][d)(yl)—q)(yo)]
a _ 1
————1+|aot7_exp ?tf+(ao+1' D, ’ ‘+;exp[~—(at%+2aot1)]] , (3.1)
where t, =(a —ay)/a, P is the error function,
1+aor l+ar
Xg=———) Xy =t (3.2)
T 2a)2r” TN a)r
—1+4alt)r —1+agr
(ty=———F— = =y(t,) . (3.3)
y (2a)1/27' 0 (2(1)1/27' yl y 1

Under the time-independent approximation (3.1) for { h2), the calculation of the passage-time statistics is completely
similar to the corresponding one in the limit 7=0 (Ref. 3). The expressions for the generating function W(A), mean
first passage time (¢ ), and variance of the passage-time distribution ((A¢)?) in terms of (h?) are then

W= L | e | —ale el | A (3.4)
(h?) exp 2aa 2a ’ )
1 I (a+lagyl)? P(1)
(1) =5 It = o 3.5)
1
At)2)y=—=9'(1) . 3.6
((A1)*) 4a2¢( ) (3.6)

The consistency of this results with the assumption ¢t —¢, >>a ~1js known to require, already in the white noise limit, a
small noise intensity condition € <<a and also the fast sweeping condition a Sa!/2. We will always assume |a,| ~a.
Within these limitations, the presence of the parameter 750 allows us to consider different situations. The importance
of colored noise is measured in terms of the time scale a~!/? fixed by the sweeping rate. The situation a'/?r <<1 (and a
fortiori at << 1) corresponds to the vicinity of the white noise limit, while for @!/>r>>1 the importance of the colored
noise should be more noticeable. We next consider these two situations separately.

In the limit a'/?r <<1, (3.1) can be expanded around the white noise limit. We obtain (see Appendix A)

- az—al a 02 a
(h2)=ﬁ+ea_1e @IV L e 12120 @(aa12) + D |agla ][ 1— La 22+ O(a )] 3.7)
and substituting in (3.5)
1 <h2)r=0
t)=(t), o+ —In———
(£)=At),— 2aln h?)
2
7172%07® ®(aa—12)+d(lag|la—172)
~(t),_o+(al2r)? [ 2, ] (3.8)

4aa'e"(h?),_,
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where

(t),0= ——In——sm

(a+lapl)?
n a+tlag?®  y(1) '
2a (h?) .-,

2aa 2a

(3.9)

Therefore the mean first passage time increases, to lowest
order in a'/?r, in a quantity which is independent of € as
in (2.19). Also as it happened in the instantaneous
switch, the first correction is already of order 72.

The limit of large correlation time a!/?r>>1 admits
several particular cases, because (42) in (3.1) does not
only depend on 7 through a!/?r. Two interesting cases
appear when comparing the time scale 7 of the noise with
the time scale @~ ! fixed by the finite value of the pump
parameter. When these two time scales are comparable,
ar~1, we have that a'’>>>a and we are close to the in-
stantaneous switch discussed in Sec. II. The new case of
interest in which colored noise is important is when
at>>1. Given our general restriction of fast sweeping
a Sa'’?, this case corresponds to comparable time scales
fixed by @ and «!/? and also to switching far above
threshold in relation with the inverse of the correlation
time of the noise (a7>>1).

Close to the instantaneous switch, a'”?>>a, and with
no restriction on ar, one can obtain from (3.1) (Appendix
A)

(h*)=~(h?), . +ea [(a+]|ay))a 1]
v 1+(a+lay|)r
(1+ar)(1+]aglr) ’

(3.10)

where (h?), . corresponds to the instantaneous switch
and it is given by (2.13). Replacing (3.10) in (3.5) we ob-
tain to lowest order in aa ™ !/?,

(1)=At) ot ia+lagha™", (3.11)

where (t),_, . is given in (2.16). The result (3.11) indi-
cates that close to the instantaneous switch, the first
correction to {t) is independent of 7. Indeed,
(t)—(t),_ . given by (3.11) coincides with the result
obtained for 7=0 in Ref. 3. Equation (3.11) combined
with (2.16) gives rise to an interesting result concerning
the effect of 7 in this limit a'/?>7>>1. Indeed, from (3.11)

()=t g =€) 0= ) 00 w0 (3.12)
so that
()=t o=t g —t) g =A, (3.13)

whose explicit expression is given in (2.16). Therefore, in
the range of parameters a!/?7>>1, ar~1, the difference
between () and its white-noise limit turns out to be a-
independent and it may be consequently obtained from
the analysis of the instantaneous switch.

