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The magnetically induced splay Fréedericksz transition is reexamined to look for pattern forming phe-
nomena slightly above or below criticality. By using our traditional scheme of stochastic nematodynam-
ic equations, situations are, respectively, found of transient and permanent predominance of transversal
periodicities (wave numbers) along the direction perpendicular to the initial orientation within the sam-
ple. The relevance of these predictions in relation with recent observations in the electrically driven
splay Fréedericksz transition, and in general with other pattern forming phenomena, is stressed.

PACS number(s): 61.30.Gd, 47.20.—k

I. INTRODUCTION

The Fréedericksz transition in nematic liquid crystals
constitutes a particularly well-investigated example of
transient pattern forming instability [1-17]. The broad
theoretical and experimental existing evidence supports
the idea that the reorientational transition originated ei-
ther electrically or magnetically induces, under appropri-

ate conditions, hydrodynamic motions that finally result

in the transient appearance of striped textures of charac-
teristic periodicity in the plane of the sample. The usual
magnetic experiments refer either to the splay or twist
Fréedericksz geometries. In the first situation, perpen-
dicular [1,2] as well as oblique [7] stripes, relative to the
initial director alignment, were experimentally found.
When referring to the twist instability, only textures of
perpendicular stripes have been reported [6,11].

On the other hand, very recent experiments conducted
by Buka et al. [12,13] on the electrically induced splay
Fréedericksz instability reveal unexpected features of this
pattern formation phenomenon. To our understanding
two of their observations are singularly significative. The
first one consists in the appearance of a set of fairly regu-
lar stripes, preferentially aligned parallel (neither perpen-
dicular nor oblique) to the initial director orientation.
Second, a certain degree of pattern structure was ap-
parently detected even slightly below the threshold of the
Fréedericksz instability. The authors refer themselves to
this last texture as a fluctuating structure [13] and they
clearly stressed the need for a proper consideration of
thermal fluctuations to account for some of the observed
experimental facts.

The convenient reformulation of the standard set of
nematodynamic equations to incorporate thermal fluctua-
tions, and the use of such an enlarged model to analyze
the dynamics of the pattern formation process following
the reorientational instability, has been our precise goal
during these past years [14—17]. In particular, the splay
geometry under a magnetic forcing was specifically inves-
tigated [15], but focusing on regimes well above criticali-
ty (h*=H?/H?>5), for which conditions of perpendicu-
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lar and oblique stripes were extensively analyzed. After
the experiments by Buka et al., we are singularly
motivated to reexamine again the splay Fréedericksz in-
stability slightly above or even below criticality to look
for eventual patterned structures of parallel stripes rela-
tive to the initial orientation within the sample.

Our results, applying to the magnetic Fréederiecksz
transition, indeed support those observations, by predict-
ing both subcritical parallel periodicities. A direct quan-
titative comparison with the experiments mentioned
above, however, is not pursued. Actually, this would
probably be meaningless due to the well-known
specificities of the electrically induced instability mainly
arising in the inhomogeneities of the field inside the sam-
ple, its finite conductivity, or flexoelectric couplings [13].
Rather, we just want to show that such a priori anoma-
lous behavior coherently fits into our scheme of stochas-
tic nematodynamic equations, featuring in this way
genuine and overlooked trends of pattern forming phe-
nomena mediated by thermal fluctuations.

II. MODEL EQUATIONS

We proceed here, analogously as we did in Refs.
[14-17], by formulating the set of stochastic nemato-
dynamic equations including internal fluctuations
through a generalized time-dependent Ginzburg-Landau
model. For the splay geometry one considers as usual the
director 7 aligned initially parallel to the limiting plates
separated a distance d along the z direction: 7 9=(1,0,0).
The magnetic field is applied perpendicular to this initial
orientation and to the plates: H=(0,0,H). At the limit-
ing plates one prescribes standard free-free boundary con-
ditions: 3,v, =9,v,=v,=n,=0atz==1d /2.

The relevant dynamical variables we want to retain are
the components n,, n, of the director and the three com-
ponents of the velocity. Such a description allows for
general three-dimensional reorientational processes tak-
ing place out of the plane dictated by the initial align-
ment and the applied magnetic field. Actually, by consid-
ering transversal reorientations along the y direction, the
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appearance of a striped texture parallel to the initial
orientation (g,70) is interpreted with quite a simple and
intuitive argument. In this respect, note that modes of
distortion with nﬂﬁO introduce, relative to the initial
orientation along the x-axis permanently fixed at the lim-
iting plates, twist deformations that are elastically
favored when compared with the standard splay distor-
tions for n,70 (K, > K,). One could then imagine an al-
ternative route to transfer distortion energy involving
transversal distortions along the y direction and which
would be especially favored under low-enough magnetic
forcings. To support this explanation it is also apparent
from the general nematodynamic equation [see Eq. (2)
below] that the only available way to couple splay, n,,
and twist, ny, modes of distortion requires the considera-
tion of wave numbers ¢,7-0. On the other hand, the usu-
al bend modes associated to wave numbers g, 70 would
only be excited at high-enough magnetic fields due tc
their largest elastic energy (K; > K; >K,).

Let us try now to transfer these qualitative ideas into
the appropriate set of stochastic nematodynamic equa-
tions. When applied to the splay geometry they read [15]
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In Eq. (1), A4 is an operator containing both reversible
and dissipative contributions that incorporates the ap-
propriate set of reorientation and flow viscosity parame-
ters [see Eq. (2.1) in Ref. [15]].

The functional derivatives of the free energy are
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written in terms of the elastic constants K; and the aniso-
tropic part of the magnetic susceptibility x,. p and p
are, respectively, the mass density and the pressure. Fi-
nally the last term in Eq. (1) introduces Gaussian random
forces that represent sources of thermal noise. Accord-
ingly they are prescribed with zero mean value and satis-
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fying appropriate fluctuation-dissipation relations

’ KBT
<§a(?—l’t,1 )55(?2,t2 )) 228,13—1/—8(71 -7 )a(t'l _tlz) ,
1

(EaplF1, 1168, (Fyy15)) =2K 5 TM 5, 8(F —F,)8(17 — 1) .
3)

In Eq. (3), v, stands for the pure reorientational viscosity
whereas M is a tensor that contains all the flow viscosity
parameters [15].

Succesive standard manipulations [14-17], i.e.,
incompressibility requirement, minimal coupling approxi-
mation, and negligible inertia, transform Eq. (1)
into a more appropriate dimensionless version
(t'=1ot;70=7,/(K,m*/d?)) for the Fourier amplitudes
(ny;@(t),nz;é(t);é=q/(17/d)) of the director com-
ponents. In a linear approximation we have
n,.g(0)
. (4)

Y3, A=Ki+y, A=nyt)= n, o0)
Q is the dimensionless wave number for the periodicities
in the plane of the sample. ¥ and K are self-adjoint ma-
trices associated to the viscosity and elastic contributions,
respectively, whereas ¥ collects the entire effect of
thermal fluctuations (for explicit expressions of all these
quantitities, see Appendix B in Ref. [15]). Finally, Eq.
(4) is converted into a dynamical equation for the
components of the structure factor Saﬁ(Q ;1)
= <na;§(t)n3;_é(t) >.

III. RESULTS

The emergence of periodic structures is monitored by
studying the time-dependent evolution of the structure
factor following a sudden change at ¢+ =0 from an initial
situation H; =0 to a final one H either below, H < H,, or
slightly above criticality, H>H, (H}*=K 7?/x,d?).
Here we will restrict the range of considered values to
0.9H,<H <1.5H,. The position in Q space of the max-
imum of SQB(Q ;) denoted Q,,,,(¢) is associated with the
characteristic wave number of the striped texture and its
temporal evolution form Q =0 with the pattern develop-
ment.

As anticipated in the preceding section, we will restrict
our analysis to the temporal evolution of Syy(é;t), i.e.,
the transversal component of the structure factor. In or-
der to describe any possible pattern formation
phenomenon, we compute the pair of wave numbers
(Q,,Q,) corresponding to the maximum of the structure
factor at different times. We always find that O, =0 but
O, evolves from zero as it corresponds to the develop-
ment of stripes parallel to the initial orientation within
the sample. In Figs. 1 and 2 we show definite evidence of
this behavior applying, respectively, to slightly subcritical
and supercritical reorientational evolutions from an ini-
tially undistorted sample.