The situation of large correlation time a'/?r>>1 with
at>>1 can also be analyzed from (3.1). In this limit (Ap-
pendix A) we obtain

(h*)=ela'?r)7'4 , (3.14)

where A is a quantity given in Appendix A which is in-
dependent of 7 and €. Substituting (3.14) in (3.5) we ob-
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<t> 104 4

9.4 T T
0 25 50 75
T
FIG. 1. (1) vs 7 as obtained from (3.1) and (3.5). Values of
the parameters: a=|a,|=1, a=4, e/I=10"% For =0, (3.9)
gives (t).-0=9.42. Dashed line corresponds to the approxima-
tion (3.15).

tain that for small € and a'/?7>>1 the dominant contri-

bution is given by

Ia'?r
€

(1)="n (3.15)
2a

This result does not correspond to a correction to any
previously known result. It gives a quantity diverging
logarithmically with a!/?7 and it identifies a domain of
parameters in which the correlation time of the noise has
important quantitative consequences on the value of {7 ).

Our results of this section are better summarized in
Figs. 1 and 2. In both figures we show the mean first pas-
sage time (¢ ) as calculated from (3.5) and the general re-
sult (3.1) for (h?). Figure 1 shows the monotonous
growth of (¢) with the correlation time of the noise.
Figure 2 shows that (¢) is a monotonous decreasing
function of a. Figure 1 shows how our general result
connects the limits a'/>7>>1 and a!/?r<<1 considered
above in detail. For a!/?7>>1 Fig. 1 refers to the case
at>>1, while Fig. 2 shows the result for a7~1 in the
domain from a'”?7~1 to a!/>r>>1. The value of () in
Fig. 1 is given for small 7 by (3.8)-(3.9) and for large 7

9.5
\
\
<t> 934l
\
\ A
~
~ ~
9.1 T T T
4 28 52 76 100
a

FIG. 2. (t) vs a as obtained from (3.1) and (3.5). Values of
the parameters: a =|ao|=1, e/I=10"%. Solid line corresponds
to 7=1 and dashed line to 7=0. For these parameters
A=1In?=0.14. For a=100, we find (t),—0=9.162,
(t),—,=9.306.
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by (3.15). The dashed line identifies the domain validity
of the asymptotic expression (3.15). It is shown that
(3.15) gives a simple and accurate result for the domain of
parameters in which the role of the correlation time of
the noise is important. Figure 2 makes clear the contents
of (3.13) for a!/?>r>>1, ar~1: for large enough a, the
curves associated with 7=0 and 750 are essentially
parallel and separated by a quantity A given by (2.16).

IV. SLOW SWEEPING

The general condition of slow sweeping is that all times
of interest are smaller than ¢;. This corresponds to tak-
ing a — o, so that this parameter no longer appears in

the calculations. In other words, we do not consider any
more the time scale associated with a, as we did in the
case of fast sweeping. As in Sec. III, we consider the two
limiting cases of small (a!/?7<<1) and large (a!/?7>>1)
correlation time of the noise. In the case of slow sweep-
ing, however, a time-independent approximation for
(h*(t)), valid for all values of 7, is not very useful in or-
der to obtain analytical results. As a consequence, we
consider from the beginning separately the two cases
a'?r<<1 and a!/>r>>1. In any case, once a time-
independent approximation for (4?) is obtained, the cal-
culation is exactly the same as for =0, yielding analo-
gous formal expressions in terms of {£2) (Ref. 3):

2

W(x)=T %a_”zT“”z-Fl exp[—}»[lc;ol +a~12T? 1+2‘;°T , @.1
al
(t)::: lao +a—l/2T1/2+%T_l/z[a%a~3/2_¢(1)0—1/2] , 4.2)
oy 1 1,
((A1)?) 4aT Y'(1), (4.3)
where
T=In(I/{(h?)). (4.4)

These results are valid in the weak-noise assumption € <<a'”? and for |aol ~al”?,

/2

In the case of small correlation time of the noise (a!/?>r << 1), the integration of (2.9) can be approximated by a time-

independent quantity for times of interest t —7 >>a ™ !/? as (Appendix B)
2
(ht)= |:| te|Z| e d(lagla ")+ 1][1— La 2+ 0@ 2r))] . 4.5)
0 .

In the same way that in the limit 7=0, the requirement ¢t —7 >>a ™ !/? is satisfied for e <<a ™!/ and |ay| ~a'’% The

correction to the white-noise limit is exactly of the same form as in (3.7). Also in the same way as in previous cases, the
first correction is already of order 72.

The mean first passage time () can be calculated replacing (4.5) in (4.2). Even if in (4.5) the correction to the white-
noise limit is formally identical to the corresponding one in (3.7), the actual correction to (¢ ) is rather different because
of the different dependence of () on {(h2). Writing T=T,_,+In({h?) _,/(h?)) and taking into account that both
T and T,_, are large quantities of order In(e ™ '7), the mean first passage time (¢ ) to lowest order in 7 is easily obtained
as

2
1 72" [@(|ayla” ') +1]

(1) =(),_o (a2 _ h .
4aT, ) |aol_1a1/2+7r1/2ea° a[d)(lao]a“l/z)-i—l]

A main difference between (4.6) and (3.8) is that in the present case of slow sweeping the correction to the white-noise
limit depends on € through T !4 ~(Ine”'I)"!/2. This dependence implies that the correction of order (a!/?r)? is
weighted in the considered case of small noise by a rather small quantity. The consequence is that the effect of the finite
correlation time of the noise is here much smaller than in the case of fast sweeping. However, the variance {(Az)?)
that was independent of 7 for fast sweeping becomes now 7-dependent. Since {4?) decreases with 7 with respect to the
white-noise limit, T increases and { (A¢)?) (4.3) is reduced with respect to the white-noise limit

at/a
(al/ZT)2¢r(1) 77'1/29 o/ [q’(|ao|a_1/2)+l]

8aT?_,

((AL2)=((A1)*),_o— 4.7)

2
ag/a
Zeo

lagl la!?+ 7!/ [®(lagla™?)+1]
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Let us finally consider the case of large correlation time
7, a'?r>>1. Again, for times of interest t —7>>a /%, a
time-independent approximation for (k%(¢)) can be ob-
tained (Appendix B):

(h*)=ela'?*r)"'B , (4.8)

where B is a quantity given in Appendix B and which is
also independent of 7 and €. The result (4.8) is thus rem-
iniscent of (3.14). Again a different dependence of {¢) on
7 with respect to the fast sweeping case appears because
of the different dependence on (h?) implied by (4.2).
Substituting (4.8) in (4.2), and for small € and al2r>>1,
we find

Ia'%r 172

(t)—lts—lza_l/z p (4.9)

In

The square-root law in (4.9) is characteristic of the slow-
sweeping situation. As in (3.15), this asymptotic result
does not correspond to a correction to any known result.
It gives the asymptotic form of (¢) in the domain of pa-
rameter in which the correlation time of the noise is im-
portant in situations of slow sweeping. Also, as in (3.15),
|

e € —(a*=ad)/a

lagl(1+]agl)  all+an®

— _{ —(a*=al)/a
=e(lagl " 'H+ale 0

)—er(l+e
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it gives a divergence of {(t) with 7— o, but it is here
weaker due to the square-root law.

As a general conclusion, we observe that a finite corre-
lation time of the noise has the same qualitative implica-
tions for fast and slow sweeping, but its effect seems to be
quantitatively more important for fast sweeping.
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APPENDIX A: FAST SWEEPING
(e<<aSa'’?)

In this appendix we derive the three limiting situations
of (3.1) considered in Sec. III.

1. a'?r<<1

The first and last terms in (3.1), with ¢, =(a —a,)/a,
admit a simple treatment in powers of a'/?r,

(a%— (al-ad)/a

112 a -
0% t er2(|ay| +ae )+ O((a' 7)) .

(A1)

We next analyze the contributions to (3.1) arising from the non-Markovian correlation of the initial condition E;(0) and

the noise [see (2.10)]. Uging the expansion of the error functions ®(z) (Ref. 16) around infinity
[@(z)=1—e 2" /(7"%z)+e % /(2m'/?22%)+ - - - ] and substituting x, and x, from (3.2), we finally arrive at
172
€ 2 X[Z) 2T a » -1
_ =7 — + — | = — 1/2_.\3
[T laglr [ o e [D(x;)—DP(x,)] {ar 5P > ti+(ag+7 'ty 2er+O((a'/*1)°) . (A2)