It is very interesting to note, however, the different be-
havior shown by these two figures. In the first case, for
H < H_, the preponderance of modes Q0 appears to be
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FIG. 1. Time evolution of the maximum of Syx(_é,t) corre-
sponding to a transition from H;=0to H=V0.9H,. The
values of the material parameters are those of MBBA:
n,=41.6 cP, 1,=23.8 cP, ,=103.5 cP, v;=50.8 cP, ¥,=76.3
cP, K,/K,=%, K;/K,=%. Times are taken in units of
To=v1/(Km*/d*) =10 sec for typical samples with d =102
cm.

a persistent feature, after an initial transient has eliminat-
ed the predominance of the homogeneous mode Q =0. It
is also worth noting that for subcritical conditions, such
as those corresponding to Fig. 1, nonlinear effects are not
expected to be relevant enough to modify the predictions
of our linear approach. Actually, the order of magnitude
of the structure factor for H < H, is given by the intensity
of the thermal fluctuations estimated here to be 107 1°
scaled in units of the typical volume sample
(V'~10"2 cm?) and relaxation time (75~ 10 sec).

On the other hand, for H > H,, Fig, 2, the preponder-
ance of inhomogeneous modes of parallel stripes appears
only as a singular transient effect, within the limits of va-
lidity of our linear theory [18], finally disappearing to

a n2=2.0 , hZ=0

FIG. 2. Time evolution of the maximum of_Syy(Q,t) corre-
sponding to a transition from H;=0 to H=V2H,. Values of

the material parameters are those of Fig. 1.
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give rise to homogeneous distortions in the plane of the
sample.

IV. CONCLUSIONS
AND FURTHER PERSPECTIVES

The magnetically induced splay Fréedericksz transition
has been reexamined to look for pattern forming phe-
nomena slightly above or below criticality. According to
the obtained results shown in Figs. 1 and 2, one is then
tempted to interpret the spatial periodicity predicted sub-
critically as a true effect of fluctuations. One could even
speculate in view of Fig. 2 that such an effect might be
transitorily relevant also for supercritical reorientations
until the mode of homogeneous distortions Q =0, pre-
dicted to asymptotically dominate for such small enough
values of the magnetic forcing [15], would be definitively
predominant. Both below and above the instability
threshold, twist fluctuations of the director may develop
periodic modes of distortion along the transversal direc-
tion, to favorably relieve, in energetic terms, the other-
wise more expensive splay distortions. Below threshold,
such director fluctuations remain small, scaling essential-
ly with intensity of thermal noise, whereas above it they
become amplified as a result of their instability with
respect to the symmetry-breaking transition caused by
the magnetic field.

With respect to the electrically driven experiments of
Buka et al., we did not attempt, as mentioned in the In-
troduction, a quantitative comparison of our results with
their observations. Certainly, the basic equations ap-
propriate to each situation are different enough to permit
a reasonable comparison. However, at a qualitative level
some striking similarities are worth mentioning. First of
all and most important, subcritical parallel periodicities
are predicted as detected in the experiments. Second, it is
also interesting to point out that the patterns observed
supercritically for the electrically driven Fréedericksz
transition are indeed transient [12,13] but their disap-
pearance apparently follows a different mechanism with
respect to the one based on wall recombination that was
common to the earlier observations for the magnetically
driven instability [1,2,6,7,11]. In this respect the predict-
ed transient nature shown in Fig. 2 is also peculiar be-
cause in all the cases we have analyzed previously [14,17],
corresponding to situations for which transient patterns
have been experimentally predicted, the asymptotic eval-
uation of Q,.(¢) has always led to non-zero values. Ac-
tually, when we were interested in the description of their
late stage disappearance we necessarily had to adopt a
completely different approach based on domain-wall dy-
namics [19]. Regarding subcritical periodicities it is
worth emphasizing that what Buka et al. really observed
in this situation was a fluctuating two-dimensional struc-
ture persisting as long as the field is applied. The per-
sistent nature of the pattern agrees with our predictions.
We also add that according to our results the structure
function does not show below threshold a sharp max-
imum around Q.. (%), as happens above it, but strictly it
displays a certain multimodal nature, this fact being in-
terpreted as a signature of the somewhat arbitrary varia-
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tions in time and space of the pattern observed experi-
mentally.

From a much more general perspective, these results
seem to suggest the possibility of detecting either per-
manent or transient spatial patterns directly mediated by
the slightly subcritical or supercritical thermal fluctua-
tions always intrinsic to any realistic physical system ex-
periencing a symmetry-breaking instability. The general-
ity of this phenonenon extending to other situations
different from the Fréedericksz transition in nematic
liquid crystals, as, for example, electroconvection in an-
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isotropic liquid crystals or thermal convection in simple
or binary fluids, could be an interesting subject of further
theoretical and experimental research for specialists in
these fields.
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