The remaining terms in (3.1) are those containing error functions of arguments y. Invoking again a series development

of ®(z) around larger values of z, we have
1/2

2 2
yo| m_ x 2 1 ph , a , _
€e laT¢(|yo|)e [ D(x,)—P(x,)]+ ~ :fo D(p(t'))exp | — >t 2+(apg+7" e | |de’
5 172
T a _
Tl | Traro®| T |2t ‘m] [q><y1>—<b(yo>]}
€ 2w i evy(z) 4 a
=— =" ,70 11—+ - — | &2 — 1y, ’
o VTN fo exp 2t +(ag+77 )t | |dt
N e—y(r’) e—y(t') a
—_ 1— + + e - _tr2_+_ + —1 t’ ’
fo { 2 20 ()] Xp ) (ag+777) dt
172 2 2
€ 27 2 i Yo
1+ — Yo 1e/2 - f/z + - lexp | — gt%+(a0+1-“‘)t1
ar a T |J’1| T |,V0| 2
172
- |7 ay/a 172 -12 —(a’-af)/a
=l e [®P(aa )+ ®(|ay|a )]—er(1—e )
—(a%?—a2)/a (7T(:t)l/2 al/a — —
+e7? |ag—ae 0 -, e [ @laa )+ D(lagla )] |+ 0O((a! 7)) . (A3)




40 DYNAMICS OF SWEEPING THROUGH AN INSTABILITY: ... 6669

Adding up the results (A1)-(A3), we obtain (3.7).

2. a'?r>>1, ar~1

The last two terms in (3.1), with ¢, =(a —a,) /a, are simply expanded in powers of (a!/?7) !, giving

'r(az—a(z,)+2(a—ao)

€ 27 o | — +le—(az—a(2,)/a
l+ar | 1+]|aglr P 2ar a
€ 2r 1 a—aqy |mla+ay) a+tag 2 . _
= - = +0O 2ryTH | . A4)
1+ar 1+|ao|1' a a 1+|ao|7' a 1+|a0|1' (e )™ (

Using the expansion of ®(z) around zero [®(z)=(2/7'2)(z—2z3/3+ - - - )], the contributions in (3.1) involving ®(x)

read, to second order,
172

=26 2% | oalr)Y) . (AS5)

v 1 2e
a l1+]aglr

2
+_____ _
1+laglr

2
e[P(x,)—D(xy)]e™° -

D(|yol) e
aT

With the same criterion, we handle the remaining contributions involving ®(y)

172
27 yi| 1l ph ,
— = t
e lff‘) D(y(t'))exp

a

dt’

— [%t'z-f-(ao +r

1 a _
romexp | — |51l H(ag+r ‘)n] [d>(y1>—<1><yo>1]
172 .

_€ | m m ZyéeZ(ao‘r—l)/(afz)fyle_2‘/'2},,/&1/27(1)( N (y' )y’

T | 2 a Yo Y v ay
a—a
+2'-6~-—0+(9((a‘/2'r)‘4)
a l+ar

__ €T e[(aor)z— 11/(ar®)

‘/_
[%[Cbz(yl)—d>2(yo)]+——i By, ' (p;)— D(yg)® ()

aT al/ZT
2 172
- = [D(V2p,)—D(V2p,)]
—ﬁ@};)—z[mﬁy,)—¢'(V§y0>]+(o<(a‘/27)—3)]
26 2% 1/2_y—4
+22 =2 L o((a )7
=2 2% 4 o((al2r)Y (A6)
a l+ar

with y'=y(¢’). Adding the results (A4)—(A6) together with the first term in (3.1), we obtain (3.10).
3. a2r>>1, ar>>1
The first and last two terms in (3.1), with ¢, =(a —a,) /a, are again expanded in powers of (a!/?7) ™!, giving

€ + € T e
lagl(1+1aglr)  a(1+a7) | 1+]aglr

Xp +%exp[—(at%+2aot1)]]

%t%+(ao+7_1)t1

I
ERL)

2

(22 —(a2—,2
Loy L retreovey 2t ol 272y L (AT)
as a IaOIa

The remaining contributions containing the error functions are conveniently treatedzusing the same steps as for the in-
tegral term in (A6) and an expansion of ®(z,+z) around z, (P(zy+2z)=D(z,) +e Tz + 0(zH)])
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172
1

T ¥ 2T
—e '+ — | —
|y0|)a're 1+\(10|T

x2
e[ D(x,)—Dlxg)]e™® | D

+e dr’

- [%t’2+(a0+1—_‘)t'

27
a

2 t
12,51 "oy (¢t
e [TfO (y(t'))exp

+ 1+a7_exp

- ‘%—t%+(a0+1-_‘)tl }

[®(y)—P(yo)] ]

= 1/2 — 5 [®(a2a) 7))+ P(lagl(2) 7]

s

(2m)'/? adn2a
2a1/2e ¢

x /L d(a(2a)72)+D(|ag|(2a)72) ]+

|ao|

aj

2a

(277,)1/2

+———exp +0((a'?1)7?) . (A8)
a

Adding up the results (A7) and (A8), we obtain (3.14) with 4 given by

172
2 +ge—(a2—ag)/za ao/2
lagl  a

T
2a

[®(a(2a)™ ')+ d(|ay|(2a)'7?)]

al/2a
1/2e 0/2 [<D(a(2a)_”2)+cl>(|ao|(2a)_1/2)]

—(az—a(z) /2a

+0(a'?r)7 ) . (A9)

APPENDIX B: SLOW SWEEPING
(e<<a'’?<<a)

In this appendix we derive, starting from (2.9), the two time-independent approximations for {4#2) considered in Sec.
IV. Integrating (2.9), we obtain

172
XZ 2
(hH1)) =(h20)) +e[ D(x,)—D(xy)]e™® |D(|yo|)Te’0+ —L | 27
ar 1+laglr | a
5 12,
E w Yo L4 ’ _a. ”2 — 1y, ’
+T o e f0<1>(y(t ))exp 2t +(ag+7 "' | |dt', (B1)

where x,X,70,p(t) are defined in (3.2) and (3.3), and x (¢2)=[1+a(¢)r]/[(2a)!/?7].

1. a2 r <1
The first term {(4%(0)) may be expanded in powers of a!/27, giving
ellagl ™' =7+ 7laol + O ?7))] . (B2)

The term arising from the cross correlation (2.10) may be handled using an expansion of the error functions ®(z) (Ref.
16) around infinity (see Appendix A). For times of interest (t —7>>a "~ !/2), we can take ®(x(¢))=1 so that

2
e °2a)\?r
7V2(1+ay7)

€

__€ |2
1+|aglr

2
*0

e |D(x(e)—1—

=2er+O((a' 7)) . (B3)

The remaining terms are those containing error functions of arguments y. Using again a series development of ®(z)
around infinity, and considering that y(¢') changes sign for t =1¢, [t, =(1+|a,|7)/a1],
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172
f —q>(|yol)e °[q>(x )—D(xy)]+ 2”} f0’<1>(y(t'>)exp - ‘%t’z-i-(ao-{-f_l)t’Hdt’}
172 —y2 —
_efam Tl e e
P 20y, 27;'1/2ly0|3 fexp

tS
—fo @(|y(z")])exp dt’

- [%t’2+(a0+7—“1)t’

+ft:d>(y(t’))exp

— l%t'2+(ao+r")t’ J Jdt’

Since ¢, >>a~ 172, the rhs of (B4) results give, after some algebraic manipulation,

172

T
€|—
a

/ - 12, a
‘I1+®(agla™ )] —er+er? ao~ﬁgz)— 0/[l-i-<l>(|a(,loz 172)

Adding up the results (B2), (B3), and (B5), we obtain (4.5).
2. a'2r>>1
The first term (h%(0)) is expanded in powers of (a!/?r) ™! giving

-+ 0((a?r)7?) .
aoT

—t'2+(ao+r“)z

11+0W(a'?r)3) .
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l

(B4)

(BS)

(B6)

The remaining contributions are treated using the same steps as for the integral term in (A6) and the expansion of

®(zy+z) around z, (see Appendix A)

1

i 27
1+]a,lr

2
e[ D(x,)—D(xy)]e°

2
D(|pol )¢+
aT

I/2]

172
€ |27 5[t . _la.n i,
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, 5 2
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ay a

em [agm?=11/a™) £y _2v3y /gl 72 N xrr gy
+—e y/aT TP b dy’ .
ar G (y)®'(y")dy

Since (|ag| /a)+(1/art) <7/2, the rhs of (B7) can be conveniently manipulated to result in

172

L
-

172
[[q)(a(t)(za)‘l/z)_‘}_(b( |aol(2a)—1/2)]

5% (ag|(2a)~172) + l‘/2| “0/2"]

1 172 2,
2 f} < “[1—¢2(|%|(2a)~1/z,]}+0((amﬂ_2)_

Adding up (B6) and (B8) for t —7>>a "~ !/2, we finally arrive at (4.8) with B given by

172 2 12 5, 2o,
B=9‘;2—+ PN o “ [ 1+ @(|agl(2a) —’/2)]] "1+ (lagl(2a) )]+ 0 )Y .
0 0

(B7)
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